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ABSTRACT 

 

 

ON SOME APPLICATIONS OF LOCAL FRACTIONAL CALCULUS 

 

 

 

ÖZYÜREK, Metin 

M.Sc., Department of Mathematics and Computer Science 

Supervisor:Assist. Prof. Dr. Dumitru BALEANU 

July 2015, 67 pages 

 

 

 

In this thesis, some basic definitions and theorems for the local fractional calculus 

are given. Based on these definitions and theorems, the applications are presented 

within the  local fractional calculus. It is shown that the applications of the local 

fractional calculus give very good results on the solution of physical and 

mathematical equations. 

 

 

 

Keywords:Local Fractional Calculus, Local Fractional Derivative, Local Fractional 

Integral, Local Fractional Differential Equations, Wave Equation, Local Fractional 

Sumudu Transform. 
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ÖZ 

 

 

 

YEREL KESİRLİ ANALİZİN UYGULAMALARI ÜZERİNE 

 

ÖZYÜREK, Metin 

Yüksek Lisans, Matematik ve Bilgisayar Bölümü 

Tez Yöneticisi: Yrd.Doç. Dr. Dumitru BALEANU 

Temmuz 2015, 67 sayfa 

 

 

 

Bu tezde yerel kesirli analiz hakkında bazı temel tanımlar ve teoremler verilmiştir. 

Bu tanım ve teoremlerden yola çıkılarak yerel kesirli analiz ile ilgili uygulamalar 

sunulmuştur. Yerel fiziksel ve matematiksel denklemlerin çözümünde kesirli analiz 

uygulamaları oldukça iyi sonuçlar vermiştir.  

 

 

 

Anahtar Kelimeler: Yerel Kesirli Analiz, Yerel Kesirli Türev, Yerel Kesirli 

İntegral, Yerel Kesirli Diferansiyel Denklemler, Dalga Denklemleri, Yerel Kesirli 

Sumudu Dönüşümü. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1.  Background 

 

In the last years, the local fractional calculus has taken a lot of attention andit 

has been investigated intensivelyby many researchers [1]. The local fractional 

calculus (LFC) is defined on fractals [2] which were suggested by Mandelbrot [3]. 

The local fractional calculus has been applied to the real world problems [4,17, 58, 

68, 69].   

 

The classical calculus cannot properly deal with non-differentiable functions. 

However, the local fractional calculus is one of the best candidates to solve this 

problem and it has been applied to model several practical problems in engineering 

[5]. 

 

Below, we give examples of studies that have been done in the recent years. 

The Maxwell theory on Cantor sets was studied in [6]; the Heisenberg uncertainty 

principle within local fractional Fourier Series was discussed in [7]. In [8], it was 

developed a new Neumann series method for solving a family of local fractional 

Fredholm and Volterra integral operation; Through the studying in [9], the mappings 

for some special functions on Cantor sets were investigated. In [10], Helmhotz and 

the diffusion equations involving the local fractional derivative operations are 

presented on Cantor sets. In [11], the discrete wavelet transform via local fractional 

operations was structured and applied to process the signals on Cantor sets.The local 

fractional variational iteration method was given to handle the damped wave 

equation and dissipative wave equation in fractal strings [12]. A new model of the 



2 

 

scale conservation equation in the mathematical theory of vehicular traffic flow is 

suggested in [13]. A comparison is applied between the fractional iteration and 

decomposition methods which can be applied to the wave equation on Cantor sets 

[14]. In [15], the applications of local fractional variational iteration method are 

given to handle the local fractional Laplace equations. The local fractional 

variational iteration method is used [16] to solve the subdiffusion and wave 

equations. In [18], by utilizing the fractional complex transform method,  the 

transport equations in fractal porous media are investigated. Also, a new wavelet 

transform is introduced within the framework of the local fractional calculus [19]. 

 

The thesis consist of five chapters. A review of the LFC and its applications 

is presented. In the first chapter, the theorems for local fractional derivative are 

presented.  

