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We introduce a new combination of Bernstein polynomials (BPs) and Block-Pulse functions (BPFs) on the interval [0, 1]. These
functions are suitable for finding an approximate solution of the second kind integral equation. We call this method Hybrid
Bernstein Block-Pulse Functions Method (HBBPFM). This method is very simple such that an integral equation is reduced to
a system of linear equations. On the other hand, convergence analysis for this method is discussed.The method is computationally
very simple and attractive so that numerical examples illustrate the efficiency and accuracy of this method.

1. Introduction

In recent years,many different basic functions have been used
for solving integral equations, such as Block-Pulse functions
[1, 2], Triangular functions [3], Haar functions [4], Hybrid
Legendre and Block-Pulse functions [5], Hybrid Chebyshev
and Block-Pulse functions [6, 7], Hybrid Taylor and Block-
Pulse functions [8], and Hybrid Fourier and Block-Pulse
functions [9].

Block-Pulse functions were introduced in electrical engi-
neering by Harmuth. After that study, several researchers
have discussed applications of Block-Pulse functions [10, 11].

Bernstein polynomials have been applied in various fields
of mathematics. For example, some researchers applied the
Bernstein polynomials for solving high order differential
equations [12], some classes of integral equations [13], partial
differential equations, and optimal control problems [14].
Also, we introduced new operational matrices of fractional
derivative and integral operators by Bernstein polynomi-
als and then used them for solving fractional differential

equations [15–17], system of fractional differential equations
[18], and fractional optimal control problems [19, 20].

In this work, we combine the Bernstein polynomials
(BPs) and Block-Pulse functions (BPFs) on the interval
[0, 1]. Then, we use these bases for finding an approximate
solution of the second kind integral equation. We call this
method Hybrid Bernstein Block-Pulse Functions Method
(HBBPFM). In this method the integral equation is reduced
to a system of linear equations. Also, we discuss the conver-
gence analysis for this method. Furthermore, we compare the
accuracy of obtained results of BPFs, BPs, and HBBPFM by
some examples.

The rest of this paper is as follows. In Section 2, HBBPFs
are introduced; therefore we approximate functions by using
HBBPFs and also we discuss best approximation and conver-
gence analysis in Section 3. Then we apply HBBPF method
to find an approximate solution for the second kind integral
equations and we survey error analysis for proposed method
in Section 4. Also, we apply the proposed method on some
examples. We observe that the accuracy and efficiency of this
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method are more than the near methods. Finally, Section 6
concludes our work in this paper.

2. Hybrid of Bernstein and
Block-Pulse Functions

In this section, we recall some definitions and properties of
Bernstein polynomials and Block-Pulse functions.

Lemma 1 (see [19]). The Bernstein polynomials (BPs) of𝑚th-
degree are defined on the interval [0, 1] as follows:

𝐵
𝑖,𝑚 (𝑥) = (

𝑚

𝑖
) 𝑥
𝑖
(1 − 𝑥)

𝑚−𝑖
, 𝑖 = 0, 1, . . . , 𝑚, (1)

where

(
𝑚

𝑖
) =

𝑚!

𝑖! (𝑚 − 𝑖)!
. (2)

Then {𝐵
0,𝑚
, 𝐵
1,𝑚
, . . . , 𝐵

𝑚,𝑚
} in Hilbert space 𝐿2[0, 1] is a

complete basis. Therefore, any polynomial of degree 𝑚 can
be expanded in terms of linear combination of 𝐵

𝑖,𝑚
(𝑥) (𝑖 =

0, 1, . . . , 𝑚).

Lemma 2. Let a set of Block-Pulse functions (BPFs) 𝑏
𝑖
(𝑡), 𝑖 =

1, 2, . . . , 𝑁 be on the interval [0, 1) such that.

𝑏
𝑖 (𝑡) =

{

{

{

1,
𝑖 − 1

𝑁
≤ 𝑡 <

𝑖

𝑁
,

0, otherwise.
(3)

Then, the following properties for these functions satisfy the
following:

(i) disjointness,
(ii) orthogonality,
(iii) completeness.

