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Abstract

A novel modification of the variational iteration method (VIM) is proposed by means
of the Laplace transform. Then the method is successfully extended to fractional
differential equations. Several linear fractional differential equations are analytically
solved as examples and the methodology is demonstrated.
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1 Introduction

The Lagrange multiplier technique [1] was widely used to solve a number of nonlinear
problems which arise in mathematical physics and other related areas, and it was devel-
oped into a powerful analytical method, i.e., the variational iteration method [2, 3] for solv-
ing differential equations. The method has been applied to initial boundary value prob-
lems [4-9], fractal initial value problems [10, 11], g-difference equations [12] and fuzzy
equations [13-15], etc.

Generally, in applications of VIM to initial value problems of differential equations,
one usually follows the following three steps: (a) establishing the correction functional;
(b) identifying the Lagrange multipliers; (c) determining the initial iteration. The step (b) is
very crucial. Applications of the method to fractional differential equations (FDEs) mainly
and directly used the Lagrange multipliers in ordinary differential equations (ODEs) which
resulted in poor convergences. This point of view needs some explanations will elucidate
the target of the suggested improvement, among them:

(1) When the Riemann-Liouville (RL) integral emerges in the constructed correctional

functional, the integration by parts is difficult to apply;

(2) To avoid this problem, the RL integral is replaced by an integer one which allows the
integration by parts. This is a very strong simplification but it affects the next steps
of the application of the method;

(3) Therefore, the Lagrange multiplier is determined by a simplification not reasonably
explained in the literature, so far.

To overcome this drawback, the present article conceives a method how the Lagrange

multiplier has to be defined from Laplace transform. The technique can be readily and
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universally extended to solve both differential equations and FDEs with initial value con-
ditions.

2 Basics of the variation iteration method
In order to illustrate the basic idea of the technique, consider the following general non-

linear system:

m

% +R[u] + N{u] = g(t), (1
where u = u(t), R is a linear operator, N is a nonlinear operator and g(¢) is a given contin-
uous function and 4" u/dt™ is the term of the highest-order derivative.

The basic character of the method is to construct the following correction functional
for Eq. (1):

Up1 = Uy + /‘t)‘(t’f)<% + R[un] +N[un] _g(f)> dT’ (2)
0

where A(£, 7) is called the general Lagrange multiplier [1-3] and u,, is the nth order ap-
proximate solution.

According to the VIM’s rules [2, 3, 16], readers may note that the integration by parts
plays an important role in the derivation of the Lagrange multipliers. But in fractional
calculus, generally, the following integration by parts cannot hold (as it is mentioned in
point (2) of the preceding section):

OIfVOCD‘;‘u = [w]lf - OIf‘ung‘v, (3)

where v = v(t), D% and (I® are the notations of the Caputo derivative and the RL integra-
tion, respectively. That’s why the VIM was not so successful as other analytical methods
such as the Adomian decomposition method (ADM) [17-19] and the homotopy pertur-
bation method (HPM) [20-22] in fractional calculus. For this reason, we consider the
following reconstruction of the method using the Laplace transform.

3 New identification of the Lagrange multipliers

Let us revisit the original idea of the Lagrange multipliers in the case of an algebraic equa-
tion. Firstly, an iteration formula for finding the solution of the algebraic equation f(x) = 0
can be constructed as

Kl = X + Af (%) (4)

The optimality condition for the extreme ‘S;‘L“ =0 leads to

Xn

1

DT ©)

where § is the classical variational operator. From (4) and (5), for a given initial value xo,
we can find the approximate solution x,,; by the iterative scheme for (5)

S (xn)
S’

xn+1:xn_ f/(‘xo)?'/oin:o;l;z;'-” (6)
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This algorithm is well known as the Newton-Raphson method and has quadratic conver-
gence.