Chapter two deals with the properties and theorems of local fractional integral 

and local fractional Taylor’s theorem. 

In Chapter three, the local fractional differential equation, the local fractional 

Fourier series and the Laplace transform are briefly mentioned.  

In Chapters four and five, some applications of the local fractional calculus 

are given. 
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1.2.  Importance of Local Fractional Calculus  

 

Fractional calculus is a branch of mathematics dealing with arbitrary order of 

derivatives and integrals [21,32,34,36,70]. Many physical systems were modeled 

more accurately with this type of calculus. So, the fractional calculus has played a 

significant role in different fields such as mechanics [41], physics [45,51,56], 

nanotechnology [54], bioengineering  [53], signal processing [61,63], economics 

[60], control theory [65], viscoelastic [57] and other fields of engineering [59]. 

 

The local fractional derivatives and integrals,defined on fractals [3,67], hold 

an important place in the fractional dynamic theory. 

 

We recall that there are many definitions of local fractional derivatives and 

integrals. Firstly, we focus on the notations suggested by Kolwankar and Gangal. 

They suggested the formula [17], namely 

 

 0

0

0

0 1
o

o

x x
x x

x x

d ( g( x ) g( x ))d g( x )
D g( x ) : lim ,

dx d( x x )




 



    


.                   (1.1) 

 

Here,  is precisely the Hölder exponent offunction  defined in Cantor’s set 

[49]. 

 

Kolwankar and Gangal introduced the local fractional integral as [24, 69] 

  

 
1

0 1

1
0 1 1i

M
dx ( x )( )

a b i
M

i i i

d
I g( x ) lim g( x ) ,i , ,...,M

d( x x )








 

  


 ,                         (1.2) 

with1
idx ( x ) being the unit function defined on  i i 1x ,x 

. 
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Jumarie arrived at [25,26], using the generalization of Taylor series, 

 

 
0

0

0

ox x
x x

x x

[ g( x ) g( x )]d g( x )
D g( x ) : lim

dx h




 


 
  ,                                  (1.3) 

 

where 
0

( ) ( 1) ( ( ) ), 0 1t

t

g x g x t h
t




 




 
       

 
 . 

 

Jumarie suggested the fractional integral as follows [25,26] 

 

( ) 1

0

0 0

( ) ( )( ) : ( ) ( ) , 0 1

x x

xI g x g t dt x t g t dt         .                     (1.4) 

This notation of the fractional derivative and integral deals with the non-

differentiable functions. This calculus is called the modified fractional calculus. 

 

Parvate and Gangal introduced  the local fractional derivative as [27, 28] 

0
0

0

0
ox x

x x
x x G G

g( x ) g( x )d g( x )
D g( x ) : G lim

dx S ( x ) S ( x )




  



  


,                   (1.5) 

where 
0x x

G lim


 is the notion of the limit of g( x )  through the points of fractal set G . 

 

Parvate and Gangal introduced a local fractional integral [27, 28], namely 

 

b M -1
(α) α α α

a b G j G j+1 G j

j=0a

I g(x)= g(x)d x = g(x )(S (x ) - S (x )), 0 < α 1 .                 (1.6) 

Adda and Cresson proposed a local fractional derivative [29,30] as 

 
0

0

0ox x y ,
x x

x x

d f ( x )
D f ( x ) : lim D ( f f ( x ))( x ) ,

dx 


 






                        (1.7) 

with   , where 


y,D is the Riemann-Liouville derivative operator. 
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Gao, Yang and Kang went through these definitions and obtained the notation 

of the local fractional derivative [31,33,55,58] as given below 

 

0
0

0

0
ox x

x x
x x

d g( x ) [ g( x ) g( x )]
D g( x ) : lim

dx ( x x )

 


 




 
 


,                       (1.8) 

 

such that    0 01g( x ) g( x ) ( ) g( x ) g( x )        . 

