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We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor
set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very
effective and straightforward for solving the differential equations with local fractional derivative.

1. Introduction

Many problems of physics and engineering are expressed by
ordinary and partial differential equations, which are termed
boundary value problems. We can mention, for example,
the wave, the Laplace, the Klein-Gordon, the Schrodinger’s,
the telegraph, the Advection, the Burgers, the KdV, the
Boussinesq, and the Fisher equations and others [1].
Recently, the fractional calculus theory was recognized to
be a good tool for modeling complex problems demonstrat-
ingits applicability in numerical scientific disciplines. Bound-
ary value problems for the fractional differential equations
have been the focus of several studies due to their frequent
appearance in various areas, such as fractional diffusion

and wave [2], fractional telegraph [3], fractional KdV [4],
fractional Schrodinger [5], fractional evolution [6], fractional
Navier-Stokes [7], fractional Heisenberg [8], fractional Klein-
Gordon [9], and fractional Fisher equations [10].

Several analytical and numerical techniques were suc-
cessfully applied to deal with differential equations, frac-
tional differential equations, and local fractional differential
equations (see, e.g., [1-36] and the references therein). The
techniques include the heat-balance integral [11], the frac-
tional Fourier [12], the fractional Laplace transform [12], the
harmonic wavelet [13, 14], the local fractional Fourier and
Laplace transform [15], local fractional variational iteration
[16, 17], the local fractional decomposition [18], and the
generalized local fractional Fourier transform [19] methods.



Recently, the wave equation on Cantor sets (local frac-
tional wave equation) was given by [35]
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where the operators are local fractional ones [16-19, 35, 36].
Following (1), a wave equation on Cantor sets was
proposed as follows [36]:
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where u(x, t) is a fractal wave function.

In this paper, our purpose is to compare the local
fractional variational iteration and decomposition methods
for solving the local fractional differential equations. For
illustrating the concepts we adopt one example for solving the
wave equation on Cantor sets with local fractional operator.

Bearing these ideas in mind, the paper is organized as
follows. In Section 2, we present basic definitions and provide
some properties of local fractional derivative and integration.
In Section 3, we introduce the local fractional variational
iteration and the decomposition methods. In Section 4, we
discuss one application. Finally, in Section 5 we outline the
main conclusions.

2. Mathematical Tools

We recall in this section the notations and some properties of
the local fractional operators [15-19, 35, 36].

Definition 1 (see [15-19, 35, 36]). The function f(x) is local
fractional continuous, if it is valid for

|f () = f ()] < €% (3)

where |x — x| < §,fore >0and e € R.

We notice that there are existence conditions of local
fractional continuities that operating functions are right-
hand and left-hand local fractional continuity. Meanwhile,
the right-hand local fractional continuity is equal to its left-
hand local fractional continuity. For more details, see [35].

Following (4), we have [15-19, 35, 36]

Pl = xo|" < | F (%) = f (x0)] < &%|x — x| (4)

with [x — x| < §,fore, 6 >0ande, §,x, p € R.
For a fractal set F, there is a fractal measure [35]

H® (F 01 (%)) = (x = x0)", ®)

where f(x) presents a bi-Lipschitz mapping with fractal
dimension o and H* denotes a Hausdorff dimension.
We verify that there is a measure

H' (Fn(x,x,)) = x - x, (6)

in the case of « = 1 and f(x) is a Lipschitz mapping. If F is
a Cantor set, we have H™?™™3(F n (x, X)) = (x — xo)ln 2/1n3
witha =1n2/In3.
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Definition 2 (see [15-19, 35, 36]). The local fractional deriva-
tive of f(x) at x = x,, is defined as [16-20]

f(rx) (x,) = a*f (x) - lim A*(f (x) = f(x0))
0 A ,

= SR (x-x)

7)

where

A (f ()= f(x)) =T +a)A(f (x) = f(x0)).  (8)

We find that the existence condition for local fractional
derivative of f(x) is that the right-hand local fractional
derivative is equal to the left-hand local fractional derivative
(see, e.g., [16, 35] and the references therein).

Definition 3 (see [15-19, 35, 36]). A partition of the interval
[a,b] is denoted as (tj,tjﬂ),j =0,....,N-1,t, = a, and
ty = bwith At; =t;,, —t;and At = max{Afy, Afy, Af,.. .}
Local fractional integral of] f(x) in the interval [a, b] is given
by

() 1 ! o
el WACKL
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If the functions are local fractional continuous then the
local fractional derivatives and integrals exist. That is to
say, operating functions have nondifferentiable and fractal
properties (see [35] and the references therein).

Some properties of local fractional derivative and inte-
grals are given in [35].

3. Analytical Methods

In order to illustrate two analytical methods, we investigate
the nonlinear local fractional equation as follows:

L%u+Ru=0, (10)

where Lg') is linear local fractional operators, respectively,
with n = 1,2 and R, is linear local fractional operators of
order less than Lg’).

