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A novel class of 𝛼-𝛽-contraction for a pair of mappings is introduced in the setting of 𝑏-metric spaces. Existence and uniqueness
of coincidence and common fixed points for such kind of mappings are investigated. Results are supported with relevant examples.
At the end, results are applied to find the solution of an integral equation.

1. Introduction and Prelims

Fixed point theorems inmetric spaces and generalizedmetric
spaces provide a tool to solve many problems and have
applications in nonlinear analysis and in many other fields.
Most of the problems of applied mathematics reduce to solve
a given equality which in turn may be reduced to find the
fixed points of a certain mapping or the common fixed
points of pairs of mappings. In order to solve particular
problems, researchers tried to generalize various contraction
conditions, auxiliary mappings, and metric spaces. Here, in
this paper, we will present common fixed point theorems
for 𝛼-𝛽-contractive mappings in the framework of b-metric
space. Therefore, to have a clear understanding of the paper,
we will discuss the b-metric space, Geraghty type mappings,
and 𝛼-admissible mappings step by step.

The b-metric space or metric type space was introduced
by Czerwik [1] in 1993. In this interesting paper, Czerwik [1]
generalized the Banach contraction principle in the context
of complete b-metric spaces. After that many researchers
reported the existence and uniqueness of fixed points of
various operators in the setting of b-metric spaces (see, e.g.,
[2–13] and some references therein).

Let us have a look on definitions, examples, and proper-
ties of b-metric space.

Definition 1 (see [1, 4]). Let X be a nonempty space, and let𝑠 ≥ 1 be a given real number. A functional𝑑 : 𝑋×𝑋 → [0,∞)
is said to be b-metric if the following conditions hold good:

(1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦.
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).
(3) 𝑑(𝑥, 𝑧) ≤ 𝑠[𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)], for all 𝑥, 𝑦, and 𝑧 ∈ 𝑋.
If d satisfies all the above b-metric axioms, then the pair(𝑋, 𝑑) is called a b-metric or metric type space.
The class of b-metric spaces is larger than that of metric

spaces, since a b-metric is a metric when 𝑠 = 1. All the metric
spaces are b-metric spaces but not vice versa.We can illustrate
this with the help of the following example.

Example 2. Let 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and 𝑑(𝑥1, 𝑥2) = 𝑘 ≥ 2,𝑑(𝑥1, 𝑥3) = 𝑑(𝑥1, 𝑥4) = 𝑑(𝑥2, 𝑥3) = 𝑑(𝑥2, 𝑥4) = 𝑑(𝑥3, 𝑥4) = 1,𝑑(𝑥𝑖, 𝑥𝑗) = 𝑑(𝑥𝑗, 𝑥𝑖) for 𝑖, 𝑗 = 1, 2, 3, 4 and 𝑑(𝑥𝑖, 𝑥𝑖) = 0, 𝑖 =1, 2, 3, 4.
Then

𝑑 (𝑥𝑖, 𝑥𝑗) ≤ 𝑘2 [𝑑 (𝑥𝑖, 𝑥𝑛) + 𝑑 (𝑥𝑛, 𝑥𝑗)]
for 𝑛, 𝑖, 𝑗 = 1, 2, 3, 4,

(1)

and if 𝑘 > 2, the ordinary triangle inequality does not hold.
Definition 3 (see [1]). Let (𝑋, 𝑑) be a b-metric space.

(a) A sequence {𝑥𝑛} in 𝑋 is called b-convergent if and
only if there exists 𝑥 ∈ 𝑋 such that 𝑑(𝑥𝑛, 𝑥) → 0 as𝑛 → ∞.

(b) The sequence {𝑥𝑛} in 𝑋 is said to be b-Cauchy if and
only if 𝑑(𝑥𝑛, 𝑥𝑚) → 0, as n,𝑚 →∞.
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The b-metric space (𝑋, 𝑑) is called b-complete if every b-
Cauchy sequence in𝑋 is b-convergent.

The following lemmas are useful to prove our results.

Lemma 4 (see [9]). Let (𝑋, 𝑑) be a b-metric space and let {𝑥𝑛}
be a sequence in 𝑋 such that

lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑥𝑛+1) = 0. (2)

If {𝑥𝑛} is not a b-Cauchy sequence, then there exist 𝜀 > 0
and two sequences {𝑚(𝑘)} and {𝑛(𝑘)} of positive integers such
that the four sequences

𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ,
𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1) ,
𝑑 (𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)) ,
𝑑 (𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)

(3)

exist and the following hold:

𝜀 ≤ lim
𝑘→∞

inf 𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘))
≤ lim
𝑘→∞

sup 𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤ 𝜀𝑠, (4)

𝜀𝑠 ≤ lim
𝑘→∞

inf 𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1)
≤ lim
𝑘→∞

sup 𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1) ≤ 𝜀𝑠2,
(5)

𝜀𝑠 ≤ lim
𝑘→∞

inf 𝑑 (𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘))
≤ lim
𝑘→∞

sup 𝑑 (𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)) ≤ 𝜀𝑠2,
(6)

𝜀𝑠2 ≤ lim
𝑘→∞

inf 𝑑 (𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)
≤ lim
𝑘→∞

sup 𝑑 (𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1) ≤ 𝜀𝑠3.
(7)

Lemma 5 (see [9]). Let (𝑋, 𝑑) be a b-metric space and let {𝑥𝑛}
and {𝑦𝑛} be b-convergent to 𝑥 and 𝑦, respectively.Then one has

1𝑠2 𝑑 (𝑥, 𝑦) ≤ lim
𝑛→∞

inf 𝑑 (𝑥𝑛, 𝑦𝑛) ≤ lim
𝑛→∞

sup 𝑑 (𝑥𝑛, 𝑦𝑛)
≤ 𝑠2𝑑 (𝑥, 𝑦) .

(8)

In particular, if 𝑥 = 𝑦, then one has lim𝑛→∞𝑑(𝑥𝑛, 𝑦𝑛) = 0.
Moreover, for each 𝑧 ∈ 𝑋, one has

1𝑠 𝑑 (𝑥, 𝑧) ≤ lim
𝑛→∞

inf 𝑑 (𝑥𝑛, 𝑧) ≤ lim
𝑛→∞

sup 𝑑 (𝑥𝑛, 𝑧)
≤ 𝑠𝑑 (𝑥, 𝑧) .

(9)

Next, we address briefly the concept of Geraghty type
mappings.

In 1973, Geraghty [14] generalized the Banach contrac-
tion principle in the setting of complete metric spaces by

considering an auxiliary function. This function is known as
Geraghty type function or mapping. Later on, many authors
[11, 15–17] characterized the result of Geraghty in the context
of various metric spaces and proved many interesting results.
The definition of this new class of mapping is as follows.

Definition 6. Let 𝐵 denote the class of real functions 𝛽 :[0, +∞) → [0, 1) satisfying the condition
𝛽 (𝑡𝑛) 󳨀→ 1 implies 𝑡𝑛 󳨀→ 0. (10)

For instance, consider the function given by 𝛽(𝑡) = 𝑒−2𝑡
for 𝑡 > 0 and 𝛽(0) ∈ [0, 1); here 𝛽 ∈ 𝐵.

In 1973, Geraghty generalized the Banach contraction
principle in the following form.

