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KEYWORDS Abstract In this manuscript, we have obtained closed form solution using Laplace transform,
Modern fractional operator; inversion algorithm and convolution theorem. The study of mass transfer flow of an incompressible
Inversion algorithm; fluid is carried out near vertical channel. Recently, new classes of differential operators have been
Dufour effect; introduced and recognized to be efficient in capturing processes following the decay law and the
Mass transfer; crossover behaviors. For the study of heat and mass transfer, we applied the newly differential oper-
Convolution; ators say Atangana-Baleanu (4BC) and Caputo-Fabrizio (CF) to model such flow. This model for
Convection flow temperature, concentration and velocity gradient is presented in dimensionless form. The obtained

solutions have been plotted for various values physical parameters like «, Dy, Gy, G, S, and P, on
temperature and velocity profile. Our results suggest that for the variation of time the velocity
behavior for CF and ABC are reversible. Finally, an incremental value of prandtl number is
observed for decrease in the velocity field which reflects the control of thickness of momentum
and enlargement of thermal conductivity. Further, dynamical analysis of fluid with memory effect
are efficient for ABC as compared to CF.
© 2020 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Heat and mass transfer left a significant impact on non-
Newtonian fluid. The flow of non-Newtonian fluids under
assumption of heat generation analyzed in different applica-
tions of engineering. The engineering processes find numerous
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application on heat and mass transfer in a flow fluid across
channel such as fire engine, nuclear energy, petroleum reser-
voir and transport phenomena. In many systems, the com-
bined effect of temperature and concentration forces often
used in modeling of transport phenomena. Furthermore elec-
tric circuits, heat exchanger, solar panels and thermal protec-
tion system are major application of heat transfer which
directed impact on fluid system and its geometry [I-8].
Recently, changes in temperature has significant role in free
convection flow. Magnetic field effect on infinite plate with
heat and mass transfer by convection flow discussed by Cham-
kha et al. [9]. Further, Chamkha et al. [10] analyzed the lami-
nar and convection flow with heat and concentration field
inside the rectangular enclosure. In the presence of heat radia-
tion in MHD convective flow through permeable surface with
ramped wall temperature investigated by Ismail et al. [11].
Influence of heat effect on electrically and chemically fluid
under vertical channel investigated by Umavathi et al. [12].
Chamkha et al. [13] presented the micropolar fluid on heated
vertical preamble surface under effect of chemical and radia-
tion parameter. The solution of PDE for heat generation can
be obtained by using implicit finite difference schemes.

Soret and Dufour reaction are two significant circum-
stances in the process of heat and mass transfer. Concentration
and temperature profile generate Dufour and Soret effect
respectively. Both effects are used to discuss the Fick’s law.
The analytical solution of free convection flow to mass transfer
in upended channel with consideration of Dufour effect dis-
cussed by Jha et al. [14]. Impact of heat radiation and chemical
reaction on viscous incompressible nano-fluid through a
preamble surface with Dufour and Soret effect investigated
by Reddy et al. [15]. Narahari et al. [16] presented the solution
of natural convection flow with ramped wall temperature in
the presence of thermal and mass diffusion between the paral-
lel plates. Furthermore, Author [17] discussed the influence of
ramped wall temperature, heat and chemical reaction on fluid
convection flow over infinite plate. He notice that the velocity
profile decrease in the case of chemical reaction, inclination of
angle and heat source increase.

In fluid dynamics, fractional derivatives models have been
analyzed for viscoelastic materials, such as glassy state and
polymers. Recently, different real life problems have been dis-
cussed through fractional time derivative operator, namely
Caputo-Fabrizio (CF) time fractional derivative and
Atangana-Baleanu (4BC) time fractional derivative [18-20].
Fractional calculus is an emerging field which is based on dif-
ferent types of kernels. The main significance of kernels is to
provide a better description of the dynamics among complex
systems, for instance, collecting the memory at whole and par-
tial domain of certain processes. The non-locality of the new
kernel analyzed the memory structure with alternate scales.
Furthermore, the study of thermal sciences with non-local
exchange plays an important role in non-singular kernel frac-
tional derivative. CF and ABC time fractional operators dis-
cussed with non-singular kernel [21,32]. Fahd et al. [34]
discussed the classification of ordinary differential equations
in the frame of Atangana-Baleanu fractional derivative. Fur-
ther authors [33] investigate the existence theory and numerical
solutions to smoking model using Caputo-Fabrizio fractional
derivative.