Proof. Thedisjointness property can be clearly obtained from
the definition of Block-Pulse functions as follows:

𝑏
𝑖 (𝑡) 𝑏𝑗 (𝑡) = {

𝑏
𝑖 (𝑡) , 𝑖 = 𝑗,

0, 𝑖 ̸= 𝑗,
(4)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑁.
The other property is orthogonality. It is clear that

∫
1

0

𝑏
𝑖 (𝑡) 𝑏𝑗 (𝑡) 𝑑𝑡 =

1

𝑁
𝛿
𝑖𝑗
, (5)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑁 and 𝛿
𝑖𝑗
is the Kroneker delta.

The third property is completeness. For every 𝑓 ∈

𝐿
2
([0, 1)), when𝑚 approaches the infinity, Parseval’s identity

holds:

∫
1

0

𝑓
2
(𝑥) 𝑑𝑥 =

∞

∑
𝑖=0

(𝑓
2

𝑖

󵄩󵄩󵄩󵄩𝑏𝑖 (𝑡)
󵄩󵄩󵄩󵄩
2
) , (6)

where 𝑓
𝑖
= 𝑁∫

1

0
𝑓(𝑡)𝑏
𝑖
(𝑡)𝑑𝑡.

Definition 3 (Hybrid Bernstein Block-Pulse Functions
(HBBPFs)). 𝐻

𝑛,𝑚
(𝑡), 𝑛 = 1, 2, . . . , 𝑁, 𝑚 = 0, 1, . . . ,𝑀, have

three arguments; 𝑛 and 𝑚 are the order of BPFs and BPs,
respectively, and 𝑡 is the normalized time. HBBPFs are
defined on the interval [0, 1) as follows:

𝐻
𝑛,𝑚 (𝑡) =

{

{

{

𝐵
𝑚,𝑀 (𝑁𝑡 − 𝑛 + 1) ,

𝑛 − 1

𝑁
≤ 𝑡 ≤

𝑛

𝑁
,

0, otherwise.
(7)

In the next section, we deal with the problem of approxi-
mation of these functions.

3. Approximation of Functions by Using
HBBPFs and Convergence Analysis

Theorem 4. Suppose that the function 𝑓 : [0, 1] →

𝑅 is 𝑚 + 1 times continuously differentiable, and 𝑆 =

Span{𝐵
0,𝑚
, 𝐵
1,𝑚
, . . . , 𝐵

𝑚,𝑚
}. Then 𝑐𝑇𝐵 = 𝑠

0
= ∑
𝑚

𝑖=0
𝑐
𝑖
𝐵
𝑖,𝑚
∈ 𝑆 is

the best approximation 𝑓 out of 𝑆 ⊆ 𝐿2[0, 1] with the following
inner product:

⟨𝑓, 𝐵⟩ = ∫
1

0

𝑓 (𝑥) 𝐵(𝑥)
𝑇
𝑑𝑥

= [⟨𝑓, 𝐵
0,𝑚
⟩ , ⟨𝑓, 𝐵

1,𝑚
⟩ , . . . , ⟨𝑓, 𝐵

𝑚,𝑚
⟩] ,

(8)

where 𝐵𝑇 = [𝐵
0,𝑚
, 𝐵
1,𝑚
, . . . , 𝐵

𝑚,𝑚
] and 𝑐𝑇 = [𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑚
].

Also, one can obtain the following inequality:

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑐
𝑇
𝐵
󵄩󵄩󵄩󵄩󵄩𝐿2[0,1]

≤
𝐾̂

(𝑚 + 1)!√2𝑚 + 3
, (9)

where 𝐾̂ = max
𝑥∈[0,1]

|𝑓
(𝑚+1)
(𝑥)|.

Proof. We prove that 𝑐𝑇𝐵 is the best approximation for 𝑓
out of 𝑆. We can prove that 𝑆 is a convex subset of a real
inner product space 𝐿2[0, 1] (see [21]). Therefore, for any
𝑥 ∈ 𝐿
2
[0, 1], 𝑥 ∈ 𝑆 is its best approximation in 𝑆 if and only if

it satisfies

⟨𝑥 − 𝑥, 𝑧 − 𝑥⟩ ≤ 0 ∀𝑧 ∈ 𝑆, (10)

where the inner product is defined by ⟨𝑓, 𝑔⟩ = ∫1
0
𝑓(𝑡)𝑔(𝑡)𝑑𝑡.