Theorem 7 (see [14]). Let (𝑋, 𝑑) be a complete metric space,
and let 𝐹 : 𝑋 → 𝑋 be a self-map.

Suppose that there exists 𝛽 ∈ 𝐵 such that

𝑑 (𝐹𝑥, 𝐹𝑦) ≤ 𝛽 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) (11)

holds for all 𝑥, 𝑦 ∈ 𝑋. Then 𝐹 has a unique fixed point 𝑧 ∈ 𝑋
and for each 𝑥 ∈ 𝑋 the Picard sequence {𝐹𝑛𝑥} converges to 𝑧
when 𝑛 → ∞.

In 2011, Dukic et al. [16] introduced the Geraghty type 𝛽
functions in b-metric space as follows.

Definition 8 (see [16]). Let (𝑋, 𝑑) be a b-metric space with
given 𝑠 > 1. Consider the class 𝐵𝑠 of real functions 𝛽 :[0, +∞) → [0, 1/𝑠) satisfying the property

𝛽 (𝑡𝑛) 󳨀→ 1𝑠 implies 𝑡𝑛 󳨀→ 0. (12)

An example of a function in 𝐵𝑠 is given by 𝛽(𝑡) = 1/𝑠𝑒−𝑡
for 𝑡 > 0 and 𝛽(0) ∈ [0, 1/𝑠).

Lastly, we discuss the 𝛼-admissible mappings, examples,
and alpha-admissibility for a pair of mappings.

The concept of 𝛼-admissible mappings was introduced
by Samet et al. [18] in 2012. They established some fixed
point theorems for such mappings in complete metric spaces
and showed some examples and applications to ordinary
differential equations. Since then, many researchers extended
the idea and generalized fixed point results for single-valued
and multivalued 𝛼-admissible mappings in various abstract
spaces (see, e.g., [2, 3, 11, 19, 20] and more references in the
literature). The following definitions and examples reveal the
basics of 𝛼-admissible mappings.

Definition 9 (see [18]). A self-mapping 𝐹 : 𝑋 → 𝑋 defined
on a nonempty set 𝑋 is 𝛼-admissible if, for all 𝑥, 𝑦 ∈ 𝑋, one
has

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝛼 (𝐹𝑥, 𝐹𝑦) ≥ 1, (13)

where 𝛼 : 𝑋 × 𝑋 → [0,∞) is a given function under
consideration.
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Example 10. Let𝑋 = [0,∞) and assume that 𝐹 : 𝑋 → 𝑋 and𝛼 : 𝑋 × 𝑋 → [0,∞) by 𝐹𝑥 = √𝑥, for all 𝑥 ∈ 𝑋, and
𝛼 (𝑥, 𝑦) = {{{

𝑒𝑥−𝑦; 𝑥 ≥ 𝑦
0; 𝑥 < 𝑦. (14)

Then F is 𝛼-admissible map.

In 2014, a new notion of h-𝛼-admissible mapping was
introduced by Rosa and Vetro [20]. The definition of this
notion is as follows.

Definition 11 (see [20]). Let 𝐹, ℎ : 𝑋 → 𝑋 be two self-
mappings defined on a nonempty set 𝑋. And consider the
map 𝛼 : 𝑋 × 𝑋 → [0,∞). Then mapping F is called h-𝛼-
admissible if, for all 𝑥, 𝑦 ∈ 𝑋,

𝛼 (ℎ𝑥, ℎ𝑦) ≥ 1, implies 𝛼 (𝐹𝑥, 𝐹𝑦) ≥ 1. (15)

Example 12. Let 𝑋 = [0,∞). We will define the mapping 𝛼 :𝑋 × 𝑋 → [0,∞) by
𝛼 (𝑥, 𝑦) = {{{

1; 𝑥 ≥ 𝑦
0; 𝑥 < 𝑦 (16)

and consider the mappings 𝐹, ℎ : 𝑋 → 𝑋 by 𝐹(𝑥) = 𝑒𝑥
and ℎ(𝑥) = 𝑥2 for all 𝑥 ∈ 𝑋. Then, the mapping F is h-𝛼-
admissible mapping.

Allahyari et al. [2] defined the 𝛼-regular space with
respect to some self-mapping defined on space as given below.

Definition 13 (see [2]). Let (𝑋, 𝑑) be a b-metric space. Sup-
pose that ℎ : 𝑋 → 𝑋 and 𝛼 : 𝑋 × 𝑋 → [0,∞) are
two operators. 𝑋 is 𝛼-regular with respect to ℎ if, for every
sequence {𝑥𝑛} ∈ 𝑋, 𝛼(ℎ𝑥𝑛, ℎ𝑥𝑛+1) ≥ 1 for all 𝑛 ∈ N andℎ𝑥𝑛 → ℎ𝑥 ∈ ℎ(𝑋) as 𝑛 → ∞; then there exists a subsequence{ℎ𝑥𝑛(𝑘)} of {ℎ𝑥𝑛} such that, for all 𝑘 ∈ N, 𝛼(ℎ𝑥𝑛(𝑘), ℎ𝑥) ≥ 1.
Definition 14 (see [11]). Let X be a nonempty set. Then the
map 𝛼 : 𝑋 × 𝑋 → [0,∞) is called transitive if for 𝑢, V, 𝑤 ∈ 𝑋
one has

𝛼 (𝑢, V) ≥ 1,
𝛼 (V, 𝑤) ≥ 1

⇓
𝛼 (𝑢, 𝑤) ≥ 1.

(17)

In 2014, Sintunavarat [11] proved the fixed point theorem
for generalized 𝛼-𝛽-contractionmapping inmetric space and
establishedUlam-Hyers stability andwell-posedness via fixed
point results. The purpose of this paper is to define 𝛼-𝛽-
contraction mapping for a pair of mappings and to prove
coincidence point and common fixed point theorems in the
context of b-metric space. We will provide suitable examples
to support our results. At the end, we will discuss some
applications in the context of integral equations.

2. Coincidence and Common
Fixed Point Theorems

First of all, we will present some definitions and results which
will make our results easy to understand.

Definition 15. Let 𝐹 and 𝑔 be two self-mappings defined on
a nonempty set 𝑋. Then a point 𝑥 ∈ 𝑋 is called coincidence
point of 𝐹 and 𝑔 if 𝐹𝑥 = 𝑔𝑥. Moreover, if 𝑥 = 𝐹𝑥 = 𝑔𝑥, then𝑥 is called common fixed point of F and 𝑔.
Definition 16. Two self-mappings 𝐹 and 𝑔 defined on a
nonempty set𝑋 are weakly compatible if the maps commute
at each coincidence point; that is, if 𝐹𝑥 = 𝑔𝑥, for some 𝑥 ∈ 𝑋,
then 𝐹𝑔𝑥 = 𝑔𝐹𝑥.

In 2014, Sintunavarat [11] defined the generalized 𝛼-𝛽-
contraction mapping in metric spaces as follows.

Definition 17 (see [11]). Let F be a self-mapping on a
nonempty set X and there exist two functions 𝛼 : 𝑋 × 𝑋 →[0,∞) and 𝛽 ∈ 𝐵. We say that F is 𝛼-𝛽-contraction mapping
if the following condition holds:

[𝛼 (𝑥, 𝑦) − 1 + 𝛿∗]𝑑(𝐹𝑥,𝐹𝑦) ≤ 𝛿𝛽(𝑑(𝑥,𝑦))𝑑(𝑥,𝑦), (18)

for all 𝑥, 𝑦 ∈ 𝑋, where 1 < 𝛿 ≤ 𝛿∗.
Now, we will introduce our notions in the setting of b-

metric space.