Recently, Riaz et al. [22] investigate the effect of ramped
wall velocity on MHD fractional Oldroyd-B fluid using frac-

tional time derivative operators. furthermore, Authors [23]
investigate the influence of chemical reaction with ramped tem-
perature condition on MHD free convection flow over a verti-
cal plate using non-singular kernel. The solution of MHD
Oldroyd-B fluid with time dependent boundary conditions
using classical model and fractional operators analyzed by
Riaz et al. [30]. The mass transfer has the impact on rate of
heat transfer and mass transfer depends upon concentration
differences. Imran et al. [24] applied Caputo derivative on dif-
ferential type fluid and investigated solutions for temperature,
concentration and velocity. Heat and mass transfer analysis
for second grade fluid with thermophoresis and thermal radia-
tion analyzed by Das et al. [25]. Ali [35] discussed the novel
method for a fractional derivative with non-local and non-
singular kernel. Furthermore, the solutions of the linear and
nonlinear differential equations within the generalized frac-
tional derivatives is investigated by Ali et al. [36]. Some
remarkable work regarding heat and mass transfer phenomena
for viscous fluid has been done by researchers [26-29].

The aim of present article to analyze the closed form solu-
tion for unsteady free convection under the presence of mass
transfer with Dufour effect. CF and ABC modern fractional
operator are used to governs the flow of fluid using partial dif-
ferential equations (PDE). LT is used to determine the solu-
tion of given PDE for concentration, temperature and
velocity profile by satisfying ICr/s and BCrs of non-integer
order derivatives. To see the behavior of fluid flow, fractional
order model is good to explain the dynamics and memory
effect with respect to classical model. Closed form solutions
investigate in this article are interpreted graphically and com-
putationally by software Mathcad-15 to study the impact of
different pertinent parameters.

2. Fractional formation of natural convection flow through a
channel

Free convection and mass transfer fluid flow in a vertical chan-
nel are considered with Dufour effect. Let x-axis be the vertical
direction in which initial temperature 7 and C are consider
as a constant on both plates when * < 0. Here, a condition is
invoked for fluid to be at rest between two bounding walls, this
is because a Dufour effect with systems of equations shows the
influence of temperature and concentration. Meanwhile, at
#=0", concentration and temperature are given as

C, G +C ! and T, + Tt ) e set the physical quantities

on spatlal y* and time ¢* varlables between two walls having
infinite length. Within such assumptions, governing equations
under Boussinesq’s approximation with Dufour effect are
derived as:

2

Ou

o= oy ~ + gBT — gBT. + gBC — gfCx, (2.1)
or >T >C

Y il D =—= 2.2
ot a(ayz) B (8}’2)’ 22
aC >rC

~=_p (== .
5 =055 ) (23)
subject to following employed conditions as defined below

u(y,0) =0,7T(y,0) = Ty, C(»,0) = C,, (2.4)
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u(y,t) = U,cos(wt), T(y, 1) =

u(y, 1) = 0,T(y,1) = Ts, C(y, 1) = Cxc. (2.6)

7-'1"7 C(y7 t) = CW7 (2'5)

In order to avoid lengthiness and exaggerations among gov-
erning equations, we introduce the dimensionless functions
and parameters in Eqgs. (2.1)—(2.6) as illustrated below:

y u t lz T_Toc
K= g — [*:_ti 9:7 2.7
Y l’u 0’ i 0 b’ T, — T ( )
C—-Cy v v
- " SC:77P,.:7, 2.8
(b CW—CQO7 Dm a ( )

The optimal format of set of dimensionless governing equa-

tions have been obtained in terms of non-fractional
approaches, we have
ou Ou

2.
o 82+G0+Gm¢7 (2.9)
90 _ 1 (0\ Dy (P¢ (2.10)
ot P, \0»2) P, \0»)’ '
ap 1 (9°C
o (3 1
with appropriate conditions
u(y,0) = 0(y,0) = ¢(»,0) =0,y = 0, (2.12)
u(y,t) = cos(wt),0(y,t) = ¢p(y, 1) =1,y =0, (2.13)
u(00,t) = 0(c0, 1) = ¢p(00,1) =0,y — oo. (2.14)