3.1 Local Fractional Variational Iteration Method. The local
fractional variational iteration algorithm is given by [16, 17]
on the line of the formalism suggested in [35]

U,y (8) = u, () +

I'(l+a) -

t Aa Y N
y L i (L%, (5) + Ry, (9)} (ds)".

Here, we can construct a correction functional as follows [16,
17]:

1
Uy (t) =u, (t) + m

(12)

8 JO Ta+a) {L%u,, (s) + Ry, (5)} ()",
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where i, is considered as a restricted local fractional varia-
tion; that is, 8%, = 0 (for more details, see [35]).
For n = 2, we have

A= l"(zl_-:)(x)’ )
so that iteration is expressed as
Uy () = u, (£) + TQ+a)
% Jt (s— )" {L0u, (5) + Ryt ()} ()" "
o T(l+a) b & " o
Finally, the solution is
u(x) = lim w, (4). (15)

3.2. Local Fractional Decomposition Method. When L(D':) in
(10) is a local fractional differential operator of order 2, we
denote it as

=% = aa)%,
. (16)
Rat(t) = ~u @)+ £ 1)
By defining the n-fold local fractional integral operator
Lm(s) = o1, o1, m(s) 17)
we get
LC21LPu(s) = LR (). (18)
Thus,
u(s) =7 (x)+ LS Ru(s), (19)

where the term r(x) is to be determined from the fractal
initial conditions.
Therefore, we get the iterative formula as follows:

u(x) =ty (x) + LR (s), (20)
with uy(x) = r(x).

Hence, for n > 0, we have the following recurrence
relationship:

Uy (%) = LSV R, (5)),

(21)
Uy (x) =r(x).
Finally, the solution can be constructed as
u(x) = lim ¢, (x) = lim »'u, (x). (22)
n=0

For more details, see [18].

4. An Illustrative Example

In this section one example for wave equation is presented in
order to demonstrate the simplicity and the efficiency of the
above methods.

In (2), we consider the following initial and boundary
conditions:

0%u (x,0) X

Py 0, u(x,0)= m. (23)

Using (14) we have the iterative formula

Upi1 (x’ t)
r (s —1)% 0™u, (x,s)
Fl+a) JoT(1+a) 0s**

1 Jf (s—-1)%  x*  0™u,(x,s)
Fl+a) JoTA+a)T(1+2a) 0x**

(ds)”

=u, (x,t) +

(ds)”,
(24)
where the initial value is given by

2
xoc

Uy (X, t) = m (25)

Thus, after computing (23) we obtain

u; (x,t)

. 1 Jt (s—1)% 0™uy (x,5)
F'l+a) JoT(Q1+a) 0s*
1 Jt (s-0%  x**  0®uy(x,s)
Fl+a) JoTA+a)T(1+20) 0Ox*

(ds)”

MO (xr t)
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t (S_t)oc { x2¢x

T(1+a) L T(1+a) _I‘(1+20c)}(ds)

=uy(x,t) +

x2¢x t2¢x
= 1+ ,
I'(l+2x) I'(l+2x)

u2 (x’ t)
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Hence, from (27) we obtain the solution of (3) as

20

X «
mCOSh“ (f ) . (28)

u(x) = nango u, (x) =
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Here, from (21) we get

(@) I () XZ“ az“un (x, S)
%t T(1+2a)  oOx*

2
xoc

I(1+2a)

Upi1 (x: t) =
(29)

uy (x,t) =

Therefore, from (29) we give the components as follows:

x2¢x

u, (x,t) = ———,
o (1) I(1+2x)
x> t

FA+20)T(1+2a)

20
u; (x,t) =

x> t

I'(l1+2a) T +4a)

4ot

U, (xr t) =

thx t3oc (30)

I'(l+2a)T(1+6x)

uz (x,t) =

x2(x t8¢x

I'(l+2a)T(1+8x)

Uy (x’ t) =

x20c t2no¢

U () = T 20 T+ 2000)”

Consequently, the exact solution is given by

u(x,t) = nanéoZu" (x, 1)
n=0

00 2a t2mx

X
- i 31
"erolor;)l"(l+2a)l"(l+2na) (31

20

x
= —_— m— h o N
l"(1+20c)COS « (%)

where

2ntx

x%) = Z1“(1+2noc)

cosh,, ( (32)

The solution of (2) for « = In2/1n 3 is depicted in Figure 1.

5. Conclusions

In this work, we developed a comparison between the
variational iteration method and the decomposition method
within local fractional operators. The two approaches con-
stitute efficient tools to handle the approximation solutions
for differential equations on Cantor sets with local fractional
derivative. We notice that the fractional variational iteration
method gives the several successive approximate formulas
using the iteration of the correction local fractional func-
tional. However, the local fractional decomposition method
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u(x,t)

0.2 X

070

FIGURE 1: Graph of u(x, t) for « = In2/In 3.

provides the components of the exact solution, which is local
fractional continuous function, where these components
are also local fractional continuous functions. Both the
variational iteration method and the decomposition method
within local fractional operators provide the solution in
successive components. The methods are structured to get the
local fractional series solution, which is a nondifferentiable
function.
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