Then for any 𝑥 ∈ 𝐿2[0, 1], its best approximation is unique.
Also, we know that 𝑆 ⊂ 𝐿2[0, 1] is a convex and closed finite-
dimensional subset of an inner product space 𝐿2[0, 1]. Then
for any 𝑥 ∈ 𝐿2[0, 1], there is a unique element 𝑥 ∈ 𝑆 such
that ‖𝑥−𝑥‖ = inf

𝑧∈𝑆
‖𝑥−𝑧‖. Therefore, there exist the unique

coefficients 𝑐
𝑖
, 𝑖 = 0, 1, . . . , 𝑚 such that

𝑓 ≅ 𝑠
0
=

𝑚

∑
𝑖=0

𝑐
𝑖
𝐵
𝑖,𝑚
= 𝑐
𝑇
𝐵. (11)

On the other hand, we can consider that {1, 𝑥, . . . , 𝑥𝑛} is a
basis for polynomials space of degree𝑚. Therefore we define
𝑦
1
(𝑥) = 𝑓(0) + 𝑥𝑓

󸀠
(0) + (𝑥

2
/2!)𝑓
󸀠󸀠
(0) + ⋅ ⋅ ⋅ + (𝑥

𝑚
/𝑚!)𝑓

(𝑚)
(0).

Hence, from Taylor expansion we have

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑦1 (𝑥)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚+1)

(𝜉
𝑥
)
𝑥
𝑚+1

(𝑚 + 1)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (12)
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Table 1: Absolute errors by using BPFs for 𝑁 = 4, BPs for𝑀 = 3,
and HBBPFM for𝑁 = 4,𝑀 = 3 in Example 1.

𝑡

Method
BPFs BPs HBBPFM
𝑁 = 4 𝑀 = 3 𝑁 = 4,𝑀 = 3

0 0.159448 0.000252739 2.57612 × 10
−7

0.1 0.0596148 0.0000539886 5.73616 × 10
−8

0.2 0.0392211 0.000110834 1.23088 × 10
−7

0.3 0.118936 0.0000398714 3.42659 × 10
−7

0.4 0.0250381 0.0000566614 2.06685 × 10
−7

0.5 0.167325 0.000106028 1.3331 × 10
−6

0.6 0.0821085 0.0000743689 3.07359 × 10
−7

0.7 0.00253325 0.0000243121 5.58694 × 10
−7

0.8 0.125405 0.000119641 7.24512 × 10
−7

0.9 0.0594347 0.000076931 4.20127 × 10
−7

Table 2: Absolute errors by using BPFs for 𝑁 = 5, BPs for𝑀 = 4,
and HBBPFs for𝑁 = 5,𝑀 = 4 in Example 1.

𝑡

Method
BPFs BPs HBBPFM
𝑁 = 5 𝑀 = 4 𝑁 = 5,𝑀 = 4

0 0.120718 0.0000294061 9.38506 × 10
−9

0.1 0.0208845 0.0000117512 4.43327 × 10
−10

0.2 0.124426 4.28074 × 10
−6

7.87196 × 10
−9

0.3 0.0275755 7.98903 × 10
−6

1.13157 × 10
−9

0.4 0.124293 8.7962 × 10
−6

6.2511 × 10
−9

0.5 0.034286 2.23581 × 10
−7

1.14373 × 10
−9

0.6 0.120604 8.9113 × 10
−6

1.22382 × 10
−8

0.7 0.0410285 7.57027 × 10
−6

1.62177 × 10
−9

0.8 0.230475 7.94076 × 10
−6

4.74483 × 10
−10

0.9 0.00358729 0.0000229948 9.2012 × 10
−9

where 𝜉
𝑥
∈ (0, 1). Since 𝑐𝑇𝐵 is the best approximation 𝑓 out

of 𝑆, and we assume that 𝑦
1
∈ 𝑆, therefore, we have

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑐
𝑇
𝐵
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
[0,1]
≤
󵄩󵄩󵄩󵄩𝑓 − 𝑦1

󵄩󵄩󵄩󵄩
2

𝐿
2
[0,1]

= ∫
1

0

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑦1 (𝑥)
󵄨󵄨󵄨󵄨
2
𝑑𝑥

= ∫
1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚+1)

(𝜉
𝑥
)
󵄨󵄨󵄨󵄨󵄨

2

(
𝑥
𝑚+1

(𝑚 + 1)!
)

2

𝑑𝑥

≤
𝐾̂
2

(𝑚 + 1) !2
∫
1

0

𝑥
2𝑚+2
𝑑𝑥

=
𝐾̂
2

(𝑚 + 1) !2 (2𝑚 + 3)
.

(13)

Then by taking square roots, the proof is complete.

