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The mappings for some special functions on Cantor sets are investigated. Meanwhile, we apply the local fractional Fourier
series, Fourier transforms, and Laplace transforms to solve three local fractional differential equations, and the corresponding
nondifferentiable solutions were presented.

1. Introduction

Special functions [1] play an important role in mathematical
analysis, function analysis physics, and so on. We recall
here some very well examples, the Gamma function [2],
hypergeometric function [3], Bessel functions [4], Whittaker
function [5], G-function [6], q-special functions [7], Fox’s
H-functions [8], Mittag-Leffler function [9], and Wright’s
function [10].

TheMittag-Leffler function had successfully been applied
to solve the practical problems [11–15]. For example, the
Mittag-Leffler-type functions in fractional evolution pro-
cesses were suggested [15]. Solutions for fractional reaction-
diffusion equations via Mittag-Leffler-type functions were
discussed [16]. TheMittag-Leffler stability of fractional order
nonlinear dynamic systems was presented [17]. Models
based on Mittag-Leffler functions for anomalous relaxation
in dielectrics were proposed [18]. In [19], the anomalous
relaxation via the Mittag-Leffler functions was reported.

The continuous-time finance based on the Mittag-Leffler
functionwas given [20]. In [21], the fractional radial diffusion
in a cylinder based on the Mittag-Leffler function was
investigated. In [22], the Mittag-Leffler stability theorem for
fractional nonlinear systems with delay was considered. The
stochastic linear Volterra equations of convolution type based
on the Mittag-Leffler function were suggested in [23].

Recently, based on theMittag-Leffler functions onCantor
sets via the fractal measure, the special integral transforms
based on the local fractional calculus theory were suggested
in [24]. In this work, some applications for the local fractional
calculus theory are studied in [24–36]. The main aim of this
paper is to investigate the mappings for special functions
on Cantor sets and some applications of special integral
transforms to nondifferentiable problems.

The paper is organized as follows. In Section 2, the map-
pings for special functions on Cantor sets are investigated.
In Section 3, the special integral transforms within local
fractional calculus and some applications to nondifferentiable
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Figure 1: Graph of 𝑥2𝛼 for 𝛼 = ln 2/ ln 3.

problems are presented. Finally, in Section 4, the conclusions
are presented.

2. Mappings for Special Functions on
Cantor Sets

In order to give the mappings for special functions on Cantor
sets, we first recall some basic definitions about the fractal
measure theory [25].

Let Lebesgue-Cantor staircase function be defined as [25]

𝐻
𝛼
(𝐹 ∩ (0, 𝑥)) = Γ (1 + 𝛼)

0𝐼
(𝛼)

𝑥
1, (1)

where 𝐹 is a cantor set,𝐻
𝛼
(⋅) is the 𝛼-dimensional Hausdorff

measure,
0𝐼
(𝛼)

𝑥
(⋅) is local fractional integral operator [24–31],

and Γ(⋅) is a Gamma function.
Following (1), we obtain

𝐻
𝛼
(𝐹 ∩ (0, 𝑥)) = 𝑥

𝛼
, (2)

which is a Lebesgue-Cantor staircase function. For its graph,
please see [28].

In this way, we define some real-valued functions on
Cantor sets as follows [24–26].

The Cantor staircase function is defined as [25]

𝑓 (𝑥) = 𝑥
2𝛼

, (3)

and its graph is shown in Figure 1.
The Mittag-Leffler functions on Cantor sets are given by

[24, 25]

𝐸
𝛼
(𝑥
𝛼
) =

∞

∑

𝑘=0

𝑥
𝛼𝑘

Γ (1 + 𝑘𝛼)

, (4)

and we draw the corresponding graph in Figure 2.
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Figure 2: Graph of 𝐸
𝛼
(𝑥
𝛼
) for 𝛼 = ln 2/ ln 3.
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Figure 3: Graph of sin
𝛼
𝑥
𝛼 for 𝛼 = ln 2/ ln 3.

The sine on Cantor sets is defined by [24, 25]

sin
𝛼
𝑥
𝛼
=

∞

∑

𝑘=0

(−1)
𝑘 𝑥

𝛼(2𝑘+1)

Γ [1 + 𝛼 (2𝑘 + 1)]

, (5)

and its corresponding graph is depicted in Figure 3.
The cosine on Cantor sets is [24, 25]

cos
𝛼
𝑥
𝛼
=

∞

∑

𝑘=0

(−1)
𝑘 𝑥

2𝛼𝑘

Γ (1 + 2𝛼𝑘)

, (6)

with graph in Figure 4.
Hyperbolic sine on Cantor sets is defined by [24, 25]

sinh
𝛼
𝑥
𝛼
=

∞

∑

𝑘=0

𝑥
𝛼(2𝑘+1)

Γ [1 + 𝛼 (2𝑘 + 1)]

, (7)

and we draw its graphs as shown in Figure 5.
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Figure 4: Graph of cos
𝛼
𝑥
𝛼 for 𝛼 = ln 2/ ln 3.
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Figure 5: Graph of sinh
𝛼
𝑥
𝛼 for 𝛼 = ln 2/ ln 3.

