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a b s t r a c t 

In this paper we consider multi variable orders differential equations (MVODEs) with non-local and no- 

singular kernel. The derivative is described in Atangana and Baleanu sense of variable order. We use 

the fifth-kind Chebyshev polynomials as basic functions to obtain operational matrices. We transfer the 

original equations to a system of algebraic equations using operational matrices and collocation method. 

The convergence analysis of the presented method is discussed. Few examples are presented to show the 

efficiency of the presented method. 
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. Introduction 

Fractional derivatives can be used to simulate various real phe-

omena involving long memory accurately [1] . Fractional differen-

ial equations (FDEs) have been successfully applied in modeling

f physics and engineering problems such as earthquake analysis,

io-chemical, electric circuits, controller design, signal processing,

iscoelasticity, diffusion equations, electromagnetic waves, and so

n [2–6] . 

There are several definitions of fractional derivative and inte-

ral such as Riemann-Liouville, Grünwald-Letnikov and Caputo [7] .

n the last decade, the concept of fractional differentiation and in-

egration or particularly the concept of non-local operators has at-

racted from many fields of science [8–11] . 

Recently, new definitions of fractional derivative are de-

ned for example Caputo-Fabrizio derivative by Caputo and Fab-

izio [12] , new Caputo-Fabrizio derivative by Losada and Nieto

10,13,14] , Yang-Srivastava-Machado derivative by Yang, Srivastava
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nd Machado [10,14] , Generalized Riemann-Liouville and General-

zed Caputo derivative by Atangana and Baleanu [9,15,16] which is

alled after that as Atangana-Baleanu derivative. 

The Atangana-Baleanu and Caputo-Fabrizio fractional deriva- 

ives show crossover properties for the meansquare displacement,

hile the Riemann-Liouville is scale invariant. Their probability

istributions are also a Gaussian to non-Gaussian crossover, with

he difference that the Caputo Fabrizio kernel has a steady state

etween the transition. Only the Atangana-Baleanu kernel is a

rossover for the waiting time distribution from stretched expo-

ential to power law. The Caputo-Fabrizio derivative is less noisy

hile the Atangana-Baleanu fractional derivative provides an excel-

ent description, due to its Mittag-Leffler memory, able to distin-

uish between dynamical systems taking place at different scales

ithout steady state [17–19] . 

It is not easy to obtain exact solution of fractional ordinary/

artial/ integro-differential equations. There are several numerical

ethods for solving these equations [20–26] . 

Presently, the variable order fractional calculus as an develop-

ent of the classical fractional calculus is getting more popular.

ariable order derivative is proposed by Samko and Ross in 1993

27] . In this case, the order of differential (or integral) operator is

https://doi.org/10.1016/j.chaos.2019.109405
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not a constant but it is a function of space, time or other variables.

Since derivative operator has a kernel of the variable order, it is

not simply task to obtain the solution of such equations. 

Recently, few researchers have proposed several approximation

and numerical methods for solving variable order of the differen-

tial equations. Li and Wu, Yang et al. used the reproducing kernel

method for solving the variable order fractional functional bound-

ary value problems [28,29] . Ganji and Jafari applied Jacobi poly-

nomials to obtain solution the multi-variable orders differential

equations [30] . Doha et al. used the spectral technique for solv-

ing variable order fractional Volterra integro-differential equations

[31] . Jafari et al. obtained a the approximate solution for variable

order differential equations based on Bernstein polynomials [32] .

Yu and Ertürk applied a finite difference method to solve variable

order fractional integro-differential equations [33] . Ganji and Jafari

solved the variable order integro-differential equations via several

polynomials [34] . 

We study the following type of MVODEs 

N ∑ 

i =1 

ηi (t) ABC D 

κi (t) 
�(t) = f (t, �(t)) , 0 ≤ t ≤ 1 , 

�(0) = �0 , (1)

where N is a positive integer number and κ i ( t ) are bounded in in-

terval [0,1]. 

ηi ( t ) are known functions. �( t ) is a continuously differentiable.
ABC D 

κi (t) 
denote Atangana-Baleanu-Caputo derivatives which are

defined in Definition 1 . 