The previous theorem shows that the error vanishes as
𝑚 → ∞.

Table 3: Absolute errors by using BPFs for 𝑁 = 4, BPs for𝑀 = 3,
and HBBPFM for𝑁 = 4,𝑀 = 3 in Example 2.

𝑡

Method
BPFs BPs HBBPFM
𝑁 = 4 𝑀 = 3 𝑁 = 4,𝑀 = 3

0 0.134438 0.000939946 2.60043 × 10
−6

0.1 0.0292675 0.000210236 6.00397 × 10
−7

0.2 0.0869644 0.000396173 1.08124 × 10
−6

0.3 0.103935 0.000126329 1.37399 × 10
−6

0.4 0.0380311 0.000213179 7.99831 × 10
−7

0.5 0.216077 0.00037144 4.28735 × 10
−6

0.6 0.0426798 0.000246979 9.89894 × 10
−7

0.7 0.148954 0.0000965353 1.78268 × 10
−6

0.8 0.167943 0.000412916 2.26538 × 10
−6

0.9 0.0661188 0.000254268 1.31873 × 10
−6

Table 4: Absolute errors by using BPFs for 𝑁 = 5, BPs for𝑀 = 4,
and HBBPFs for𝑁 = 5,𝑀 = 4 in Example 2.

𝑡

Method
BPFs BPs HBBPFM
𝑁 = 5 𝑀 = 4 𝑁 = 5,𝑀 = 4

0 0.106159 0.0000526416 1.44355 × 10
−8

0.1 0.000988576 0.0000210365 1.12472 × 10
−9

0.2 0.128144 8.80224 × 10
−6

1.65937 × 10
−8

0.3 0.000312002 0.0000141662 1.06195 × 10
−9

0.4 0.155374 0.0000171016 9.87722 × 10
−9

0.5 0.00152224 7.80052 × 10
−7

2.99127 × 10
−9

0.6 0.189012 0.0000166986 4.29645 × 10
−8

0.7 0.00262215 0.0000156271 7.92177 × 10
−9

0.8 0.230475 7.94076 × 10
−6

4.74483 × 10
−10

0.9 0.00358729 0.0000229948 9.2012 × 10
−9

Corollary 5. One can write 𝑐𝑇⟨𝐵, 𝐵⟩ ≅ ⟨𝑓, 𝐵⟩, such that one
defines 𝑄 = ⟨𝐵, 𝐵⟩ that is a (𝑚 + 1) × (𝑚 + 1) matrix and is
said dual matrix of 𝐵, and one can obtain

𝑄
𝑖+1,𝑗+1

= ∫
1

0

𝐵
𝑖,𝑚 (𝑥) 𝐵𝑗,𝑚 (𝑥) 𝑑𝑥

=
(𝑚𝑖 ) (

𝑚

𝑗 )

(2𝑚 + 1) (
2𝑚

𝑖+𝑗 )
, 𝑖, 𝑗 = 0, 1, . . . , 𝑚.

(14)

Proof. We know

𝑓 ≅ 𝑠
0
=

𝑚

∑
𝑖=0

𝑐
𝑖
𝐵
𝑖,𝑚
= 𝑐
𝑇
𝐵; (15)

therefore, the proof is complete.

Corollary 6. A function 𝑓(𝑡) ∈ 𝐿2([0, 1]) may be expanded
as follows:

𝑓 (𝑡) =

∞

∑
𝑛=1

∞

∑
𝑚=0

𝑝
𝑛,𝑚
𝐻
𝑛,𝑚 (𝑡) . (16)
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Figure 1: Plot of error functions by using BPFs for𝑁 = 4 (a), BPs for𝑀 = 3 (b), and HBBPFM for𝑁 = 4,𝑀 = 3 (c) in Example 1.