Hyperbolic cosine on Cantor sets is defined as [24, 25]

cosh
𝛼
𝑥
𝛼
=

∞

∑

𝑘=0

𝑥
2𝛼𝑘

Γ (1 + 2𝛼𝑘)

, (8)

and its graph is shown in Figure 6.
Following (4)–(8), we have

𝐸
𝛼
(𝑖
𝛼
𝑥
𝛼
) = cos

𝛼
𝑥
𝛼
+ 𝑖
𝛼sin
𝛼
𝑥
𝛼
, (9)

where 𝑖
𝛼 is a fractal unit of an imaginary number [24, 26–32].

If for 𝜀, 𝛿 > 0 and 𝜀, 𝛿 ∈ 𝑅, 𝑓(𝑥) satisfies the condition
[24–26]

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑓 (𝑥

0
)
󵄨
󵄨
󵄨
󵄨
< 𝜀
𝛼
; (10)

for 𝑥 ∈ [𝑎, 𝑏] we write it as follows:

𝑓 (𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏) . (11)
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Figure 6: Graph of cosh
𝛼
𝑥
𝛼 for 𝛼 = ln 2/ ln 3.

3. Special Integral Transforms within Local
Fractional Calculus

In this section, we introduce the conceptions of special
integral transforms within the local fractional calculus con-
cluding the local fractional Fourier series and Fourier and
Laplace transforms. After that, we present three illustrative
examples.

3.1. Definitions of Special Integral Transforms within Local
Fractional Calculus. We here present briefly some results
used in the rest of the paper.

Let 𝑓(𝑥) ∈ 𝐶
𝛼
(−∞,∞). Local fractional trigonometric

Fourier series of 𝑓(𝑥) is given by [24, 26–28]

𝑓 (𝑥) = 𝑎
0
+

∞

∑

𝑖=1

𝑎
𝑘
sin
𝛼
(𝑘
𝛼
𝜔
𝛼

0
𝑥
𝛼
)

+

∞

∑

𝑖=1

𝑏
𝑘
cos
𝛼
(𝑘
𝛼
𝜔
𝛼

0
𝑥
𝛼
) .

(12)

The local fractional Fourier coefficients read as

𝑎
0
=

1

𝑇
𝛼
∫

𝑇

0

𝑓 (𝑥) (𝑑𝑥)
𝛼
,

𝑎
𝑘
= (

2

𝑇

)

𝛼

∫

𝑇

0

𝑓 (𝑥) sin
𝛼
(𝑘
𝛼
𝜔
𝛼

0
𝑥
𝛼
) (𝑑𝑥)

𝛼
,

𝑏
𝑘
= (

2

𝑇

)

𝛼

∫

𝑇

0

𝑓 (𝑥) cos
𝛼
(𝑘
𝛼
𝜔
𝛼

0
𝑥
𝛼
) (𝑑𝑥)

𝛼
.

(13)

We notice that the above results are obtained from
Pythagorean theorem in the generalized Hilbert space
[24, 26–28].

Let 𝑓(𝑥) ∈ 𝐶
𝛼
(−∞,∞). The local fractional Fourier

transform of 𝑓(𝑥) is suggested by [24, 29–32]

𝐹
𝛼
{𝑓 (𝑥)} = 𝑓

𝐹,𝛼

𝜔
(𝜔)

=

1

Γ (1 + 𝛼)

∫

∞

−∞

𝐸
𝛼
(−𝑖
𝛼
𝜔
𝛼
𝑥
𝛼
) 𝑓 (𝑥) (𝑑𝑥)

𝛼
.

(14)
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The inverse formula is expressed as follows [24, 29–32]:

𝑓 (𝑥) = 𝐹
−1

𝛼
(𝑓
𝐹,𝛼

𝜔
(𝜔))

=

1

(2𝜋)
𝛼
∫

∞

−∞

𝐸
𝛼
(𝑖
𝛼
𝜔
𝛼
𝑥
𝛼
) 𝑓
𝐹,𝛼

𝜔
(𝜔) (𝑑𝜔)

𝛼
.