Definition 1. The Atangana-Baleanu-Caputo fractional derivative
ABC D 

κ of order 0 < κ < 1 of a function �( t ) ∈ H 

1 ( a, b ), a ∈ (−∞ , t)

is defined in the following form 

ABC D 

κ
�(t) = 

B (κ) 

1 − κ

∫ t 

a 

E κ

[ 
− κ

1 − κ
( t − s ) κ

] 
�′ ( s ) ds, (2)

where B ( κ) is fulfilling B (0) = B (1) = 1 and E κ (t) = 

∑ ∞ 

p=0 
t p 

�(pκ+1) 

is the Mittag-Leffler function. 

More details for the above derivative are given in [8,9,17,35,36] .

For variable order derivative we can rewrite (2) as [37] 

ABC D 

κ(t) 
�(t) = 

B (κ(t)) 

1 − κ(t) 

∫ t 

a 

E κ(t) 

[
− κ(t) 

1 − κ(t) 
(t − s ) κ(t) 

]
�′ (s ) ds. 

(3)

It is easy to report the following result, namely 

ABC D 

κ(t) 
t m 

= 

⎧ ⎨ 

⎩ 

B (κ(t)) 
1 −κ(t) 

∞ ∑ 

p=0 

(−κ(t)) p �(m + 1) 

(1 − κ(t)) p �(κ(t) p + m + 1) 
t κ(t) p+ m , m = 1 , 2 , . . . , 

0 , m = 0 . 

(4)

Remark 1. According to Definition 1 , B ( κ( t )) is as following [13] 

B (κ(t)) = 

2 

2 − κ(t) 
, 0 < κ(t) < 1 . 

2. The fifth-kind chebyshev polynomials 

The i th degree fifth-kind Chebyshev polynomials are defined on

the interval [ −1 , 1] as [38] 

χi (t) = 

1 √ 

ε i 
H 

−3 , 2 , −1 , 1 

i (t) , 
here 

 i = 

{
π

2 2 i +1 , i e v en, 
π (i +2) 
i 2 2 i +1 , i od d , 

nd 

 

r,s, v ,w 
i (t) = 

( � i 2 	−1 ∏ 

k =0 

(2 k + (−1) i +1 + 2) w + s 

(2 k + (−1) i +1 + 2 � i 
2 
	 ) v + r 

) 

H 

r,s, v ,w 
i 

(t) , 

 

r,s, v ,w 
i 

(t) = 

� i 2 	 ∑ 

j=0 

( (� i 
2 
	 

j 

)( � i 2 	− j−1 ∏ 

k =0 

(2 k + (−1) i +1 + 2 � i 
2 
	 ) v + r 

(2 k + (−1) i +1 + 2) w + s 

) 

t i −2 j 

) 

. 

χ i ( t ) are orthonormal on [ −1 , 1] 

 1 

0 

t 2 √ 

1 − t 2 
χm 

(t) χn (t) dt = 

{
1 , m = n, 

0 , m 
 = n. 

he i th degree shifted fifth-kind Chebyshev polynomials are de-

ned on the interval [0, 1] as 

 i (t) = χi (2 t − 1) . (5)

 i (t) are orthonormal on [0, 1] 

 1 

0 

(2 t − 1) 2 √ 

t − t 2 
C m 

(t) C n (t) dt = 

{
1 , m = n, 

0 , m 
 = n. 

e can rewrite C i (t) as 

C i (t) = 

i ∑ 

ι=0 

σι,i t 
ι, 

here 

ι,i = 

2 2 ι+ 
3 
2 √ 

π(2 ι)! 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

2 

i 
2 ∑ 

k = � ι+1 
2 	 

(−1) 
i 
2 + k −ιk δk (2 k + ι − 1)! 

(2 k − ι)! 
, i e v en, 

1 √ 

i (i +2) 

i −1 
2 ∑ 

k = � ι2 	 

(−1) 
i +1 

2 + k −ι(2 k + 1) 2 (2 k + ι)! 

(2 k − ι + 1)! 
, i od d , 

and 

k = 

{
1 
2 
, k = 0 , 

1 , k > 0 . 
(6)

he fifth-kind Chebyshev polynomials are bounded on [0, 1] for all

 ≥ 0 as [38] 

C i (t) | < 

√ 

2 

π
(i + 2) , ∀ t ∈ [0 , 1] . (7)

e can express the shifted fifth-kind Chebyshev basis polynomials

n the matrix form 

(t) = [ C 0 (t ) , C 1 (t ) , . . . , C n (t )] T = AT n (t ) , (8)

here 

 n (t) = [1 , t, . . . , t n ] T , 

nd 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

σ0 , 0 0 0 . . . 0 

σ0 , 1 σ1 , 1 0 . . . 0 

σ0 , 2 σ1 , 2 σ2 , 2 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
σ0 ,n σ1 ,n σ2 ,n . . . σn,n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

here σ0 , 2 i = 

√ 

2 and the matrix A is invertible. 
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. Operational matrix of variable order derivative operators 