 

Gao, Yang and Kang introduced a local fractional integral [27,31,37,58,62] 

as 

t 0
lim

(1 ) (1 )

b M -1
(α)

a b i i

i=0a

1 1
I g(x)= g(t)(dt) = g(t )( t ) , 0 < α 1 

 
 

     
 , 

 

where i 1 it tit     and  , ,...,1 2 it = max t t t     for 0 <α 1  and 

i 0,1,2,3...,M 1   ,  0 1 2 Mt a t t ... t b      is a partition of  a,b . 

If a b , then 
(α)

a aI g(x)= 0   and if a b   then 
(α) (α)

a b b aI g(x)= - I g(x) . 

 

1.3. Local Fractional Derivative 

 

Suppose that  g(x) C a,b  for 0 <α 1 , 0  and  

 0 0x x ,x     the limit [49], 

o
0

0
x x

x x
0

(1 )[ g( x ) g( x )]
D g( x ) : lim

( x x )





 



 



,                          (1.9) 

is finite, then g(x)has the local fractional derivative of order α  at 0x x , 

 
o

0

( )

x x 0

x x

d g( x )
D g( x ) g x

dx


 




  . 
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1.3.1. Left - Right Local Fractional Derivatives 

 

If  g(x) C a,b for 0 <α 1 , 0  and  0 0x x ,x   the limit 

[38] 

 

o
0

0
xx x x

0

(1 )[ g( x ) g( x )]
D g( x ) : lim

( x x )





 









 



,                               (1.10) 

 

is finite, then g(x)has the left  local fractional derivative of order α  at 0x x  

 

 
o

0

( )

x 0x
x x

d g( x )
D g( x ) g x

dx


 









  . 

 

If  g(x) C a,b for 0 <α 1 , 0  and  0 0x x ,x   the limit  

 

 
o

0

0
xx x x

0

(1 )[ g( x ) g( x )]
D g( x ) : lim

( x x )





 









 



,                  (1.11) 

is finite then g(x)has the right  local fractional derivative of order α  at 0x x , 

 

 

 
o

0

( )

x 0x
x x

d g( x )
D g( x ) g x

dx


 









  . 

 

 

Proposition 1.1. [49] 

 

If
o

xx
D g( x )

 and 
o

xx
D g( x )

  exist and 
o o

x xx x
D g( x ) D g( x ) 

  , then  

        oo o
x x x xx x

D g( x ) D g( x ) D g( x )  
   .                         (1.12) 
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1.3.2. The Increment of a Function [49] 

 

The increment of g( x ) is 

 
 

g( x ) g ( x )( x ) ( x ) ,
                     (1.13)  

 where x is increment of x  and 0   as x 0  for 0 <α 1 . 

 

1.3.3. The Local Fractional Differential [17] 

 

The local fractional differential is 

 
 

d g g ( x )( dx )
 

     
0 <α 1 . 

If there exist any point 0x ( a,b )  such that 

 

 
0

( )

0

x x

d g( x )
g x

dx







 ,                    (1.14) 

D ( a,b ) is  called the α - local fractional derivative set. 

 

Proposition 1.2. [30] 

 

If  g D ( a,b ) ,then g C ( a,b ) . 

 

Proof. [30] 

From (1.13) and (1.14), we obtain 

        g x g x x x
       , 

        ( )

0 0 0g x g x g x x x x x
       , 

      ( )

0 0 0g x g x x x ( x x ) g x
      . 

Take the limit of the both sides 0x x  we get 
0

0
x x
lim g( x ) g( x )


 . 
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Proposition 1.3. [49] 

 

Suppose that g D ( a,b ) ,then g( x ) is local fractional differentiable on 

 a,b . 