(15)

Let 𝑓(𝑥) ∈ 𝐶
𝛼
(−∞,∞). The local fractional Laplace

transform of 𝑓(𝑥) is defined as [24, 32, 33]

𝐿
𝛼
{𝑓 (𝑥)} = 𝑓

𝐿,𝛼

𝑠
(𝑠)

=

1

Γ (1 + 𝛼)

∫

∞

0

𝐸
𝛼
(−𝑠
𝛼
𝑥
𝛼
) 𝑓 (𝑥) (𝑑𝑥)

𝛼
.

(16)

The inverse formula local fractional Laplace transform of
𝑓(𝑥) is derived as [24, 32, 33]

𝑓 (𝑥) = 𝐿
−1

𝛼
{𝑓
𝐿,𝛼

𝑠
(𝑠)}

=

1

(2𝜋)
𝛼
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼
(𝑠
𝛼
𝑥
𝛼
) 𝑓
𝐿,𝛼

𝑠
(𝑠) (𝑑𝑠)

𝛼
,

(17)

where 𝑓(𝑥) is local fractional continuous, 𝑠𝛼 = 𝛽
𝛼
+ 𝑖
𝛼
∞
𝛼,

and Re(𝑠) = 𝛽 > 0.
For more details of special integral transforms via local

fractional calculus, see [24, 32, 33] and the references therein.

3.2. Applications of Local Fractional Fourier Series and Fourier
and Laplace Transforms to the Differential Equation on Cantor
Sets. We now present the powerful tool of the methods
presented above in three illustrative examples.

Example 1. Let us begin with the local fractional differential
equation on Cantor set in the following form:

𝑎

𝑑
𝛼
𝑦

𝑑
𝛼
𝑥

+ by (𝑥) = 𝑓 (𝑥) , 𝑥 ∈ (−∞, +∞) , (18)

where 𝑎 and 𝑏 are constants and the nondifferentiable
function 𝑓(𝑥) is periodic of period 2𝜋 so that it can be
expanded in a local fractional Fourier series as follows:

𝑓 (𝑥) =

∞

∑

𝑛=1

sin
𝛼
(𝑛
𝛼
𝑥
𝛼
) . (19)

Here, we give a particular solution in the following form:

𝑦
𝑝
(𝑥) = 𝑎

0
+

∞

∑

𝑛=1

𝐴
𝑛
sin
𝛼
(𝑛
𝛼
𝑥
𝛼
)

+

∞

∑

𝑛=1

𝐵
𝑛
cos
𝛼
(𝑛
𝛼
𝑥
𝛼
) .

(20)

Following (20), we have

𝑦
(𝛼)

𝑝
(𝑥) =

∞

∑

𝑛=1

𝐴
𝑛
𝑛
𝛼cos
𝛼
(𝑛
𝛼
𝑥
𝛼
)

+

∞

∑

𝑛=1

𝐵
𝑛
𝑛
𝛼sin
𝛼
(𝑛
𝛼
𝑥
𝛼
) .

(21)

Submitting (20)-(21) into (18), we obtain

𝑎(

∞

∑

𝑛=1

𝐴
𝑛
𝑛
𝛼cos
𝛼
(𝑛
𝛼
𝑥
𝛼
)

+

∞

∑

𝑘=1

𝐵
𝑛
𝑛
𝛼sin
𝛼
(𝑛
𝛼
𝑥
𝛼
))

+ 𝑏(𝑎
0
+

∞

∑

𝑛=1

𝐴
𝑛
sin
𝛼
(𝑛
𝛼
𝑥
𝛼
)

+

∞

∑

𝑛=1

𝐵
𝑛
cos
𝛼
(𝑛
𝛼
𝑥
𝛼
))

=

∞

∑

𝑛=1

sin
𝛼
(𝑛
𝛼
𝑥
𝛼
) .

(22)

Hence, we get

𝑎
0
𝑏 = 0,

𝑎𝐴
𝑛
𝑛
𝛼
+ 𝑏𝐵
𝑛
= 0,

𝑎𝐵
𝑛
𝑛
𝛼
+ 𝑏𝐴
𝑛
= 1.

(23)

Therefore, we can calculate

𝑎
0
= 0,

𝐴
𝑛
= −

𝑏

𝑎
2
𝑛
2𝛼

− 𝑏
2
,

𝐵
𝑛
=

𝑎𝑛
𝛼

𝑎
2
𝑛
2𝛼

− 𝑏
2
.

(24)

In view of (24), we give the solution of (18) as follows:

𝑦
𝑝
(𝑥) = −

∞

∑

𝑛=1

𝑏

𝑎
2
𝑛
2𝛼

− 𝑏
2
sin
𝛼
(𝑛
𝛼
𝑥
𝛼
)

+

∞

∑

𝑛=1

𝑎𝑛
𝛼

𝑎
2
𝑛
2𝛼

− 𝑏
2
cos
𝛼
(𝑛
𝛼
𝑥
𝛼
) .