Definition 18. Let F and 𝑔 be two self-mappings defined on
b-metric space (𝑋, 𝑑) with given 𝑠 > 1 and there exist two
functions 𝛼 : 𝑋×𝑋 → [0,∞) and 𝛽 ∈ 𝐵𝑠. We say that F is 𝛼-𝛽 (b)-contraction with respect to 𝑔 if the following condition
holds:

[𝛼 (𝑔𝑥, 𝑔𝑦) − 1 + 𝛿]𝑑(𝐹𝑥,𝐹𝑦) ≤ 𝛿𝛽(𝑑(𝑔𝑥,𝑔𝑦))𝑑(𝑔𝑥,𝑔𝑦), (19)

for all 𝑥, 𝑦 ∈ 𝑋, where 1 < 𝛿.
Next, we present the coincidence and common fixed

point theorems for a new class of contraction in b-metric
space.

Theorem 19. Let (𝑋, 𝑑) be a complete b-metric space and let𝐹, 𝑔 : 𝑋 → 𝑋 be two self-mappings such that 𝐹(𝑥) ⊆ 𝑔(𝑥)
and one of these two subsets of X is complete. Suppose that F
is 𝛼-𝛽 (b)-contraction with respect to 𝑔mapping satisfying the
following conditions:

(i) F is 𝑔-𝛼-admissible and 𝛼 is transitive mapping.
(ii) There exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑔𝑥0, 𝐹𝑥0) ≥ 1.
(iii) X is 𝛼-regular with respect to 𝑔.
Then F and 𝑔 have a coincidence point.

Moreover, if F and 𝑔 are weakly compatible and hypoth-
esis has one more additional assumption,
(A1) either 𝛼(𝑢, V) ≥ 1 or 𝛼(V, 𝑢) ≥ 1 whenever 𝐹𝑢 = 𝑔𝑢

and 𝐹V = 𝑔V,
then F and 𝑔 have a unique common fixed point.
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Proof. Let𝑥0 ∈ 𝑋 such that𝛼(𝑔𝑥0, 𝐹𝑥0) ≥ 1. In order to prove
that F and 𝑔 have a point of coincidence and using 𝐹(𝑥) ⊆𝑔(𝑥), define two sequences {𝑥𝑛} and {𝑦𝑛} in X such that

𝑦𝑛 = 𝐹𝑥𝑛 = 𝑔𝑥𝑛+1 ∀𝑛 ∈ N. (20)

Now, if𝑦𝑛 = 𝑦𝑛+1 for any 𝑛 ∈ N, then𝑔𝑥𝑛+1 = 𝑦𝑛 = 𝑦𝑛+1 =𝐹𝑥𝑛+1 and F and 𝑔 have a point of coincidence.
Without loss of generality, one can suppose that𝑦𝑛 ̸= 𝑦𝑛+1

for each 𝑛 ∈ N.
Hence, 𝐹 is 𝑔-𝛼-admissible and 𝛼(𝑔𝑥0, 𝑔𝑥1) =𝛼(𝑔𝑥0, 𝐹𝑥0) ≥ 1. Similarly, 𝛼(𝑔𝑥1, 𝑔𝑥2) = 𝛼(𝐹𝑥0, 𝐹𝑥1) ≥ 1.

By induction, we can easily deduce

𝛼 (𝑔𝑥𝑛−1, 𝑔𝑥𝑛) ≥ 1 ∀𝑛 ∈ N. (21)

Step 1. We shall show that lim𝑛→∞𝑑(𝑦𝑛+1, 𝑦𝑛) = 0. Now, it
follows from (19) and (21) for each 𝑛 ∈ N that

𝛿𝑑(𝑦𝑛+1 ,𝑦𝑛) = 𝛿𝑑(𝐹𝑥𝑛+1 ,𝐹𝑥𝑛)
≤ [𝛼 (𝑔𝑥𝑛+1, 𝑔𝑥𝑛) − 1 + 𝛿]𝑑(𝐹𝑥𝑛+1 ,𝐹𝑥𝑛)
≤ 𝛿𝛽(𝑑(𝑔𝑥𝑛+1 ,𝑔𝑥𝑛))𝑑(𝑔𝑥𝑛+1 ,𝑔𝑥𝑛).

(22)

This implies that

𝑑 (𝑦𝑛+1, 𝑦𝑛) ≤ 𝛽 (𝑑 (𝑔𝑥𝑛+1, 𝑔𝑥𝑛)) 𝑑 (𝑔𝑥𝑛+1, 𝑔𝑥𝑛)
≤ 1𝑠 𝑑 (𝑦𝑛, 𝑦𝑛−1) ∀𝑛 ∈ N. (23)

Further, from (23), it follows that

lim
𝑛→∞

𝑑 (𝑦𝑛+1, 𝑦𝑛) = 0. (24)

Step 2. Next, we show that {𝑦𝑛} is a Cauchy sequence in b-
metric space 𝑋. On the contrary, assume that {𝑦𝑛} is not a
Cauchy sequence. Then there exists 𝜀 > 0 and subsequences
of integers 𝑛𝑝 and𝑚𝑝 with 𝑛𝑝 > 𝑚𝑝 ≥ 0 such that

𝑑 (𝑦𝑚𝑝 , 𝑦𝑛𝑝) > 𝜀,
𝑑 (𝑦𝑚𝑝 , 𝑦𝑛𝑝−1) < 𝜀,

∀𝑝 ∈ N.
(25)

Since 𝑛𝑝 > 𝑚𝑝 and𝛼 is transitivemapping, we can deduce
easily, by using triangle inequality,

𝛼 (𝑔𝑥𝑚𝑝+1 , 𝑔𝑥𝑛𝑝) ≥ 1 ∀𝑝 ∈ N. (26)

Now, using (19) and (26), we can consider

𝛿𝑑(𝑦𝑚𝑝+1 ,𝑦𝑛𝑝 ) = 𝛿𝑑(𝐹𝑥𝑚𝑝+1 ,𝐹𝑥𝑛𝑝 )
≤ [𝛼 (𝑔𝑥𝑚𝑝+1 , 𝑔𝑥𝑛𝑝) − 1 + 𝛿]𝑑(𝐹𝑥𝑚𝑝+1 ,𝐹𝑥𝑛𝑝 )
≤ 𝛿𝛽(𝑑(𝑔𝑥𝑚𝑝+1 ,𝑔𝑥𝑛𝑝 ))𝑑(𝑔𝑥𝑚𝑝+1 ,𝑔𝑥𝑛𝑝 ).