2.1. Development of governing equations in terms of CF
derivative

Before developing the non-fractional governing equations in
terms of fractional differential operator, we define the time
fractional differential operators with its Laplace transform.
The CF and its Laplace in Caputo sense is defined as [31]

it~ [lexp(~ D) M) g

<¢< Ll (2.15)
The LT of CF derivative is
L sL(h —/
L(C[.D;h(y, l)) — S“""( (yal)) 1(_)/,0) (216)

(I—¢)s+c

2.2. Development of governing equations in terms of ABC
derivative

In this context, The 4BC derivative and its Laplace in Caputo
sense is defined as [31]

. 1 ! c(t—¢) Oh(y,7)
ABC ¢ . _5 5
D,h(y,t)—l_g/OE;( =) o de.  (2.17)
The LT of ABC derivative is
< ol
LDy, 1) =é£(h((y1’ t))) 40,0) (2.18)
—G)s

3. Optimal solutions based on modern fractional approaches

3.1. Fractional optimality of concentration via CF derivative

Generating Eq. (2.1 1) for the fractionalized form, we imposed
Eq. (2.15) on Eq. (2.11), we arrive at

F¢ 1 (PC o
or g ’

Eq. (3.19) can be manipulated by means of several methods
but we prefer to employee a powerful technique namely
Laplace transform on Eq. (3.19) with imposed conditions as
discussed in Egs. (2.12)—(2.14). This mathematical process is
resulted the suitable expression as

q - _Porq)
5 (a0 - S5t

(3.19)

(3.20)

The second order partial differential equation say (3.20) can
have the incomplete solution as investigated in Eq. (3.20)

$(.q) = c1e”? VI 4 ey Vi,

With the help of boundary conditions for concentration, ¢,
and ¢, can be traced out in the following equation:

(3.21)

—y Seq
e e q—oq+o

b0 q) = (3.22)

Inverting an exponential equation through Laplace transform
subject to the an Appendix (A1), we get final solution of con-
centration equation as:

29S. [ sin(ys) <’“ - )
H=1-="2 ——— e\ 3.23
pl) =1 =L [7 S0 g (323)
Here, 7y is letting parameter can be taken as y = ﬁ

3.2. Fractional Optimality of Temperature via CF derivative

Generating Eq. (2 10) for the fractionalized form, we imposed
Egs. (2.15) and (2.16) on Eq. (2.10), we arrive at

()0 =2 (75+)
+D;+:g‘($)$(y7q)- (3.24)

The solution of second order partial differential equation say
(3.20) is analyzed as:

- /P i Ay [Ba
0(r,q) = cre’ 75 4 cye Vi — Tl Vi,
q

With the help of boundary conditions for temperature, con-
stants ¢; and ¢, can be traced out in the following equation:

é( ) ) — 167«" q+; + % AV q+4q —V qi‘x
V4 q q

(3.25)

(3.26)

Inverting an exponential equation through Laplace transform
subject to the an Appendix (A1), we get final solution of tem-
perature equation as

0y, t) =6(y,t,7P,, yo) + A,

X (5(}'7 Z ’))P”’))OC) - 5()7, Z VSL7VO()) (327)
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3.3. Fractional optimality of velocity field via CF derivative

Generating Eq. (2.9) for the fractionalized form, we imposed
Eqgs. (2.15) and (2.16) on Eq. (2.9), we arrive at

&*uly,
T i(y,q) = T0)

q—oq+o 0y? +G, x 0y,

q) + G, x (3, 9),
(3.28)

by substitution of # and ¢ into (3.28). With minor simplifica-
tion, we get:

u(y,q) = e’V T 4 cre Vi — Bilg o) (g j ) eV =

q
_Blatw) /B2 Bilgt o) .\ /E
2 2
q q
B y ALY
_Blatn) /R (3.29)
q

With the help of boundary conditions for velocity field, ¢, and
¢, can be traced out in the following equation:

_ q i /T
uy,q) = (m)e e
+ E <€*)’\/% — 2V qﬁq)

q

N B;gv (E\/: _ ev\/;;i"::»)

B A L\ /1P
+ _2 ef) ﬁ _ e‘ s
q

B (o oV

6]2

- V)
q
B (o oV
¢ ¢

7 S
+ﬂ< -y ﬁie" 1,4:;;’,-)
q
By 7 LY
+ 220 (/T _ Vi),
q

Inverting an exponential equation through Laplace transform
subject to the an Appendix (A2)—(A5), we get final solution for
velocity equation as:

(3.30)

~ | —

u(y,t) = cos(wt) x —* E(»,4,7,72,0)

+ Bi(E(r,1,7,72,0) — E(, 1, Pry, 72, 0))
+ Bioy(I(», 1,7, 09) = (v, 1, 7P, y2))
+ B2(E(r,1,7,72,0) — E(v, 1, Pry, 72, 0))
+ Booy(I(, 8,7, 09) — Iy, £, 9P, y20))

E(y,1,8:7,7,0))
I, 1,7Se, %))

E(y, 1, 87,72, 0))
=9, 1,78¢, 7))

(v, t,7,70,0) —
= Byay(I(y, 1,7, 07) —
Wy, 70,0) —

(3.31)

B4O("/(’l9(ya t7 7 O(')))

3.4. Fractional optimality of concentration via ABC derivative

Generating Eq. (2.11) for the fractionalized form, we imposed
Eqgs. (2.17) and (2.18) on Eq. (2.11), we arrive at

Se <q,q—) d(v,q) = az(_]i;(—;/z,q).

e (3.32)

The second order partial differential equation say (3.32) can
have the incomplete solution as investigated in Eq. (3.32)

b =ce V> ) | eV 5,

With the help of boundary conditions for concentration field,
¢; and ¢, can be traced out in the following equation:

M»@:éay&&%m)

(3.33)

(3.34)

The above solution (3.34) can written in more appropriate
form

b, q) = (3.35)

ql o qm
Inverting an exponential equation through Laplace transform

subject to the an Appendix (A6)-(A10), we get final solution
for concentration field as:

d)(y7 t) = h(t7 O() X (X(y7 f7'))1,'))1067 0))7
1

where 7y, is letting parameter can be taken as y; = .

1—o

(3.36)

3.5. Fractional optimality of temperature via ABC derivative

Generating Eq. (2.10) for the fractionalized form, we imposed
Egs. (2.17) and (2.18) on Eq. (2.10), we arrive at

7 . 1 (20(y,9)
(q“ —og* + oc) 00.9) = P, ( oy’

Df'S(f ( q“

T\ a

)5)(% q)-
(3.37)

The second order partial differential equation say (3.37) can
have the incomplete solution as investigated in Eq. (3.37)

[ Pre* [ Pra® /71 Seq*
0(y,q) = cie V o e V o _ Al ¢ Vo
) = 2 -— .
q

With the help of boundary conditions for concentration field,
constants ¢; and ¢, can be traced out in the following equation:

—y 71 Pra*
s [ Pra” . [115ed*
oy _¢ A AV Y\
(r.q) = R G Ve _
. [nPra o [nPrd®  [1Seq*
1 e }\/; A, e Y\ 7 e"' e
G

= —_ X
ql*l qo( qlfa

(3.38)

(3.39)

(3.40)

Inverting an exponential equation through Laplace transform
subject to the an Appendix (A6)-(A10), we get final solution
for temperature as:
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3.6. Fractional optimality of velocity field via ABC derivative — — — —
+ BZIayl (e»" o 4oy |> ( \/ g +>r1 _ eJ u’ﬂn)
Generating Eq. (2.9) for the fractionalized form, we imposed -
Eqgs. (2.17) and (2.18) on Eq. (2.9), we arrive at By, (e'” [H it (;/]> +£ ( /qyl}v” _2 4 ,‘;‘.{I)
) q*.q q
q _ Tuy,q) | 4 o
_— =——""4G.0(y, G ,q)- R A Y AT
ag A 0 =5+ GO0L0) + Gud(0.) , Baan ( T ) o
q*.q

(3.42)

By substituting 6 and ¢ into (3.42), after some minor simplifi-
cation, we get:

Inverting an exponential equation through Laplace transform
subject to the an Appendix (A6)-(A10), we get final solution

for temperature as:

I—o

i(0,q) = 1 VT 4 e VFT _BUE + o) /35 1) = os(wt) x s 10, 571,020) + Bih(1,2)
* (0, 671,719, 0) = 20, £ Pryy, 1104,0)) + Brayyh(2,0)
_ Bi(g" + avl) g +B3(q“ +w1)e} he * (10 6,70, 71%0) = 1 (vs £, Py, 712, 0) + Boh(t, o)
q*.q q*.q # (2, 6,705019,0) = 2(vs £, Py, 1, 0)) + Baoy (1, 0)
Bulg +ap,) 1/ * (2, 1,705719,0) = 1 (v, £, Py, 112, 0)) + Bsh(1, o)
BT ~ (3.43) * (1 1,70,71%,0) = 2, 1, 871,712, 0)) + Byoy (1, 0)
# (2, 1,705719,0) = 2(v: 1, 8e91, 719, 0)) + Bah(t,2)
With the help of boundary conditions for concentration field, * (1, 6,71, 719, 0) — 2(v, £, Seyy, 712, 0)) + Baory, h(2, 0)
constants ¢; and ¢, can be traced out: * (1, 1,70, 719,0) = 10, £, Seyy, 712, 0)). (3.45)

30 T T T T 40 T T T T
23.03, 33.595,
ravaY ch A B
— £=0.01 S
il v L L1} 30+ -
//_ B \ CF 30 _- ‘...
20 /S X 1 . M
i - ?,, I\_ \ ) . ‘.</- =2 ",\) ._v
s I N & 4 . L
S5 A o
5 ™ S ¢ Ll -
§ ‘ N IT\Q\\ W "J/ \"»'. L}
. N 2 L -J _ = \’/\ l
10 f s - 1 =’ o ™
{ i ~ k- e VY L
| B 10 ke s
f -«-j\_;\‘:‘ ABC s "N )
=y =R CF
069 1 , . . 0183, |
1 1 1 1
OO 1 2 3 4 5 Oo 1 2 3 4 5
0. y 2. 0, y 2.
30 T T T T
2483,
A
i
00 o . 1
u
z .
-
. 10 L Sy .
8 f t=1 Ll
-
N 0{ ¢ ABC
mun CF
~0.123, l . . .
=55 1 2 3 4 5
Q. ¥ %
Fig. 1 Comparison of velocities with variation of time for ABC and CF.
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4. Results and discussion

The investigation of Dufour effect on viscous fluid through a
channel has been discussed by using Atangana-Baleanu frac-
tional time derivative (4BC) and Caputo-Fabrizio fractional
time derivative (CF) with suitable initial and boundary value
problem.  The influence of fractional parameter
o, Gy, Gy, Dy, S. and P, have been analyzed through graphically
with different differential operator. i.e. CF and ABC.

The behavior of velocity profile with variation of time for
ABC and CF discussed in Fig. 1. The velocity profile achieved
by ABC approach is greater than the velocity obtained with CF
approach for small time. Whereas for large value of time, the
response of velocities behavior are totally reverse. The velocity
achieved by CF is larger than the velocity achieved by ABC.
Another observation is consider for 1 = 1, both velocities are
behave alike. The significant role of fractional parameter (o)
for CF and ABC as shown in Figs. 2 and 3. Clearly, fluid veloc-
ity increases with the increase in o for small and large time. As
time increases, the boundary layer thickness become greater
and velocity is highest in the vicinity of plate. While making
comparison velocity for Atangana-Baleanu model is larger
because it has nonlocal kernel. The non-integer fractional
order derivative reduce to classical model by o — 1.

The influence of G,, on velocity field are shown in Figs. 4
and 5. The magnification in buoyancy forces leads to reduce
the viscous force which help to enhance the velocity field with
increase of G,,. For large and small value of time, the behavior
of velocities are same in G,,. The velocity field of Atangana-
Baleanu is larger than the velocity for other fractional opera-
tors. Figs. 6 and 7 shows the behavior of G, on velocity field.
An increase in G, , resultant velocity increases. It related to
thermal buoyancy effect, as buoyancy effect rises due to which
velocity of fluid increases. A comparative study is carried out
for fluid velocity profile for all models. Figs. 8§ and 9 analyzed
the influence of D, on fluid velocity. As increase in D, causes
the velocity enhance. Figs. 10 and 11 shows the effect of Sch-
midt number S, on velocity profile. The resultant velocity
reduce with increase in S,.. It is observed that fluid velocity
for ABC fractional model is greater than CF model.