If the infinite series in (16) is truncated, then we have

𝑓 (𝑡) ≈

𝑁

∑
𝑛=1

𝑀

∑
𝑚=0

𝑝
𝑛,𝑚
𝐻
𝑛,𝑚 (𝑡) = 𝑃

𝑇
𝐻(𝑡) , (17)

where

𝐻(𝑡) = [𝐻1,0 (𝑡) ,𝐻1,1 (𝑡) , . . . , 𝐻1,𝑀 (𝑡) ,

𝐻
2,0 (𝑡) ,𝐻2,1 (𝑡) , . . . , 𝐻𝑁,𝑀 (𝑡)]

𝑇
,

(18)

𝑃 = [𝑝
1,0
, 𝑝
1,1
, . . . , 𝑝

1,𝑀
, 𝑝
2,0
, 𝑝
2,1
, . . . , 𝑝

𝑁,𝑀
]
𝑇
. (19)

Therefore we can get

𝑃
𝑇
⟨𝐻 (𝑡) ,𝐻 (𝑡)⟩ = ⟨𝑓 (𝑡) ,𝐻 (𝑡)⟩ . (20)

Then

𝑃 = 𝐷
−1
⟨𝑓 (𝑡) ,𝐻 (𝑡)⟩ , (21)

where

𝐷 = ⟨𝐻 (𝑡) ,𝐻 (𝑡)⟩ = ∫
1

0

𝐻(𝑡)𝐻
𝑇
(𝑡) 𝑑𝑡

=

[
[
[
[

[

𝐷
1
0 ⋅ ⋅ ⋅ 0

0 𝐷
2
⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝐷

𝑁

]
]
]
]

]

,

(22)

where by using (7),𝐷
𝑛
(𝑛 = 1, 2, . . . , 𝑁) is defined as follows:

(𝐷
𝑛
)
𝑖+1,𝑗+1

= ∫
𝑛/𝑁

(𝑛−1)/𝑁

𝐵
𝑖,𝑀 (𝑁𝑡 − 𝑛 + 1) 𝐵𝑗,𝑀 (𝑁𝑡 − 𝑛 + 1) 𝑑𝑡

=
1

𝑁
∫
1

0

𝐵
𝑖,𝑀 (𝑡) 𝐵𝑗,𝑀 (𝑡) 𝑑𝑡

=
(𝑀
𝑖
) (𝑀𝑗 )

𝑁 (2𝑀 + 1) (
2𝑀

𝑖+𝑗 )
, 𝑖, 𝑗 = 0, 1, . . . ,𝑀.

(23)

We can also approximate the function 𝑘(𝑡, 𝑠) ∈ 𝐿2([0, 1] ×
[0, 1]) as follows:

𝑘 (𝑡, 𝑠) ≈ 𝐻
𝑇
(𝑡) 𝐾𝐻 (𝑠) , (24)
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Figure 2: Plot of error functions by using BPFs for𝑁 = 5 (a), BPs for𝑀 = 4 (b), and HBBPFM for𝑁 = 5,𝑀 = 4 (c) in Example 1.

where𝐾 is an𝑁(𝑀+1)×𝑁(𝑀+1)matrix that we can obtain
as follows:

𝐾 = 𝐷
−1
⟨𝐻 (𝑡) , ⟨𝑘 (𝑡, 𝑠) ,𝐻 (𝑠)⟩⟩𝐷

−1
. (25)

Theorem 7. Let the function 𝑓 : [0, 1] → 𝑅 be𝑀 + 1 times
continuously differentiable; then we have

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑃

𝑇
𝐻
󵄩󵄩󵄩󵄩󵄩𝐿2[0,1]

≤
𝐾̃

𝑁𝑀+1 (𝑀 + 1)!√2𝑀 + 3
, (26)

where 𝐾̃ = max
𝑡∈[0,1]

|𝑓
(𝑀+1)

(𝑡)|.

Proof. By usingTheorem 4 we get

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑃

𝑇
𝐻
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
[0,1]

= ∫
1

0

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡) − 𝑃

𝑇
𝐻(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

=

𝑁

∑
𝑛=1

(∫
𝑛/𝑁

(𝑛−1)/𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑡)

−

𝑀

∑
𝑚=0

𝑝
𝑛,𝑚
𝐵
𝑚,𝑀 (𝑁𝑡 − 𝑛 + 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

)𝑑𝑡

=
1

𝑁

𝑁

∑
𝑛=1

∫
1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (
𝑡 + 𝑛 − 1

𝑁
) −

𝑀

∑
𝑚=0

𝑝
𝑛,𝑚
𝐵
𝑛,𝑚 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤
1

𝑁2𝑀+3

𝑁

∑
𝑛=1

∫
1

0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑀+1)

(𝜉
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2 𝑡
2𝑀+2

(𝑀 + 1) !2
𝑑𝑡

≤
1

𝑁2𝑀+3

𝑁

∑
𝑛=1

𝐾̂
2

𝑛

(𝑀 + 1) !2 (2𝑀 + 3)