(27)

This gives

𝑑 (𝑦𝑚𝑝+1 , 𝑦𝑛𝑝)
≤ 𝛽 (𝑑 (𝑔𝑥𝑚𝑝+1 , 𝑔𝑥𝑛𝑝)) 𝑑 (𝑔𝑥𝑚𝑝+1 , 𝑔𝑥𝑛𝑝)
≤ 𝛽 (𝑑 (𝑦𝑚𝑝 , 𝑦𝑛𝑝−1)) 𝑑 (𝑦𝑚𝑝 , 𝑦𝑛𝑝−1)
≤ 𝛽 (𝑑 (𝑦𝑚𝑝 , 𝑦𝑛𝑝−1)) 𝜀

(28)

𝑑 (𝑦𝑚𝑝+1 , 𝑦𝑛𝑝)𝜀 ≤ 𝛽 (𝑑 (𝑦𝑚𝑝 , 𝑦𝑛𝑝−1)) < 1𝑠 (29)

with 𝑛𝑝 > 𝑚𝑝 > 𝑝 for all 𝑝 ∈ N.
Hence, by Lemma 4 and (29), we have

1𝑠 = 1𝜀 𝜀𝑠 ≤ lim
𝑝→∞

inf 1𝜀 𝑑 (𝑦𝑚𝑝+1 , 𝑦𝑛𝑝)
≤ lim
𝑝→∞

sup 1𝜀 𝑑 (𝑦𝑚𝑝+1 , 𝑦𝑛𝑝)
≤ lim
𝑝→∞

inf 𝛽 (𝑑 (𝑦𝑚𝑝 , 𝑦𝑛𝑝−1))
≤ lim
𝑝→∞

sup𝛽 (𝑑 (𝑦𝑚𝑝 , 𝑦𝑛𝑝−1)) ≤ 1𝑠 ;

(30)

that is,

lim
𝑝→∞

𝛽 (𝑑 (𝑦𝑚𝑝 , 𝑦𝑛𝑝−1)) = 1𝑠 . (31)

Also, 𝛽 ∈ 𝐵𝑠 implies that lim𝑝→∞𝑑(𝑦𝑚𝑝 , 𝑦𝑛𝑝−1) = 0.
However, this is not possible, as, using (4) of Lemma 4, we
get that

𝜀𝑠 ≤ 1𝑠 𝑑 (𝑦𝑚𝑝 , 𝑦𝑛𝑝) ≤ 𝑑 (𝑦𝑚𝑝 , 𝑦𝑛𝑝−1) + 𝑑 (𝑦𝑛𝑝−1 , 𝑦𝑛𝑝)
󳨀→ 0,

(32)

as 𝑝 → ∞, which leads to contradicting (25).
Therefore, {𝑦𝑛} is a b-Cauchy sequence and by hypothesis

we can suppose that 𝑔(𝑋) is to be complete subspace of
X (proof can be derived in a similar manner when 𝐹(𝑋)
is supposed to be complete). Then b-completeness of 𝑔(𝑋)
implies that {𝑦𝑛} = {𝐹𝑥𝑛} = {𝑔𝑥𝑛+1} b-converges to a point𝑢 ∈ 𝑔(𝑋), where 𝑢 = 𝑔𝑧 for some 𝑧 ∈ 𝑋, or in other words

lim
𝑛→∞

𝐹𝑥𝑛 = lim
𝑛→∞

𝑔𝑥𝑛 = 𝑔𝑧 for some 𝑧 ∈ 𝑋. (33)

Step 3. Next, we will prove that 𝐹𝑧 = 𝑔𝑧. Since X is 𝛼-regular
with respect to 𝑔 and using (33), we have

𝛼 (𝑔𝑥𝑛(𝑝), 𝑔𝑧) ≥ 1 ∀𝑝 ∈ N. (34)
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To show 𝐹𝑧 = 𝑔𝑧, we consider
𝛿𝑑(𝐹𝑧,𝑔𝑧) ≤ 𝛿𝑠𝑑(𝐹𝑧,𝐹𝑥𝑛(𝑝))+𝑠𝑑(𝑔𝑥𝑛(𝑝)+1 ,𝑔𝑧)

≤ 𝛿𝑠𝑑(𝐹𝑧,𝐹𝑥𝑛(𝑝)) × 𝛿𝑠𝑑(𝑔𝑥𝑛(𝑝)+1,𝑔𝑧)
≤ [𝛼 (𝑔𝑧, 𝑔𝑥𝑛(𝑝)) − 1 + 𝛿]𝑠𝑑(𝐹𝑧,𝐹𝑥𝑛(𝑝))
× 𝛿𝑠𝑑(𝑔𝑥𝑛(𝑝)+1,𝑔𝑧)

≤ 𝛿𝑠𝛽(𝑑(𝑔𝑧,𝑔𝑥𝑛(𝑝)))𝑑(𝑔𝑧,𝑔𝑥𝑛(𝑝)) × 𝛿𝑠𝑑(𝑔𝑥𝑛(𝑝)+1 ,𝑔𝑧).

(35)

This in turns implies that

𝑑 (𝐹𝑧, 𝑔𝑧) ≤ 𝑠𝛽 (𝑑 (𝑔𝑧, 𝑔𝑥𝑛(𝑝))) 𝑑 (𝑔𝑧, 𝑔𝑥𝑛(𝑝))
+ 𝑠𝑑 (𝑔𝑥𝑛(𝑝)+1, 𝑔𝑧)

1𝑠 𝑑 (𝐹𝑧, 𝑔𝑧) ≤ 𝛽 (𝑑 (𝑔𝑧, 𝑔𝑥𝑛(𝑝))) 𝑑 (𝑔𝑧, 𝑔𝑥𝑛(𝑝))
+ 𝑑 (𝑔𝑥𝑛(𝑝)+1, 𝑔𝑧)

< 1𝑠 𝑑 (𝑔𝑧, 𝑔𝑥𝑛(𝑝)) + 𝑑 (𝑔𝑥𝑛(𝑝)+1, 𝑔𝑧)
󳨀→ 0 as 𝑛 󳨀→ ∞.

(36)

Thus, 𝐹𝑧 = 𝑔𝑧 = 𝑢 is a point of coincidence of F and 𝑔.
Step 4. Next, we prove that F and 𝑔 have a common fixed
point. Firstly, we claim that if 𝐹𝑢 = 𝑔𝑢 and 𝐹V = 𝑔V, then𝑔𝑢 = 𝑔V. By hypotheses, 𝛼(𝑢, V) ≥ 1 or 𝛼(V, 𝑢) ≥ 1. Suppose
that 𝛼(𝑢, V) ≥ 1 and consider that

𝛿𝑑(𝑔𝑢,𝑔V) = 𝛿𝑑(𝐹𝑢,𝐹V) ≤ [𝛼 (𝑔𝑢, 𝑔V) − 1 + 𝛿]𝑑(𝐹𝑢,𝐹V)
≤ 𝛿𝛽(𝑑(𝑔𝑢,𝑔V))𝑑(𝑔𝑢,𝑔V). (37)

Then we get that

𝑑 (𝑔𝑢, 𝑔V) ≤ 𝛽 (𝑑 (𝑔𝑢, 𝑔V)) 𝑑 (𝑔𝑢, 𝑔V)
𝑑 (𝑔𝑢, 𝑔V) ≤ 𝑑 (𝑔𝑢, 𝑔V) , (38)

which is a contradiction.
Therefore, we conclude that 𝑔𝑢 = 𝑔V. If we take 𝛼(V, 𝑢) ≥1, then we also get the same result.
Secondly, If F and 𝑔 are weakly compatible, then, for any𝑢 ∈ 𝑋, if 𝑢 = 𝐹V = 𝑔V (because F and 𝑔 have a point

of coincidence, proven earlier in Step 3), then, using weak
compatibility of F and 𝑔, we get

𝐹𝑢 = 𝐹 (𝑔V) = 𝑔 (𝐹V) = 𝑔𝑢. (39)

Thus 𝑢 is a coincidence point of F and 𝑔; then, using the
result in first part, 𝑔𝑢 = 𝑔V, which leads to 𝐹𝑢 = 𝑔𝑢 = 𝑔V =𝐹V = 𝑢.