We can expand a function �( t ) ∈ L 2 [0, 1] in terms of the shifted

fth-kind Chebyshev polynomials by the following infinite series 

(t) = 

∞ ∑ 

i =0 

a i C i (t) . (9)

lso, we can approximate �( t ) by the first n + 1 terms of the

hifted fifth-kind Chebyshev polynomials as 

(t) ≈ �n (t) = 

n ∑ 

i =0 

a i C i (t) = T ϕ(t) , (10)

here  = [ a 0 , a 1 , . . . , a n ] 
T is the shifted fifth-kind Chebyshev co-

fficients vector. 

We can obtain the shifted fifth-kind Chebyshev coefficients by 

 i = 

∫ 1 

0 

(2 t − 1) 2 √ 

t − t 2 
�(t) C i (t) dt. 

 i are bounded as [38] 

 a i | < 

√ 

2 π L 

2 i 3 
, ∀ i > 3 , 

here | �(3) ( t )| ≤ L . 

We find the operational matrices of derivative operators of or-

ers κ i ( t ) for vector ϕ( t ) as 

BC D 

κi (t) ϕ(t) = 

ABC D 

κi (t) [ AT n (t)] = A 

ABC D 

κi (t) [1 t . . . t n ] T . 

ccording to (4) , we can write 

BC D 

κi (t) ϕ(t) = A 

[ 

0 

B (κi (t)) 

1 − κi (t) 

∞ ∑ 

p=0 

(−κi (t )) p t κi (t) p+1 

(1 − κi (t)) p �(κi (t) p + 2) 

· · · B (κi (t)) 

1 − κi (t) 

∞ ∑ 

p=0 

(−κi (t)) p �(n + 1) t κi (t) p+ n 

(1 − κi (t)) p �(κi (t) p + n + 1) 

] T 

= A �i T n (t) , 

here � i are (n + 1) × (n + 1) matrices as 

�i = [ ψ il, j ] (n +1) ×(n +1) 

where 

 il, j = 

⎧ ⎨ 

⎩ 

B (κi (t)) 
1 −κi (t) 

∞ ∑ 

p=0 

(−κi (t)) p �( j + 1) t κi (t) p 

(1 − κi (t)) p �(κi (t) p + j + 1) 
, l = j > 0 , 

0 , otherwise. 

rom (8) , we have T n (t) = A 

−1 ϕ(t) , then 

BC D 

κi (t) ϕ(t) = A �i A 

−1 ϕ(t) , i = 1 , 2 , . . . , N. 

e rewrite 

 �i A 

−1 ϕ(t) = �i ϕ(t) , (11)

here �i are the operational matrices for variable orders deriva-

ives based on the fifth-type Chebyshev polynomials. 

. Proposed method for solving MVODEs 

To find solution �( t ), we present an algorithm for it that in-

ludes the following steps 

Step 1. Consider Eq. (1) . 

Step 2. Approximate the unknown function ( �( t )) as (10) and

substitute in Eq. (1) . 
Step 3. Calculate the operational matrices (11) and substitute in

Eq. (1) . 

• The results steps 2 and 3 are as below 

N ∑ 

i =1 

ηi (t) T �i ϕ(t) = f (t, T ϕ(t)) , 

T ϕ(0) = �0 . (12) 

Step 4. Calculate the residual function. 

• The residual function can be calculated as 

R (t, a 0 , a 1 , . . . , a n ) = 

N ∑ 

i =1 

ηi (t) T �i ϕ(t) − f (t , T ϕ(t )) . 

Step 5. Let t j = 

j 
n +1 for j = 1 , 2 , . . . , n be the collocation points.

Then, solve obtained system and gain the unique coeffi-

cients. Finally, substitute the results into step 2. 

• By solving below system, coefficients a i can be calculated. 

R (t j , a 0 , a 1 , . . . , a n ) = 0 , t j = 

j 

n + 1 

, j = 1 , 2 , . . . , n, 

T ϕ(0) = �0 . 