The resultant fluid velocity reduce with enhance the value
of P,. The impact of P, on fluid velocity analyzed in Figs. 10
and 11. The thermal conductivity and thickness of boundary
layer shrink with increase the value of P, and viscosity of fluid
respectively (Figs. 12 and 13). The influence of «, Dy, P, and S,
on temperature profile are analyzed in Figs. 14-17 by ABC
approach. The temperature reduce with increase in « discussed
in Fig. 14. The increasing behavior of temperature with large

10 T T T T O T T T T
0921, —0011,
1
of : CF -
“. 4 s >
fi |’:“ D _z 'i S P
- 1018 - 20~ 7 =3 s i
= 2 & X
8 -20r 8 S
S 8
= = N d e =02
-30f - 40r o oy A
» % +++ a=04 SN S P +++ =04
+ t=02 . a =5
- a=06 i 5 7 ==0 =06
a=08 . so0 =038
~44.745, - 55.674 -
_5 1 1 1 1 - 60 1 1 1 1
'00 1 2 3 4 3 0 1 2 3 - 3
9. ¥ 3. 0. y 3.
Fig. 2 Profile velocity of o for CF with other parameters are G,, = 5,G, = 10, P, = 0.71.
0 T T T T
G T T T T
» ) -0011,
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AT 1 /f/" ’
- 10-\:“ P '; e 7] -20 —" +++ a=04 ABC ,,{f':'-*‘/. 4
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\ -\ 40
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ABC =601 ot 7
_ a0k a=06 N . & DI,=5
a=08
. —78.153
-43.73 > - -
. 6. 50 1 1 L 1 -80 . I‘ L L
% 1 2 3 4 5 » ! 2 } * ’
0 v 5 0 y 5

Fig. 3  Profile velocity of o for ABC with other parameters are G,, = 5,G, = 10, P, = 0.71.

Please cite this article in press as: S.T. Saeed et al., A mathematical study of natural convection flow through a channel with non-singular kernels: An application to
transport phenomena, Alexandria Eng. J. (2020), https://doi.org/10.1016/j.a¢j.2020.02.012



https://doi.org/10.1016/j.aej.2020.02.012

A mathematical study of natural convection flow through a

channel with non-singular kernels

8 T T T T 10y T T T T
JA, . 9,045,
d ~ CF we Gm=5 RS ~ CF we Gm=5
% I & ]
o N +++Gm=10 | 8 . +++ Gm =10
= o, 820 Gm =15 Bk B0 Gm =15
r 'y - & ~ O — - ~ 2. b & o ) -
§ ! ¥ o *0vGm=2 § 6| N Gm=20
L. ¢ R o) . 4
K o . . -- ‘g 3
o . =] ~
|l‘.
o
21
0275, 0446,
00
0. y - Q. y A
Fig. 4 Profile velocity of G,, for CF with other parameters are Dy = 5,G, =2, P, =2
15 T T T T 20 T T T T
J11.063, 18.501 -
e Gm=>5 Gm=15 . - 1 S R
t=02 ABC o @
+++ Gm=10 eoo Gm =20 15k . |
0= e D g
10r * T 1 ) t N
. ' T o ABC
& /B e
§ B B -
] B «
~ NG
BT S e B, _ o
- J -'+ Y .. b . R 1
- i LT SO
e — O
g ..
‘ ¥ +++ Gm=10 oo Gm=20
0921, - o
0 1 1 1 1 ‘_ 5 1 1 1 1
0 1 2 3 < 5 0 1 2 3 4 5
0. ¥ A, 0. y 5.
Fig. 5 Profile velocity of G,, for ABC with other parameters are D; = 5,G, =2, P, = 2.
3 -1 T T T 6 T T T T
2973, g = 5.191,
N sxx Gr=2 ex Gr=2
' —g, \»:>. - +++ Gr=5 N CF +++ Gr=5
L ) se0 Gr=8 4 P = - pe0 Gr=8 i
a B o #TTH » oo Gr=15 ) 1 00 Gr=15
g |y e\ & X \
8 | ™, 8 8 ; = 4 BN
02, 187107, i . . ! !
1 1 1 1
00 1 2 3 4 5 00 1 2 3 4 5
0. y 3 0. y 3.
Fig. 6  Profile velocity of G, for CF with other parameters are Dy = 2,G,, = 10, P, = 0.5.