Therefore, 𝑢 is a common fixed point of F and 𝑔.
We can prove the uniqueness of the common fixed point

of F and 𝑔 by making use of condition (19) and assumption
(A1) of hypothesis. The proof is very simple; therefore we do
not go through details.

If we consider 𝑔 as identity mapping in the above
theorem, we deduce the following corollary.

Corollary 20. Let (𝑋, 𝑑) be a complete b-metric space and let𝐹 : 𝑋 → 𝑋 be continuous 𝛼-admissible mapping satisfying the
following condition:

[𝛼 (𝑥, 𝑦) − 1 + 𝛿]𝑑(𝐹𝑥,𝐹𝑦) ≤ 𝛿𝛽(𝑑(𝑥,𝑦))𝑑(𝑥,𝑦), (40)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛽 ∈ 𝐵𝑠, where 1 < 𝛿.
If 𝛼 is transitive mapping and there exists 𝑥0 ∈ 𝑋 such that𝛼(𝑥0, 𝐹𝑥0) ≥ 1, then F has a fixed point.

Taking 𝛼(𝑥, 𝑦) = 1 and 𝛿 = 1 in Corollary 20, we get the
following variant of Geraghty theorem.

Corollary 21. Let (𝑋, 𝑑) be a complete b-metric space and let𝐹 : 𝑋 → 𝑋 be self-mapping satisfying the following condition:

𝑑 (𝐹𝑥, 𝐹𝑦) ≤ 𝛽 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) , (41)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛽 ∈ 𝐵𝑠. Then F has a unique fixed point𝑧 ∈ 𝑋 and, for each𝑥 ∈ 𝑋, the Picard sequence {𝐹𝑛𝑥} converges
to 𝑧 when 𝑛 → ∞.

The following lemma derived from [7] is very useful to
prove our next theorem.

Lemma 22 (see [7]). Let {𝑦𝑛} be a sequence in a metric type
space or b-metric space (X, d) such that

𝑑 (𝑦𝑛+1, 𝑦𝑛) ≤ 𝜆𝑑 (𝑦𝑛, 𝑦𝑛−1) . (42)

for some 𝜆, 0 < 𝜆 < 1/𝑠 and each 𝑛 = 1, 2, . . .. Then {𝑦𝑛} is a
Cauchy sequence in X.

Theorem 23. Let (𝑋, 𝑑) be a complete b-metric space and be𝛼-regular with respect to 𝑔. And let 𝐹, 𝑔 : 𝑋 → 𝑋 be two self-
mappings, where F is 𝑔-𝛼-admissible and 𝛼 is transitive, and,
for 𝑥0 ∈ 𝑋, one has 𝛼(𝑔𝑥0, 𝐹𝑥0) ≥ 1. If 𝐹(𝑥) ⊆ 𝑔(𝑥) and one
of these two subsets of 𝑋 is complete, suppose that there exists𝜆 ∈ [0, 1/𝑠) such that

[𝛼 (𝑔𝑥, 𝑔𝑦) − 1 + 𝛿]𝑑(𝐹𝑥,𝐹𝑦) ≤ 𝛿𝜆𝑀(𝐹,𝑔;𝑥,𝑦) (43)

for all 𝑥, 𝑦 ∈ 𝑋 and 1 < 𝛿.
Consider

𝑀(𝐹, 𝑔; 𝑥, 𝑦) = max{𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝐹𝑥) ,
𝑑 (𝑔𝑦, 𝐹𝑦) , 𝑑 (𝑔𝑥, 𝐹𝑦) + 𝑑 (𝑔𝑦, 𝐹𝑥)2𝑠 } .

(44)

Then F and 𝑔 have a coincidence point.

Moreover, if F and 𝑔 are weakly compatible and hypoth-
esis has one more additional assumption,

(A1) either 𝛼(𝑢, V) ≥ 1 or 𝛼(V, 𝑢) ≥ 1 whenever 𝐹𝑢 = 𝑔𝑢
and 𝐹V = 𝑔V,

then F and 𝑔 have a unique common fixed point.
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Proof. Let 𝑥0 ∈ 𝑋 be arbitrary and, using condition𝐹(𝑋) ⊆ 𝑔(𝑋), we can easily construct a Jungck sequence {𝑦𝑛}
satisfying

𝑦𝑛 = 𝐹𝑥𝑛 = 𝑔𝑥𝑛+1 ∀𝑛 ∈ N. (45)

Now, if𝑦𝑛 = 𝑦𝑛+1 for any 𝑛 ∈ N, then𝑔𝑥𝑛+1 = 𝑦𝑛 = 𝑦𝑛+1 =𝐹𝑥𝑛+1 and F and 𝑔 have a point of coincidence.
Without loss of generality, we assume that 𝑦𝑛 ̸= 𝑦𝑛+1 for

each 𝑛 ∈ N.
Hence, F is 𝑔-𝛼-admissible and 𝛼(𝑔𝑥0, 𝑔𝑥1) = 𝛼(𝑔𝑥0,𝐹𝑥0) ≥ 1. Similarly, 𝛼(𝑔𝑥1, 𝑔𝑥2) = 𝛼(𝐹𝑥0, 𝐹𝑥1) ≥ 1. By

induction, we can easily deduce

𝛼 (𝑔𝑥𝑛−1, 𝑔𝑥𝑛) ≥ 1 ∀𝑛 ∈ N. (46)

Step 1. We shall show that {𝑦𝑛} is a b-Cauchy sequence. Now,
taking (43) and (46), we obtain, for each 𝑛 ∈ N,

𝛿𝑑(𝑦𝑛+1 ,𝑦𝑛) = 𝛿𝑑(𝐹𝑥𝑛+1 ,𝐹𝑥𝑛)
≤ [𝛼 (𝑔𝑥𝑛+1, 𝑔𝑥𝑛) − 1 + 𝛿]𝑑(𝐹𝑥𝑛+1 ,𝐹𝑥𝑛)
≤ 𝛿𝜆𝑀(𝐹,𝑔;𝑥𝑛+1,𝑥𝑛).

(47)

This implies that

𝑑 (𝑦𝑛+1, 𝑦𝑛) ≤ 𝜆𝑀(𝐹, 𝑔; 𝑥𝑛+1, 𝑥𝑛) (48)

or

𝑑 (𝑦𝑛+1, 𝑦𝑛) ≤ 𝜆max{𝑑 (𝑔𝑥𝑛+1, 𝑔𝑥𝑛) ,
𝑑 (𝑔𝑥𝑛+1, 𝐹𝑥𝑛+1) , 𝑑 (𝑔𝑥𝑛, 𝐹𝑥𝑛) ,
𝑑 (𝑔𝑥𝑛+1, 𝐹𝑥𝑛) + 𝑑 (𝑔𝑥𝑛, 𝐹𝑥𝑛+1)2𝑠 }

≤ 𝜆max{𝑑 (𝑦𝑛, 𝑦𝑛−1) , 𝑑 (𝑦𝑛, 𝑦𝑛+1) , 𝑑 (𝑦𝑛−1, 𝑦𝑛) ,
𝑑 (𝑦𝑛, 𝑦𝑛) + 𝑑 (𝑦𝑛−1, 𝑦𝑛+1)2𝑠 }

≤ 𝜆max{𝑑 (𝑦𝑛, 𝑦𝑛−1) , 𝑑 (𝑦𝑛−1, 𝑦𝑛) + 𝑑 (𝑦𝑛, 𝑦𝑛+1)2 } .