. Error analysis 

In this section, we investigate the convergence analysis of our

roposed method. 

heorem 1 [38] . Assume that a function �( t ) ∈ L 2 [0, 1] with

 �(3) ( t )| ≤ L, and assume that it has the expansion as (9) . If E n (t) =
 ∞ 

i = n +1 a i C i (t) be the global error, then E n ( t ) can be estimated as 

 E n (t) | < 

3 L 

n 

. 

heorem 2. Suppose that �( t ) satisfies in Theorem 1 and �n (t) =
 n 
i =0 a i C i (t) be the approximate solution obtained via the presented

ethod. Then, we have 

sup 

∈ [0 , 1] 

| �(t) − �n (t) | ≤ 3 L 

n 

+ ε n ‖ ̃

  − ‖ 2 . 

roof. Assume ˜ �n (t) be an approximate solution of Eq. (1) . Then,

e can write 

 �(t) − �n (t) | ≤ | �(t) − ˜ �n (t) | + | ̃  �n (t) − �n (t) | . (13)

ccording to Theorem 1 , we have 

�(t) − ˜ �n (t) 
∣∣ ≤ 3 L 

n 

. (14) 

lso, using Cauchy–Schwarz inequality we can write 

 ̃

 �n (t) − �n (t) | = 

∣∣∣∣∣
n ∑ 

i =0 

˜ a i C i (t) −
n ∑ 

i =0 

a i C i (t) 

∣∣∣∣∣
= 

∣∣∣∣∣
n ∑ 

i =0 

( ̃  a i − a i ) C i (t) 

∣∣∣∣∣
≤

( 

n ∑ 

i =0 

| ̃  a i − a i | 2 
) 

1 
2 

( 

n ∑ 

i =0 

|C i (t) | 2 
) 

1 
2 

. 

n view of (7) , we have 

 

n ∑ 

i =0 

|C i (t) | 2 
) 

1 
2 

≤ ε n , 

here ε n = 

(∑ n 
i =0 

2 
π (i + 2) 2 

) 1 
2 . 
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Fig. 1. (a) The exact and the approximate solutions (b) The absolute errors ( n = 5 ). 
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Table 1 

The absolute errors for various n . 

t n = 3 n = 5 n = 7 n = 9 

0.1 3 . 12568 e − 4 7 . 38305 e − 7 6 . 74379 e − 10 2 . 11386 e − 13 

0.2 1 . 87544 e − 4 6 . 61186 e − 8 1 . 49564 e − 10 9 . 96980 e − 14 

0.3 2 . 07343 e − 5 6 . 69348 e − 8 2 . 34189 e − 10 1 . 13021 e − 13 

0.4 8 . 02715 e − 5 2 . 52627 e − 7 5 . 72256 e − 11 9 . 63674 e − 14 

0.5 1 . 05715 e − 4 1 . 95098 e − 7 1 . 14717 e − 10 1 . 08802 e − 13 

0.6 4 . 84578 e − 4 1 . 10856 e − 7 3 . 57683 e − 10 1 . 23679 e − 13 

0.7 8 . 38521 e − 4 1 . 16466 e − 6 4 . 23163 e − 10 3 . 29070 e − 13 

0.8 7 . 67235 e − 4 3 . 44932 e − 6 3 . 51789 e − 9 1 . 20703 e − 12 

0.9 3 . 31304 e − 4 2 . 27271 e − 6 6 . 52878 e − 9 6 . 59117 e − 12 
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E  
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n  

a  

p  

s  

s  

u  
Let ˜  = [ ̃  a 0 , ̃  a 1 , . . . , ̃  a n ] 
T , then we have 

| ̃  �n (t) − �n (t) | ≤ ε ‖ ̃

  − ‖ 2 . (15)

In view of (13) , (14) and (15) we have 

sup 

∈ [0 , 1] 

| �(t) − �n (t) | ≤ 3 L 

n 

+ ε n ‖ ̃

  − ‖ 2 . 

6. Test examples 

In this section, we present four examples to compare the ap-

proximate solution with the exact solution. The absolute errors are

defined as 

e (t) = | χ(t) − T ϕ(t) | , t ∈ [0 , 1] . 

For solving examples this section, we approximate in all relations

the upper index of � to n and suppose n → ∞ . 