≤
𝐾̃
2

𝑁2𝑀+2 (𝑀 + 1) !2 (2𝑀 + 3)
,

(27)

where 𝜉
𝑛

∈ ((𝑛 − 1)/𝑁, 𝑛/𝑁) and 𝐾̂
𝑛

=

max
𝑡∈[(𝑛−1)/𝑁,𝑛/𝑁]

|𝑓
(𝑀+1)

(𝑡)|. Therefore by taking square
roots, the proof is complete.
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Figure 3: Plot of error functions by using BPFs for𝑁 = 4 (a), BPs for𝑀 = 3 (b), and HBBPFM for𝑁 = 4,𝑀 = 3 (c) in Example 2.

The above theorem shows that the approximation error
vanishes as𝑀,𝑁 → ∞.

4. HBBPFs for the Second Kind Integral
Equations and Error Analysis

In this section, we are dealing with the following Fredholm
equations of the second kind:

𝑢 (𝑡) = ∫
1

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 + 𝑓 (𝑡) , (28)

where 𝑢, 𝑓 ∈ 𝐿2([0, 1]), 𝑘 ∈ 𝐿2([0, 1] × [0, 1]), and 𝑢(𝑡) is an
unknown function.

Let us approximate 𝑢, 𝑓, and 𝑘 by (18) and (25) as follows:

𝑢 (𝑡) ≈ 𝑈
𝑇
𝐻(𝑡) , 𝑓 (𝑡) ≈ 𝐹

𝑇
𝐻(𝑡) ,

𝑘 (𝑡, 𝑠) ≈ 𝐻
𝑇
(𝑡) 𝐾𝐻 (𝑡) .

(29)

By substituting (29) in (28) we obtain

𝐻
𝑇
(𝑡) 𝑈 = ∫

1

0

𝐻
𝑇
(𝑡) 𝐾𝐻 (𝑠)𝐻

𝑇
(𝑠) 𝑈 𝑑𝑠 + 𝐻

𝑇
(𝑡) 𝐹

= 𝐻
𝑇
(𝑡) 𝐾 (∫

1

0

𝐻(𝑠)𝐻
𝑇
(𝑠) 𝑑𝑠)𝑈 + 𝐻

𝑇
(𝑡) 𝐹

= 𝐻
𝑇
(𝑡) 𝐾𝐷𝑈 + 𝐻

𝑇
(𝑡) 𝐹 = 𝐻

𝑇
(𝑡) (𝐾𝐷𝑈 + 𝐹) .

(30)

Therefore we have the following linear system:

(𝐼 − 𝐾𝐷)𝑈 = 𝐹, (31)

that by solving this linear system we can obtain the vector𝑈.

Theorem 8. Suppose that 𝑢(𝑡) is exact solution of (28)
and 𝑢

𝑁,𝑀
(𝑡) is approximate solution by HBBPFs for 𝑢(𝑡)

and 𝐸
𝑁,𝑀
(𝑡) is perturbation function that depends only

on 𝑢
𝑁,𝑀
(𝑡) (i.e., 𝑢

𝑁,𝑀
(𝑡) = ∫

1

0
𝑘(𝑡, 𝑠)𝑢

𝑁,𝑀
(𝑠)𝑑𝑠 + 𝑓(𝑡) +

𝐸
𝑁,𝑀
(𝑡)). Let𝑅 = max

0≤𝑡,𝑠≤1
|𝑘(𝑠, 𝑡)| < ∞.Then𝐸

𝑁,𝑀
(𝑡) → 0

as𝑀,𝑁 → ∞.
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Figure 4: Plot of error functions by using BPFs for𝑁 = 5 (a), BPs for𝑀 = 4 (b), and HBBPFM for𝑁 = 5,𝑀 = 4 (c) in Example 2.

Proof. Suppose 𝑒
𝑁,𝑀
(𝑡) = 𝑢(𝑡) − 𝑢

𝑁,𝑀
(𝑡) is the error function

of approximate solution 𝑢
𝑁,𝑀
(𝑡) to the exact solution 𝑢(𝑡).