(49)

Now, if max {𝑑(𝑦𝑛, 𝑦𝑛−1), (𝑑(𝑦𝑛−1, 𝑦𝑛) + 𝑑(𝑦𝑛, 𝑦𝑛+1))/2} =(𝑑(𝑦𝑛−1, 𝑦𝑛)+𝑑(𝑦𝑛, 𝑦𝑛+1))/2, then 𝑑(𝑦𝑛, 𝑦𝑛−1) < (𝑑(𝑦𝑛−1, 𝑦𝑛)+𝑑(𝑦𝑛, 𝑦𝑛+1))/2 < 𝑑(𝑦𝑛+1, 𝑦𝑛).
Then (49) implies that

𝑑 (𝑦𝑛+1, 𝑦𝑛) ≤ 𝜆𝑑 (𝑦𝑛+1, 𝑦𝑛) , (50)

which is impossible as 𝜆 < 1.
Therefore, we deduce that max {𝑑(𝑦𝑛, 𝑦𝑛−1), (𝑑(𝑦𝑛−1, 𝑦𝑛)+𝑑(𝑦𝑛, 𝑦𝑛+1))/2} = 𝑑(𝑦𝑛, 𝑦𝑛−1).
This in turn implies that

𝑑 (𝑦𝑛+1, 𝑦𝑛) ≤ 𝜆𝑑 (𝑦𝑛, 𝑦𝑛−1) . (51)

Using Lemma 22, we obtain that {𝑦𝑛} is a b-Cauchy
sequence and by hypothesis we can suppose that 𝑔(𝑋) is to
be complete subspace of 𝑋 (the proof when 𝐹(𝑋) is similar).
Then b-completeness of 𝑔(𝑋) implies that {𝑦𝑛} = {𝐹𝑥𝑛} ={𝑔𝑥𝑛+1} b-converges to a point 𝑢 ∈ 𝑔(𝑋), where 𝑢 = 𝑔𝑧 for
some 𝑧 ∈ 𝑋, or in other words

lim
𝑛→∞

𝐹𝑥𝑛 = lim
𝑛→∞

𝑔𝑥𝑛 = 𝑔𝑧 for some 𝑧 ∈ 𝑋. (52)

Step 2. Next, we will prove that 𝐹𝑧 = 𝑔𝑧. Since𝑋 is 𝛼-regular
with respect to 𝑔 and using (52), we have

𝛼 (𝑔𝑥𝑛(𝑝), 𝑔𝑧) ≥ 1 ∀𝑝 ∈ N. (53)

To show 𝐹𝑧 = 𝑔𝑧, we consider
𝛿𝑑(𝐹𝑥𝑛(𝑝) ,𝐹𝑧)
≤ [𝛼 (𝑔𝑥𝑛(𝑝), 𝑔𝑧) − 1 + 𝛿]𝑑(𝐹𝑥𝑛(𝑝) ,𝐹𝑧) ≤ 𝛿𝜆𝑀(𝐹,𝑔;𝑥𝑛(𝑝) ,𝑧).

(54)

This implies that

𝑑 (𝐹𝑥𝑛(𝑝), 𝐹𝑧) ≤ 𝜆𝑀(𝐹, 𝑔; 𝑥𝑛(𝑝), 𝑧) (55)

or

𝑑 (𝐹𝑥𝑛(𝑝), 𝐹𝑧) ≤ 𝜆max{𝑑 (𝑔𝑥𝑛(𝑝), 𝑔𝑧) ,
𝑑 (𝑔𝑥𝑛(𝑝), 𝐹𝑥𝑛(𝑝)) , 𝑑 (𝑔𝑧, 𝐹𝑧) ,
𝑑 (𝑔𝑥𝑛(𝑝), 𝐹𝑧) + 𝑑 (𝑔𝑧, 𝐹𝑥𝑛(𝑝))2𝑠 } .

(56)

Also,𝐹𝑥𝑛(𝑝) → 𝑔𝑧 and 𝑔𝑥𝑛(𝑝) → 𝑔𝑧 as 𝑛 → ∞, implying
that

𝑑 (𝑔𝑥𝑛(𝑝), 𝐹𝑥𝑛(𝑝)) = 𝑠𝑑 (𝑔𝑥𝑛(𝑝), 𝑔𝑧) + 𝑠𝑑 (𝑔𝑧, 𝐹𝑥𝑛(𝑝))
󳨀→ 0 as 𝑛 󳨀→ ∞. (57)

Then we have only two cases.

Case 1

𝑑 (𝐹𝑥𝑛(𝑝), 𝐹𝑧) ≤ 𝜆𝑑 (𝑔𝑧, 𝐹𝑧)
≤ 𝜆𝑠 (𝑑 (𝑔𝑧, 𝐹𝑥𝑛(𝑝)) + 𝑑 (𝐹𝑥𝑛(𝑝), 𝐹𝑧))

(1 − 𝜆𝑠) 𝑑 (𝐹𝑥𝑛(𝑝), 𝐹𝑧) ≤ 𝜆𝑠𝑑 (𝑔𝑧, 𝐹𝑥𝑛(𝑝)) 󳨀→ 0
as 𝑛 󳨀→ ∞.

(58)
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Since 1 − 𝜆𝑠 > 0, it follows that 𝐹𝑥𝑛(𝑝) → 𝐹𝑧.
Case 2

𝑑 (𝐹𝑥𝑛(𝑝), 𝐹𝑧) ≤ 𝜆𝑑 (𝑔𝑥𝑛(𝑝), 𝐹𝑧)2𝑠
≤ 𝜆𝑠(𝑑 (𝑔𝑥𝑛(𝑝), 𝐹𝑥𝑛(𝑝)) + 𝑑 (𝐹𝑥𝑛(𝑝), 𝐹𝑧)2𝑠 )

(1 − 𝜆2)𝑑 (𝐹𝑥𝑛(𝑝), 𝐹𝑧) ≤ 𝜆2𝑑 (𝑔𝑥𝑛(𝑝), 𝐹𝑥𝑛(𝑝)) 󳨀→ 0
as 𝑛 󳨀→ ∞.

(59)

Since 1 − 𝜆/2 > 0, it follows that 𝐹𝑥𝑛(𝑝) → 𝐹𝑧.
Uniqueness of the limit of a sequence implies that 𝐹𝑧 =𝑔𝑧.
Using conditions (A1) and weak compatibility of F and 𝑔

of hypothesis, we can easily prove that F and 𝑔 have a unique
common fixed point.

From the above theorem, one can deduce the following
corollary easily.