Example 1. Let κ1 (t) = t, η1 (t) = 1 , �(0) = 0 and 

f (t, �(t)) = 

n ∑ 

p=0 

(−t) p B (t) t t p 

(1 − t) p+1 �(t p + 2) 

(
2 t 2 

t p + 2 

− t 

)
, t ∈ [0 , 1] ,

where the exact solution is �(t) = t 2 − t . By applying the pre-

sented method, the numerical results are shown in Fig. 1 . As seen

from Fig. 1 (a), it is evident that the numerical solution obtained

converges to the analytical solution. Also, Fig. 1 (b) shows that the

absolute errors are small. Therefore, it indicates the accuracy of the

presented method. 

Example 2. Let κ1 (t) = 1 − 0 . 5 e −t , η1 (t) = 1 , �(0) = 1 and 

f (t, �(t)) = e t 

( 

1 + 

n ∑ 

p=0 

(−κ1 (t)) p B (κ1 (t )) t κ1 (t) p+1 α

(1 − κ1 (t)) p+1 �(κ1 (t) p + 2) 

) 

− �(t) ,

t ∈ [0 , 1] , 

where α = Hyper geometr ic1 F 1[ κ1 (t) p + 1 , κ1 (t) p + 2 , −t] . The

exact ( �(t) = e t ), the approximate solutions and the errors are

shown in Fig. 2 when we applied the presented method. The

absolute errors for various n are shown in Table 1 . According to

the results shown in Table 1 and Fig. 2 , the presented method

provides an acceptable approximate solution even using a few

number of the fifth-kind orthonormal Chebyshev polynomials and

also increasing the number of these basis functions improves the

accuracy exponentially. 

Example 3. Let κ1 (t) = t, κ2 (t) = 1 − 0 . 5 e −t , η1 (t) = 1 , η2 (t) =
sin (t) , �(0) = 0 and 

f (t, �(t)) = 

n ∑ 

p=0 

6(−κ1 (t)) p B (κ1 (t )) t κ1 (t) p+3 

(1 − κ1 (t)) p+1 �(κ1 (t) p + 4) 
+ 6 sin t 

n ∑ 

p=0 

(−κ2 (t)) p B (κ2 (t )) t κ2 (t) p+3 

(1 − κ2 (t)) p+1 �(κ2 (t) p + 4) 

+ t 3 cos t − cos (t)�(t) , 

here t ∈ [0, 1] and the exact solution is �(t) = t 3 . By us-

ng the presented method, the numerical results are shown in

ig. 3 . 

xample 4. Let κ1 (t) = sin t, κ2 (t) = 1 − t 
2 , κ3 (t) = 1 − cos t,

1 (t) = 1 , η2 (t) = e t , η3 (t) = 

2 
2 t+1 , �(0) = 0 and 

f (t, �(t)) = 

n ∑ 

p=0 

2(−κ1 (t)) p B (κ1 (t )) t κ1 (t) p+2 

(1 − κ1 (t)) p+1 �(κ1 (t) p + 3) 

+ 2 e t 
n ∑ 

p=0 

(−κ2 (t)) p B (κ2 (t )) t κ2 (t) p+2 

(1 − κ2 (t)) p+1 �(κ2 (t) p + 3) 

+ 

4 

2 t + 1 

n ∑ 

p=0 

(−κ3 (t)) p B (κ3 (t )) t κ3 (t) p+2 

(1 − κ3 (t)) p+1 �(κ3 (t) p + 3) 

+ t 
5 
2 −

√ 

t �(t) , 

here t ∈ [0, 1]. The exact solution ( �(t) = t 2 ), the approximate

olution and the errors are shown in Fig. 4 when we used the pre-

ented method. 

. Conclusion 

In this paper, multi variable orders differential equations with

on-local and no-singular kernel have been solved using oper-

tional matrices based on the fifth-kind orthonormal Chebyshev

olynomials. The derivative is described in Atangana and Baleanu

ense of variable order. We used the fifth-kind orthonormal Cheby-

hev polynomials as basic functions. First, we approximated the

nknown function and its derivatives in terms of the fifth-kind
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Fig. 2. (a) The exact and the approximate solutions (b) The absolute errors ( n = 9 ). 

Fig. 3. (a) The exact and the approximate solutions (b) The absolute errors ( n = 5 ). 

Fig. 4. (a) The exact and the approximate solutions (b) The absolute errors ( n = 5 ). 

o  

a  

o  

o  

s

D

 

c  
rthonormal Chebyshev polynomials. Then, we substituted these

pproximations in multi variable orders differential equations and

btained an algebraic system. By applying collocation method, we

btained the approximate solution. The convergence of the pre-
ented method is discussed. i
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