Please cite this article in press as: S.T. Saeed et al., A mathematical study of natural convection flow through a channel with non-singular kernels: An application to
transport phenomena, Alexandria Eng. J. (2020), https://doi.org/10.1016/j.a¢j.2020.02.012



https://doi.org/10.1016/j.aej.2020.02.012

ARTICLE IN PRESS

8 S.T. Saeed et al.
4493, B 565, .’; g T - :
, s s Gr=2 o K ~ e Gr=2
4 ' N .
. N = +++ Gr=>5 $ o~ - \°'\ _ +++ Gr=35
s - x t=02 Ny &, ) t=5
'/U/ NS R za0 Gr=8 A {"m = \0 g0 Gr=8 —
3F / o | < N
3 IR o Q f ¢ e,
S h R

e

2643

Velocity

0.111,

S.242,

Fig. 9  Profile velocity of D, for ABC with other parameters are S, =0.8,G,, =8, P, = 2.

da

3476,

Velocity
[

0287,



https://doi.org/10.1016/j.aej.2020.02.012

A mathematical study of natural convection flow through a channel with non-singular kernels

3 T T S T T T
6449, 6654,
sxx Sc =07 ~ wex Sc=0.7
.
6 =5 6 ) -
CE +++ Sc =2 CF ++4+ Sc =2
i 580 Sc =4 =5 880 Sc =4
g > oo Sc=7 & . o0 Sc =7
S \ $ 4 g=02
N K i - S
x|, SN
} — 2. "y
h Y . ) 3
0088, Fge S o o0, f
A i s oo 0
0 3 4 0
0, v 0.
Fig. 10  Profile velocity of S, for CF with other parameters are G, = 5,G,, = 10, D, = 0.8.
lJ T T lS T T T
12248, 14253, -
(‘ LS
O S oo Sc=0.7
) s
10 ABC i Se=2 o , z=5 , +++ Sc=2
2 ) sa0 Sc =4 2 s 60 Sc = 4
S ‘ 00 Sc=7 8 a=02 0 s00 Sc=7
g |! N \
sH e
:
0.103, 0071, |1
00
. y 5. 0. y 5.
Fig. 11  Profile velocity of S. for ABC with other parameters are G, = 5,G,, = 10,D; = 0.8.
S T T T T 10 T T L T
7.088, 8637,
PR
. - %K
o X % ex Pr=02 4 s+ = )xx Pr=02 -
g e Mo re0p THPr=03 § o g tHPr=08
o 4 1# 1\\ 4 peEo Pr=2 i e e N \\ = peo Pr=2 |
IR VA N | & T/ O
3 (/ D '1 Ny X oo Pr=4 8 y . L oo Pr=4
K g, Mo, K a L
Y e S X K N = ‘*\ X .
I/ a—R TN F e N
p & __"E3 —;ﬁ’—_' \ h \ \X
0}" CF ) ‘Eﬁh! 21’ / - -, @ O N |
! @=08 i cF i S
~0.902, . ' . . 0319, L a=08 L e
) 1 2 3 4 5 % 1 2 3 4 5
0, ¥ 3. Q. b s.

Fig. 12 Profile velocity of P, for CF with other parameters are S, =0.5,G,, = 5,D; = 0.8.

Please cite this article in press as: S.T. Saeed et al., A mathematical study of natural convection flow through a channel with non-singular kernels: An application to
transport phenomena, Alexandria Eng. J. (2020), https://doi.org/10.1016/j.a¢j.2020.02.012



https://doi.org/10.1016/j.aej.2020.02.012

10 S.T. Saeed et al.

15 T T T T ‘5 T T T T
12109, 13014, X~
K~ %xx Pr=0.2 Wiy sexx Pr=0.2
7 e = { N +++ Pr=
10 o "% t=02 ++ Pr=08 4 x . /‘.\ t=5 Pr=038
I VR 2 L T TR peoPr=2 -
¢ ~ S oeo Pr=2 0 % oo Pr=2
/ ~5 - X ¢ ‘( o "
g - 2 c N PO P
& | /) e w_x, SePr=4 & |,/ . ~ eos Pr=4
,§ o J/ ] -..g e ¥, 7 ,§ : * X
N P e B ) N of ; - N s
/2,-' ‘—v-_____«’__ [3 \f\__\_-' Kom | . L J . S, - %, N ]
f T ———e g T R )
} 7/ el J o’m\-"' - Sh, «
& ABC - B T N3
J = -‘\(*“‘_ " o \-\l\"‘ .
a=08 i a=08 TR
~0.502, 1.016,
_3 1 1 1 1 0 1 1 1 :
0 1 2 3 4 5 0 1 2 3 4 5
. y s, 0. y 5.
Fig. 13  Profile velocity of P, for ABC with other parameters are S, = 0.5,G,, = 5,D; = 0.8.
12 T T T T 1 T T T T
- LR
' K\ soon @ =0.2
- 08\ s i+ @=05 |
\* g t=5
gs X s Vises a0 a@=0.8
| \ + B *e. sooa=1 ]
8(y.1) 06 60.1) \+ 8
04 "+ a
04
02 02f
0.051, 0036,
K 00 lI
.o_ y 3. L. y ]

Fig. 14  Profile temperature for o with variation of time and other parameters are G, = 5,G,, = 10,D;=2,P, = 0.8.