Corollary 24. Let (𝑋, 𝑑) be a complete b-metric space and 𝐹 :𝑋 → 𝑋 is continuous and 𝛼-admissible. Suppose that there
exists 𝜆 ∈ [0, 1/𝑠) such that

[𝛼 (𝑥, 𝑦) − 1 + 𝛿]𝑑(𝐹𝑥,𝐹𝑦) ≤ 𝛿𝜆𝑀(𝑥,𝑦) (60)

for all 𝑥, 𝑦 ∈ 𝑋 and 1 < 𝛿.
Consider

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝐹𝑥) , 𝑑 (𝑦, 𝐹𝑦) ,
𝑑 (𝑥, 𝐹𝑦) + 𝑑 (𝑦, 𝐹𝑥)

2𝑠 } .
(61)

If 𝛼 is a transitive mapping and there exists 𝑥0 ∈ 𝑋 such
that 𝛼(𝑥0, 𝐹𝑥0) ≥ 1, then 𝐹 has a fixed point.

Taking 𝛼(𝑥, 𝑦) = 1 and 𝛿 = 1, we get the following variant
of Corollary 3.12 of [7].

Corollary 25. Let (𝑋, 𝑑) be a complete b-metric space and let𝐹 : 𝑋 → 𝑋 be self-mapping. Suppose that there exists 𝜆 ∈[0, 1/𝑠) such that, for all 𝑥, 𝑦 ∈ 𝑋,
𝑑 (𝐹𝑥, 𝐹𝑦) ≤ 𝜆𝑀(𝑥, 𝑦) , (62)

where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝐹𝑥) , 𝑑 (𝑦, 𝐹𝑦) ,
𝑑 (𝑥, 𝐹𝑦) + 𝑑 (𝑦, 𝐹𝑥)

2𝑠 } .
(63)

Then F has a unique fixed point 𝑧 ∈ 𝑋.

In what follows, we furnish illustrative examples wherein
one demonstrates Theorems 19 and 23 on the existence and
uniqueness of a common fixed point.

Example 26. Let𝑋 = {0, 1, 3} be a b-metric space withmetric
d given by 𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 with 𝑠 = 2. Consider the
mappings 𝐹, 𝑔 : 𝑋 → 𝑋 defined by 𝐹(0) = 1, 𝐹(1) = 1,
and 𝐹(3) = 1, and 𝑔 by 𝑔(0) = 1, 𝑔(1) = 1, and 𝑔(3) = 3. Let
us take 𝛽 ∈ 𝐵𝑠, as 𝛽(𝑡) = 1/2 for 𝑡 > 0 and 𝛽(0) ∈ [0, 1/2).

And 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {{{
1, when 𝑥, 𝑦 ≥ 0
0, otherwise;

(64)

then one can examine easily that

𝑑 (𝐹0, 𝐹1) = 𝑑 (1, 1) = 0,
𝛽 (𝑑 (𝑔0, 𝑔1)) 𝑑 (𝑔0, 𝑔1) = 𝛽 (𝑑 (1, 1)) 𝑑 (1, 1) = 0

𝑑 (𝐹0, 𝐹3) = 𝑑 (1, 1) = 0,
𝛽 (𝑑 (𝑔0, 𝑔3)) 𝑑 (𝑔0, 𝑔3) = 𝛽 (𝑑 (1, 3)) 𝑑 (1, 3) = 2

𝑑 (𝐹1, 𝐹3) = 𝑑 (1, 1) = 0,
𝛽 (𝑑 (𝑔1, 𝑔3)) 𝑑 (𝑔1, 𝑔3) = 𝛽 (𝑑 (1, 3)) 𝑑 (1, 3) = 2.

(65)

Thus, in all cases, we get

[𝛼 (𝑔𝑥, 𝑔𝑦) − 1 + 𝛿]𝑑(𝐹𝑥,𝐹𝑦) ≤ 𝛿𝛽(𝑑(𝑔𝑥,𝑔𝑦))𝑑(𝑔𝑥,𝑔𝑦) (66)

for all 𝑥, 𝑦 ∈ 𝑋, where 1 < 𝛿.
Also we can check that F and 𝑔 satisfy all the other

assumptions of Theorem 19 and thus the pair F and 𝑔 has a
unique common fixed point 𝑥 = 1.
Example 27. Let𝑋 = {0, 1, 3} be a b-metric space with metric
d given by 𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 with 𝑠 = 2. Consider the
mappings 𝐹, 𝑔 : 𝑋 → 𝑋 defined by 𝐹(0) = 0, 𝐹(1) = 1,
and 𝐹(3) = 0 and 𝑔 by 𝑔(0) = 3, 𝑔(1) = 1, and 𝑔(3) = 0. Let
us take 𝜆 ∈ [0, 1/2).

And 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {{{
1, when 𝑥, 𝑦 ≥ 0
0, otherwise.

(67)

Now, we verify Theorem 23 by considering the following
cases.
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Case 1 (take points 0 and 1).

𝑑 (𝐹0, 𝐹1) = 𝑑 (0, 1) = 1
𝑑 (𝑔0, 𝑔1) = 𝑑 (3, 1) = 4
𝑑 (𝑔0, 𝐹0) = 𝑑 (3, 0) = 9
𝑑 (𝑔1, 𝐹1) = 𝑑 (1, 1) = 0
𝑑 (𝑔0, 𝐹1) + 𝑑 (𝑔1, 𝐹0)

2 ⋅ 2 = 𝑑 (3, 1) + 𝑑 (1, 0)4 = 4 + 14
= 54 .

𝑀 (𝐹, 𝑔; 0, 1) = max{𝑑 (𝑔0, 𝑔1) , 𝑑 (𝑔0, 𝐹0) ,
𝑑 (𝑔1, 𝐹1) , 𝑑 (𝑔0, 𝐹1) + 𝑑 (𝑔1, 𝐹0)4 } = {4, 9, 0, 54}
= 9

(68)

Case 2 (take points 1 and 3).

𝑑 (𝐹1, 𝐹3) = 𝑑 (1, 1) = 0,
𝑀 (𝐹, 𝑔; 1, 3) = max{𝑑 (𝑔1, 𝑔3) , 𝑑 (𝑔1, 𝐹1) ,
𝑑 (𝑔3, 𝐹3) , 𝑑 (𝑔1, 𝐹3) + 𝑑 (𝑔3, 𝐹1)4 } = {1, 0, 0, 24}
= 1.

(69)

Case 3 (take points 0 and 3).

𝑑 (𝐹0, 𝐹3) = 𝑑 (0, 0) = 0,
𝑀 (𝐹, 𝑔; 0, 3) = max{𝑑 (𝑔0, 𝑔3) , 𝑑 (𝑔0, 𝐹0) ,
𝑑 (𝑔3, 𝐹3) , 𝑑 (𝑔0, 𝐹3) + 𝑑 (𝑔3, 𝐹0)4 } = {9, 9, 0, 94}
= 9.

(70)

Thus, in all cases, F and 𝑔 satisfy all the assumptions of
Theorem 23 and thus the pair F and 𝑔 has a unique common
fixed point 𝑥 = 1.
3. An Application to an Integral Equation

This section deals with the applications of results proven in
the previous section. Here, we will investigate the solution of
integral equation through our results.