Therefore we get

𝑒
𝑁,𝑀 (𝑡) = ∫

1

0

𝑘 (𝑡, 𝑠) 𝑒𝑁,𝑀 (𝑠) 𝑑𝑠 − 𝐸𝑁,𝑀 (𝑡) . (32)

By taking absolute value and using Holder inequality we get

󵄨󵄨󵄨󵄨𝐸𝑁,𝑀 (𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫
1

0

|𝑘 (𝑡, 𝑠)|
󵄨󵄨󵄨󵄨𝑒𝑁,𝑀 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠 +
󵄨󵄨󵄨󵄨𝑒𝑁,𝑀 (𝑡)

󵄨󵄨󵄨󵄨

≤ (∫
1

0

|𝑘 (𝑡, 𝑠)|
2
𝑑𝑠)

1/2

(∫
1

0

󵄨󵄨󵄨󵄨𝑒𝑁,𝑀 (𝑡)
󵄨󵄨󵄨󵄨
2
𝑑𝑠)

1/2

+
󵄨󵄨󵄨󵄨𝑒𝑁,𝑀 (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝑅
󵄩󵄩󵄩󵄩𝑒𝑁,𝑀(𝑡)

󵄩󵄩󵄩󵄩𝐿2[0,1] +
󵄨󵄨󵄨󵄨𝑒𝑁,𝑀 (𝑡)

󵄨󵄨󵄨󵄨 .

(33)

Now, by taking norm 𝐿2([0, 1]) we obtain
󵄩󵄩󵄩󵄩𝐸𝑁,𝑀 (𝑡)

󵄩󵄩󵄩󵄩𝐿2[0,1] ≤ (𝑅 + 1)
󵄩󵄩󵄩󵄩𝑒𝑁,𝑀 (𝑡)

󵄩󵄩󵄩󵄩𝐿2[0,1]. (34)

Finally, fromTheorem 7 we can write

󵄩󵄩󵄩󵄩𝐸𝑁,𝑀 (𝑡)
󵄩󵄩󵄩󵄩𝐿2[0,1] ≤

(𝑅 + 1)𝐾

𝑁𝑀+1 (𝑀 + 1)!√2𝑀 + 3
, (35)

where𝐾 = max
𝑡∈[0,1]

|𝑢
(𝑀+1)

(𝑡)|.

Therefore, we can show that 𝐸
𝑁,𝑀
(𝑡) → 0 as𝑀,𝑁 →

∞.

5. Numerical Examples

In this section we discuss the implementation of the new
method and investigate its accuracy by applying it to different
examples. In the following examples, we suppose that 𝑢

𝑁
(𝑡),

𝑢
𝑀
(𝑡), and 𝑢

𝑀,𝑁
(𝑡) are approximate solutions by BPFs, BPs,

and HBBPFM for the exact solution 𝑢(𝑡), respectively.

Example 1. Consider the following integral equation:

𝑢 (𝑡) = ∫
1

0

(𝑡 + 𝑠) 𝑢 (𝑠) 𝑑𝑠 + sin (𝑡)

− 𝑡 + (𝑡 + 1) cos (1) − sin (1) .
(36)

We know that the exact solution is 𝑢(𝑡) = sin(𝑡).The obtained
results of BPFs, BPs, and HBBPFs are reported in Tables 1
and 2 and are plotted in Figures 1 and 2. We compare the
obtained results and observe that HBBPFM is very effective
and accuracy of approximate solutions in thismethod ismore
than methods of BPFs and BPs.
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Example 2. Consider the following integral equation:

𝑢 (𝑡) = ∫
1

0

𝑡𝑠𝑢 (𝑠) 𝑑𝑠 + 𝑒
𝑡
− 𝑡, (37)

with exact solution 𝑢(𝑡) = 𝑒𝑡. We obtain the computational
by BPFs, BPs, and HBBPFM with𝑁 = 4,𝑀 = 3, and𝑁 = 5,
𝑀 = 4; then we compare them together. The results are
reported in Tables 3 and 4 and are plotted in Figures 3 and
4. Similar to the previous example, we see that the method
HBBPFM is very effective and accuracy of solution in this
method is more than methods of BPFs and BPs.

6. Conclusion

In this paper, HBBPFs are used to solve second kind integral
equations we call this method with HBBPFM. This method
converts second kind integral equations to systems of linear
equations whose answers are coefficient of HBBPFs expan-
sion of the solution of second kind integral equations. Also,
by using several lemmas and theorems, we have discussed
convergence analysis of the proposed method. Numerical
examples show the efficiency and accuracy of the method.
Moreover we see that accuracy of solutions in HBBPFM is
more satisfactory than the methods of BPFs and BPs.
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