Now, we extend this idea to finding the unknown Lagrange multiplier. The main step is
to first take the Laplace transform to Eq. (1). Then the linear part is transformed into an

algebraic equation as follows:
s"U(s) - u™D(0) — - - — 5" u(0) + L[R[u]] + L[N[u]] - L[g()] = 0, 7)

where U(s) = L[u(t)] = [~ e u(t) dt.
The iteration formula of (7) can be used to suggest the main iterative scheme involving

the Lagrange multiplier as

Upi1(8) = Un(s) + A(8)[s" Un(s) — uP(0) - - - — s u(0)

+L(R[un] + Nu,] —g(t))]. (8)

Considering L(R[u,] + N[u,]) as restricted terms, one can derive a Lagrange multiplier

as

Als) = -sim. 9)

With Eq. (9) and the inverse-Laplace transform L1, the iteration formula (8) can be

explicitly given as
o t(®) — a(6) — L [ sim [sUu(s) = ™ D(0) + - - - — s u(0)
+ L(R[u,] + Nu,] —g(t))]]

= L-l(gimu(m-n(o) Fet—— - S—mL(R[u,,] + Nu,] —g(t))), (10)

where the initial iteration u((¢) can be determined by

(m-1) m—
uo(t) :L-l<iu<m-1>(0) T @> =u(0) + 4/ (O)t + -+ + M. 11)
s s (m -1)!

Eq. (11) also explained why the initial iteration in the classical VIM is determined by the
Taylor series.

This modified VIM here transfers the problem into the partial differential equation in
the Laplace s-domain and removes the differentiation with respect to time. This idea has
been used in other analytical methods such as the Laplace ADM [23, 24] and the Laplace
HPM [25], respectively.

4 lllustrative examples
We now consider the applications of the modified VIM to both ODEs and FDEs.
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4.1 Ordinary differential equations
Example 1 Consider the following simple line differential equation:

du
7 +u=0, u(0) = uo, (12)

which has the exact solution u(z) = uge™.

We can obtain the successive approximate solutions as

uo(t) = u(0) = uo,

1 1 1 £
1
ug(t)ZL (;—S—2+S—3):M0<l—t+§>, (13)

For n — 00, u,(t) tends to the exact solution uye™.

Example 2 The logistic differential equation [26]

du 1
i u(l - u), u(0) = — (14)

has the exact solution u(t) = % By the present VIM, we have the following solutions:

1
Mo(t) = 5,

1 1 1 1
wm@) =L —+-=)==+-¢t
2s  4s? 4

2
(15)
L1 1 1\ 1 1 1,
@=L 5 ea) =5t 2t st
S

2s  4s?

The same solutions using the classical VIM can be found in [26].
On the other hand, if we use du/dt and the linear term # when determining the Lagrange

multiplier, we can derive a Lagrange multiplier explicitly
SUy(8) = 8U(s) + SA[sU(s) — u(0) = Uu(s)] = SUL(s) + A(s)(s — 1)8U,(s) (16)
and

As) = _SLI' (17)
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There can be various choices of u((¢) and A(s) which affect the speed of the convergence.
We note that the integration by parts is not used and the calculation of the Lagrange mul-
tiplier here is much simpler. Furthermore, the VIM can be easily extended to FDEs and

this is the main purpose of our work.

4.2 Fractional differential equations
In the early application of VIM [2] to FDEs, the term {D%u is considered as a restricted

variation, i.e.,

d
d—L;+0CD‘t"u=g(t,u), 0<t,0<ac<l,

and the variational iteration formula is given as
t du
Upsl = Uy + / A(t,r)(d—" + 5D —g(r,u)) dr,
0 T

where OCD';‘ is the Caputo derivative [27] and g(7, u,) is a nonlinear term.
But for the following FDEs, the above popular applications of the VIM were not success-

ful:
gD‘t"u + R[u] + N{u] = g(2), 18)
u(k)(0+) =ay, 0<t,0<a,m=[a]+1,k=0,...,m—1.
Now, we consider the application of the modified VIM.
The following Laplace transform [27-29] of the term §{ D%u holds:
m-1
L[OCD‘;‘ u] =s*U(s) - Z u® (O*)s"‘l_k, m—-l<a<m. (19)
k=0

Taking the above Laplace transform to both sides of (18), the iteration formula of Eq.