Consider the following integral equation:

𝑥 (𝑡) = ∫1
0
𝐾 (𝑡, 𝑟, 𝑥 (𝑟)) 𝑑𝑟, (71)

where𝐾 : [0, 1] × [0, 1] ×R → R.

Let 𝑋 = 𝐶[0, 1] be the set of continuous real functions
defined on [0, 1]. Define the b-metric by 𝑑(𝑥(𝑡), 𝑦(𝑡)) =
max𝑡∈[0,1](|𝑥(𝑡)| + |𝑦(𝑡)|)𝑝 for all 𝑥, 𝑦 ∈ 𝑋.

Consider 𝑝 > 1. Then (𝑋, 𝑑) is a complete b-metric space
with the constant 𝑠 = 2𝑝−1.𝐹(𝑥(𝑡)) = ∫1

0
𝐾(𝑡, 𝑟, 𝑥(𝑟))𝑑𝑟 for all 𝑥 ∈ 𝑋 and for all 𝑡 ∈[0, 1]. Then the existence of a solution to (71) is equivalent to

the existence of a fixed point of F. Now,we prove the following
result.

Theorem 28. Let us suppose that the following hypotheses
hold:

(i) 𝐾 : [0, 1] × [0, 1] ×R → R is continuous.

(ii) For all 𝑡, 𝑟 ∈ [0, 1], there exists a continuous operator𝜉 : [0, 1] × [0, 1] → R such that

|𝐾 (𝑡, 𝑟, 𝑥 (𝑟))| + 󵄨󵄨󵄨󵄨𝐾 (𝑡, 𝑟, 𝑦 (𝑟))󵄨󵄨󵄨󵄨
< 𝜆1/𝑝𝜉 (𝑡, 𝑟) (|𝑥 (𝑟)| + 󵄨󵄨󵄨󵄨𝑦 (𝑟)󵄨󵄨󵄨󵄨) ,

sup
𝑡∈[0,1]

∫1
0
𝜉 (𝑡, 𝑟) 𝑑𝑟 ≤ 1,

(72)

where 0 < 𝜆 < 1/𝑠.
(iii) There exists a function 𝜇 : R2 → R such that, for all𝑡 ∈ 𝐼 and for all 𝑎, 𝑏 ∈ R with 𝜇(𝑎, 𝑏) ≥ 0, we have

𝜇(𝑥1 (𝑡) , ∫1
0
𝐾 (𝑡, 𝑟, 𝑥 (𝑟)) 𝑑𝑟) ≥ 0

for 𝑥 ∈ 𝐶 (𝐼) , ∀𝑡 ∈ 𝐼,
𝜇 (𝑥 (𝑡) , 𝑦 (𝑡)) ≥ 0,

𝜇 (∫1
0
𝐾 (𝑡, 𝑟, 𝑥 (𝑟)) , ∫1

0
𝐾(𝑡, 𝑟, 𝑦 (𝑟)) 𝑑𝑟) ≥ 0,

∀𝑡 ∈ 𝐼, ∀𝑥, 𝑦 ∈ 𝐶 (𝐼) .

(73)

Then the integral equation (71) has a unique solution 𝑥 ∈𝑋.
Proof. We define 𝛼 : 𝐶(𝐼) × 𝐶(𝐼) → [0,∞) by

𝛼 (𝑥, 𝑦) = {{{
1, when 𝜇 (𝑥 (𝑡) , 𝑦 (𝑡)) ≥ 0
0, otherwise.

(74)

Then, for all 𝑥, 𝑦 ∈ 𝐶(𝐼), we have 𝛼(𝑥, 𝑦) = 1 and𝛼(𝑦, 𝑧) = 1, implying that 𝛼(𝑥, 𝑧) = 1 for all 𝑥, 𝑦, 𝑧 ∈ 𝐶(𝐼),
which proves that 𝛼 is a transitive mapping.

If 𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝐶(𝐼), then 𝜇(𝑥(𝑡), 𝑦(𝑡)) ≥ 0.
From (iii), we have 𝜇(𝐹𝑥(𝑡), 𝐹𝑦(𝑡)) ≥ 0, and so 𝛼(𝐹𝑥, 𝐹𝑦) = 1.
Thus, F is 𝛼-admissible.

From (iii), there exists 𝑥1 ∈ 𝐶(𝐼) such that 𝛼(𝑥1, 𝐹𝑥1) = 1.
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Also we observe from (72) that

(|𝐹𝑥 (𝑡)| + 󵄨󵄨󵄨󵄨𝐹𝑦 (𝑡)󵄨󵄨󵄨󵄨)𝑝
= (󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫

1

0
𝐾 (𝑡, 𝑟, 𝑥 (𝑟)) 𝑑𝑟󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

0
𝐾(𝑡, 𝑟, 𝑦 (𝑟)) 𝑑𝑟󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)

𝑝

≤ (∫1
0
|𝐾 (𝑡, 𝑟, 𝑥 (𝑟))| 𝑑𝑟 + ∫1

0

󵄨󵄨󵄨󵄨𝐾 (𝑡, 𝑟, 𝑦 (𝑟))󵄨󵄨󵄨󵄨 𝑑𝑟)
𝑝

≤ (∫1
0
(|𝐾 (𝑡, 𝑟, 𝑥 (𝑟))| + 󵄨󵄨󵄨󵄨𝐾 (𝑡, 𝑟, 𝑦 (𝑟))󵄨󵄨󵄨󵄨) 𝑑𝑟)

𝑝

≤ (∫1
0
(𝜆1/𝑝𝜉 (𝑡, 𝑟) (|𝑥 (𝑟)| + 󵄨󵄨󵄨󵄨𝑦 (𝑟)󵄨󵄨󵄨󵄨)) 𝑑𝑟)

𝑝

= (∫1
0
(𝜆1/𝑝𝜉 (𝑡, 𝑟) ((|𝑥 (𝑟)| + 󵄨󵄨󵄨󵄨𝑦 (𝑟)󵄨󵄨󵄨󵄨)𝑝)1/𝑝)𝑑𝑟)

𝑝

≤ (∫1
0
𝜆1/𝑝𝜉 (𝑡, 𝑟) 𝑑1/𝑝 (𝑥 (𝑟) , 𝑦 (𝑟)) 𝑑𝑟)𝑝

= 𝜆𝑑 (𝑥 (𝑡) , 𝑦 (𝑡)) (∫1
0
𝜉 (𝑡, 𝑟) 𝑑𝑟)𝑝

≤ 𝜆𝑑 (𝑥 (𝑡) , 𝑦 (𝑡)) ≤ 𝜆𝑀(𝑥 (𝑡) , 𝑦 (𝑡)) ,

(75)

which in turn implies that [𝛼(𝑥, 𝑦) − 1 + 𝛿]𝑑(𝐹𝑥,𝐹𝑦) ≤ 𝛿𝜆𝑀(𝑥,𝑦).
Now, all the conditions of Corollary 24 hold and F has a

unique fixed point 𝑥 ∈ 𝑋, which means that 𝑥 is the unique
solution for the integral equation (71).

4. Conclusion

To conclude, we can assert that our results are novel,
interesting, and generalized while considering the alpha-
admissible Geraghty type mappings. These results extend,
improve, unify, and generalize many theorems based on
alpha-admissible mappings in 𝑏-metric spaces. Examples are
presented in a simplest form and illustrate the theorems.
Application to integral equation adds value to our research.
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