 

Suppose that    h x , t x D ( a,b ) ,then the differentiation rules below 

are valid [38-39] 

 

     d h( x ) t( x ) d h( x ) d t( x )

dx dx dx

  

  


  ,             (1.15) 

    
 

 
 

 d h x t x d h( x ) d t( x )
t x h x

dx dx dx

  

  
  ,           (1.16) 

2

h( x ) d ( h( x )) d ( t( x ))d ( ) t( x ) h( x )
t( x ) dx dx

dx t ( x )

 


 




 , if t( x ) 0 ,       (1.17) 

d ( kh( x )) d ( h( x ))
k

dx dx

 

 
 , k is a constant.                    (1.18) 

 

If g( x ) ( hot )( x ) , then  

( 1 )d g( x )
h ( t( x ))( t ( x ))

dx


 


 .                   (1.19) 

 

Some of the above results were discussed in [38,40]. We have 

1) 

i

i 0

x
E ( x )

(1 i )





 








   where 0 <α 1 , 

2) 
 

 
 

i
i 11 id ( x )

x
dx 1 ( i 1)

 




 

 




 
, 
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3) 
 

 
d E ( mx )

mE x
dx

 

 


  , where m is a constant, 

4) 
d ( E ( x ))

E ( x )
dx


 




, 

5) 
d ( sin x )

cos x
dx


 




, 

6) 
d (cos x )

sin x
dx

 
 




. 

 

1.3.4. The 2 -Local Fractional Derivative and Higher-Order Derivative [49] 

 

The 2 -local fractional derivative of g( x ) for 0 <α 1  

  2 ( 2 )

x x x

d d
D g( x ) ( D .D )g( x ) g( x ) g ( x )

dx dx

 
   

 

 
   

 
.      (1.20) 

Similarly, we have k -local fractional derivative 

 k

x x x x x

k times

( k )

D g( x ) ( D .D .D ...D )g( x )

g ( x ).

    







            

(1.21) 

1.3.5. Theorems for Local Fractional Derivatives 

 

Theorem 1.4. (Local fractional Rolle’s theorem )[50] 

 

Suppose that  g C a,b and g D ( a,b ) . If g( a ) g(b ) , then there 

exists a point t ( a,b )  with 

( )g ( t ) 0  ,                                                         (1.22) 

where  0,1 . 
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Proof. [50] 

Case 1 : If g( x ) 0 in  a,b , then for all x ( a,b )  we have 
( )g ( x ) 0  . 

 

Case 2 : If g( x ) 0 in  a,b , because g( x ) is continuous there are points at 

which g( x ) gets its maximum and minimum values, denoted by M and m 

respectively. 

Since g( x ) 0 , at least one of the values M and m is not zero.  

Suppose, for instance, m 0  and that g( t ) m . For this case 

g( t x ) g( t )   . 

If x 0  , then we arrive at the relations 

   

 

(1 )[ g t x g t ]
0

x


    



, 

and 

 

   

 x 0

(1 )[ g t x g t ]
lim 0

x


  
 

  



. 

 

Similarly, if x 0  , then we have 

   

 

(1 ) g t x g t
0

x


       


, 

and 

 

   

 x 0

(1 ) g t x g t
lim 0

x


  
 

     


. 

 

Since g( x ) D ( a,b ) , then 
o o

x xx x
D g( x ) D g( x ) 

  . 

It happen only if the right and left derivatives are both equal to zero. 

( )g ( t ) 0  as required. Similarly, we take M 0  we arrive at the formula (1.22). 
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Theorem 1.5. [17] (Local Fractional Mean Value Theorem) 

 

Suppose that  g C a,b and g D ( a,b ) , then [17] there exists 

 a,b  with  

   
( )g ( )( b a )

g b g a
(1 )

 

 


 


,                                                      (1.23) 

where  0,1 . 

 

Proof. [17] 

We define the G( x ) function 

   
( x a )

G( x ) (1 ) g( x ) g( a ) g b g( a )
( b a )




 

 
         

,          (1.24) 

with  0,1 . 

We have G( a ) 0  and  G(b ) 0 . 

Appliying the Theorem 1.4 to the function G( x ) , 

   
   

 
( )

(1 ) g b g a
G g ( ) 0 , a b

b a

 



 
  

       


,            (1.25) 

     

 

(1 ) g b g a
g ( )

b a





 


   


, 

then we get (1.23). 