12 T T T T 1 T T T T
L1 %
! 7 038
0S8
06
6(y.1) 06 6(y,1)
04
04 i
02
02 - N
0013, [ 0.026,
% 1 2 3 4 5
0, y S, 0 ¥ 3.

Fig. 15  Profile temperature for D, with variation of time and other parameters are o = 0.4,G, = 10, S, = 1.5, P, = 3.

Please cite this article in press as: S.T. Saeed et al., A mathematical study of natural convection flow through a channel with non-singular kernels: An application to
transport phenomena, Alexandria Eng. J. (2020), https://doi.org/10.1016/j.a¢j.2020.02.012



https://doi.org/10.1016/j.aej.2020.02.012

A mathematical study of natural convection flow through a channel with non-singular kernels 11

1.2 T T T T 1 T T T T
L RIE N
1k e Pr=02 os—"*.‘l.‘\ oot Pr=02 |
7 £=02 +++Pr=15 \ 9 t=5 +++ Pr=1.5
0S8 — _ + X - ) Pr=3
ss0 Pr=3 o6k " % |
X, so0 Pr=5 + X *00 Pr=35
o(y.1) o6 Y - o(y,1) X
S Y + .
E E \/\ 04r e "\\‘/ -
0.4f ez \7’\.&_‘_ 1 " '\‘\_,‘
- . \\% . Xt
. + T 02F " fan TNV -
2F . . VR =t ) g
X e, N ; N e + 7
3 -3 : . 3.518x107° o b
ST 0 1 ?-3> B ag :_:_:."m-“.li..‘.»*‘.'.u_f"** 3 RO, 0 1 Nl R W A I
0 1 2 3 4 5 0 1 2 3 4 5
J ¥ 5 0. ¥ 3.
Fig. 16  Profile temperature for P, with variation of time and other parameters are o = 0.6,G,, = 5,S. = 0.4, P, = 2.
3 T T T T 25 T T T T
2357, 2387 <y
e Sc=0.2 - ook Sc=0.2
. +++ Sc=15 - . ' +++ Sc = |
) . £=02 2 » - Se=1.5
5 280 Sc=3 1 Sc=3
i . s00 Sc=5 el soo Sc=5 |
s f e
6.1 |/ , o(r) |+ o
e s S = ¥ B
» - SN li'_ Sy . +_‘* - -
. SaRan N ¥ . Foss g
Eas ¥ 0 . 8 Q_""/’--w,\ ‘f"-w‘; :
g VLR <] o VAL O
Y g, 0 ey
— _%.
s ST
0.164, , . . . o 0457,
0 1 1 1 1
0 ! 2 3 4 5 % 1 2 3 4 5
0. y S, 9. ¥ S,
Fig. 17  Profile temperature for S, with variation of time and other parameters are o = 0.8, G,, = 10, S. =2, P, = 0.8.

value of D, shown in Fig. 15. The effect of P, on temperature
discussed in Fig. 16. As P, increase, temperature decrease. In
Fig. 17, the value of S, increase with increase in temperature.

5. Conclusion

The comparative study of viscous fluid along vertical plate
with Dufour effect has been analyzed in view of non-local
and non-singular kernel. Caputo-Fabrizio (CF) and
Atangana-Baleanu (4BC) approach are used to compare the
fluid velocity behavior. The key points have extracted from
this article.

e The velocity profile shows opposite behavior for different
values of time while t =1 the behavior of ABC and CF
approach are same.

e The magnitude of the velocity increase as increase in frac-
tional parameter.

e Velocity enhance with increase the value of G, and G,,.

o Increase the value of D, and S., the resultant velocity also
increase.

e Temperature reduce for increasing values of o and P..

e ABC fractional derivative is more considerable as compared
to CF.
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Appendix A.
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