(25)

Example 2. We now consider the following differential equa-
tion on Cantor sets:

𝑑
2𝛼

𝑥

𝑑
2𝛼

𝑡

+ 𝑝𝑥 = 𝑓 (𝑡) , +∞ > 𝑡 > −∞, (26)

subject to the initial value condition

𝑑
𝛼
𝑥

𝑑
𝛼
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=0

= 0, 𝑥 (0) = 0, (27)

where𝑝 is constant and𝑓(𝑡) is the local fractional continuous
function so that its local fractional Fourier transform exists.

Application of local fractional Fourier transform gives

−𝜔
2𝛼

𝑥
𝐹,𝛼

𝜔
(𝜔) + 𝑝𝑥

𝐹,𝛼

𝜔
(𝜔) = 𝑓

𝐹,𝛼

𝜔
(𝜔) , (28)
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so that

(−𝜔
2𝛼

+ 𝑝) 𝑥
𝐹,𝛼

𝜔
(𝜔) = 𝑓

𝐹,𝛼

𝜔
(𝜔) . (29)

From (29), we have

𝑥
𝐹,𝛼

𝜔
(𝜔) =

𝑓
𝐹,𝛼

𝜔
(𝜔)

(−𝜔
2𝛼

+ 𝑝)

. (30)

Therefore, taking the inverse formula of local fractional
Fourier transform, we have

𝑥 (𝑡) = −

𝑝
−(1/2)

Γ (1 + 𝛼)

∫

𝑡

−∞

𝑓 (𝑡 − 𝜏) sin
𝛼
(𝑝
1/2

𝜏
𝛼
) (𝑑𝜏)

𝛼
. (31)

Example 3. Let us find the solution to the differential equa-
tion on Cantor sets

𝑑
2𝛼

𝑥

𝑑
2𝛼

𝑡

+

𝑑
𝛼
𝑥

𝑑
𝛼
𝑡

− 2𝑥 = 𝑓 (𝑡) , 𝑡 > 0, (32)

subject to the initial value condition

𝑑
𝛼
𝑥

𝑑
𝛼
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=0

= 0, 𝑥 (0) = 0, (33)

where 𝑓(𝑡) is the local fractional continuous function so that
its local fractional Laplace transform exists.

Taking the local fractional Laplace transform, from (32),
we have

(𝑠
2𝛼

𝑥
𝐿,𝛼

𝑠
(𝑠) − 𝑠

𝛼
𝑥 (0) − 𝑥

(𝛼)
(0)) + (𝑠

𝛼
𝑥
𝐿,𝛼

𝑠
(𝑠) − 𝑥 (0))

+ 2𝑥
𝐿,𝛼

𝑠
(𝑠) = 𝑓

𝐿,𝛼

𝑠
(𝑠) ,

(34)

so that

𝑥
𝐿,𝛼

𝑠
(𝑠) =

𝑓
𝐿,𝛼

𝑠
(𝑠)

𝑠
2𝛼

+ 𝑠
𝛼
− 2

. (35)

When the local fractional convolution of two functions is
given by [24]

𝑓
1
(𝑡) ∗ 𝑓

2
(𝑡) =

1

Γ (1 + 𝛼)

∫

𝑡

0

𝑓
1
(𝑡 − 𝜏) 𝑓

2
(𝜏) (𝑑𝜏)

𝛼 (36)

and the local fractional Laplace transform of 𝑓
1
(𝑡) ∗ 𝑓

2
(𝑡) is

[24]

𝐿
𝛼
{𝑓
1
(𝑡) ∗ 𝑓

2
(𝑡)} = 𝑓

𝐿,𝛼

𝑠,1
(𝑠) 𝑓
𝐿,𝛼

𝑠,2
(𝑠) , (37)

the inverse formula of the local fractional Laplace transform
together with the local fractional convolution theorem gives
the solution

𝑥 (𝑡) =

1

Γ (1 + 𝛼)

∫

𝑡

0

𝑓 (𝑡 − 𝜏) (𝐸
𝛼
(−2𝜏
𝛼
) + 𝐸
𝛼
(𝜏
𝛼
)) (𝑑𝜏)

𝛼
.

(38)

4. Conclusions

In this work, we investigated the mappings for special
functions on Cantor sets and special integral transforms
via local fractional calculus, namely, the local fractional
Fourier series, Fourier transforms, and Laplace transforms,
respectively. These transformations were applied successfully
to solve three local fractional differential equations, and the
nondifferentiable solutions were reported.
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