(18) can be constructed as
m-1
Uy (s) = Uy(s) + A(s) [s“ Uy(s) = Y u®(0)s** + (R[] + Ny —g(t))].
k=0

As aresult, after the identification of a Lagrange multiplier A = —Sia, one can derive

m-1
e (£) =y (8) = L7 [ si {s“ Uy(s) = Y u®(0)s** + (R[] + Nuy] —g(t))ﬂ
k=0

m-1
= (Z u®(0)sF1 S%L(R[un] + Nu,] —g(t))), m-l<a<m (20)
k=0

and

m-1 (m-1) m—
uo(t) = L™ (Z u(k)(O)s"k"l> u(0) + (Ot 44 O (21)

P (m—1)
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Let us apply the above VIM to solve FDEs of Caputo type.
Example 3 Consider the relaxation oscillator equation
D+ *u =0, u(0) =1, #(0)=0, t>0,0<a<2,w>0, (22)

with the exact solution E, ((—wt)*) [30], where E, ((—wt)*) denotes the Mittag-Leffler func-
tion.
After taking the Laplace transform to both sides of Eq. (22), we get the following iteration

formula:
U,.1(s) = U, (s) + A(s) [s"‘ U,(s) — u(0)s* ™ - u) (0")s""2 + a)"‘L[u,,]]. (23)

Setting L[u,(¢)] as a restricted variation, A(s) can be identified as

s) = -2 (24)

SC(
The approximate solution of Eq. (22) can be given as

it (8) = wn(£) — L7 Li [sUn() — u(0)s = ul) (0)s** + “’“L[”””]
- L‘ll:sl()[(l,t(O)so‘_1 + u(/)(0+)sa_2 - a)"‘L[un])i|,

which reads

Mo(t) = 17
%t
H=1-——,
m® =1- 5y
W%t wZatZa
u(t) =1-

Tl+a) T(+2a)

u,(t) rapidly tends to the exact solution of Eq. (24) for n — oo.

Example 4 Consider the fourth example, the time-fractional diffusion equation

9%u(x, t) N A (xu(x,t))

Cna
Diu=
0t 9x2 ax

, O<ac<l, u(x, 0) = x2. (25)

The VIM solution of the fractional semi-derivative equation was developed by Das [31].
Other methods applied to this equation are available in [32] and the monographs [33, 34]
in the fractional calculus.
We can have the following iteration formula for Eq. (25):
2 2
e (£) = L7+ FL(et) 4 etaietlly),

X

(26)
U (t) = x2

and A(s) = —Si,, is used as earlier.
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As a result, the successive approximation can be obtained as follows:

uo(£) = 7,
(X 24340, (2430
ui(t) =L (?+7> = m;

(2432t (8 +9x2)t™

Sa+1

t) = x>t + + , 27
vl = oy T e 24) 27)
walt) = #t + (2 + 3%t N (8 + %)t . (26 + 27x2) 3

'+ o) I'l+2a) I'(1l+3a)
The exact solution can be given in a compact form
n Jipi

,t) = lim ,t) = lim ———— = E, (kt), 28

ulx, £) = lim , (x,2) Hoo; T(1+ia) (ke?) (&5

where ki = x% + (1 +4%)(3" - 1).

The method’s efficiency for a nonlinear differential equation with variable coefficients
is illustrated in [35]. For other applications of a new modified VIM to ODEs and FDEs,
readers are also referred to [36—38].

Remarks

(a) The conceived modification of the VIM is a universal approach to both ODEs and
FDEs. As a result, it becomes possible to design a ‘universal’ software package in
future work.

(b) Now one can consider implementing other linearized techniques, i.e., the Adomian
series and the homotopy series to handle the nonlinear terms and improve the
accuracy of the approximate solutions.

(c) This modified VIM can also be used to solve the FDEs of RL type.

5 Conclusions

A new approach is proposed to identify the Lagrange multipliers of the VIM and a con-
cept of the Laplace-Lagrange multipliers is proposed from the Laplace transform. Espe-
cially for the FDEs, to the best of our knowledge, there is no effective method to iden-
tify the Lagrange multipliers. With the approach given in this paper, we can easily derive
Lagrange multipliers without tedious calculation and new variational iteration formulae
can be derived. Some FDEs with the Caputo derivatives are illustrated. The results show
the modified method’s efficiency compared with other versions of the VIM in fractional

calculus.
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