 

Theorem 1.6. [50] (Cauchy’s Generalized Mean Value Theorem) 

 

Suppose that  h( x ),t( x ) C a,b  and h( x ),t( x ) D ( a,b ) . If t( b ) t( a )  

then there exists a point m ( a,b )  
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( )

( )

h b h( a ) h ( m )

t b t( a ) t ( m )









.                  (1.26) 

 

Proof.  [50] 

 We define 

 
 

 
 

(1 ) h b h( a )
G( x ) (1 ) h x h( a ) t x h( a )

t b t( a )

 
 

             
. 

                                                                                                                               (1.27) 

Then, we have  G( a ) 0  and G(b ) 0 . 

 

 Appliying the Theorem 1.4 to the function G( x ) in (1.27) 

 we have the relation  
( )G ( m ) 0   , a m b  , 

           

 

 
( ) ( ) ( )

h b h( a )
G ( m ) h ( m ) t ( m ) 0

t b t( a )

  
    
  

. 

Thus, we arrive at the formula  (1.26). 

 

Theorem 1.7. (Local Fractional L’Hospital’s Rule) [38] 

 

Suppose that  g( x ), h( x ) C a,b  and g( x ),h( x ) D ( a,b ) . 

0x x
lim g( x ) 0


  and 
0x x

lim h( x ) 0


 , furthermore K  denotes either a real number or 

one of the symbols ,  . 

 

If 
0

( )

( )
x x

g ( x )
lim K

h ( x )






 , then it is also true that 
0x x

g( x )
lim K

h( x )
 . 
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CHAPTER 2 

 

 

2.1. The Local Fractional Integral 

 

Let  g( x ) C a,b , the local fractional integral of the function g( x )is 

given by [42] 

b M 1
( )

a b k k
t 0

k 0a

1 1
I g( x ) g( t )( dt ) lim g( t )( t )

(1 ) (1 )

  

   



 


  
 

 , 

            (2.1) 

with k k 1 k0 1, t t t        and  1 2 kt max t , t ,..., t ,...      , 

where 
k k 1t ,t    , k 0,1,2...,M 1   and 0 1 2 Mt a t t ... t b      , is 

partition of the interval  a,b . 

 

 We assume that 
( )

a aI g( x ) 0   and 
( ) ( )

a b b aI g( x ) I g( x )    if 

a b . 

 

2.1.1. Properties of  the Local Fractional Integral 

 

Property 2.1. [17] 

 

Suppose that  g( x ),h( x ) C a,b , then we have 

 ( ) ( ) ( )

a b a b a bI g( x ) h( x ) I g( x ) I h( x )     .               (2.2) 

 

Proof. [17] 

   
b

( )

a b

a

1
I g( x ) h( x ) g( t ) h( t ) ( dt )

(1 )
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b b

a a

( ) ( )

a b a b

1 1
g( t )( dt ) h( t )( dt )

(1 ) (1 )

I g( x ) I h( x ).

 

 

   
 

 

 

 
 

The proof of this property is completed. 

 

Property 2.2. [49] 

 

Suppose that  g( x ) C a,b  and K is  a constant, then we have  

   ( ) ( )

a b a bI Kg( x ) K I g( x )  .                 (2.3) 

 

Proof. [49] 

We take  g( x ) C a,b  and K is  a constant, then  

   

   

b

( )

a b

a

b

( )

a b

a

1
I Kg( x ) Kg( t ) ( dt )

(1 )

1
K g( t ) ( dt ) K I g( x ) .

(1 )

 

 

 

 




 






 

 

Thus, the proof of the property was established. 

 

Property 2.3. [50] 

 

Suppose that g( x ) c , then 

 

( )

a b

c( b a )
I c

(1 )




 





. 

 

Proof. [50] 

Let we take g( x ) c  in (2.1), 
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b

( )

a b

a

1 c
I c c( dt ) ( b a )

(1 ) (1 )

c( b a )
.

(1 )

  



   

 

  
 







 

Thus, we proved the statement.  

 

Property 2.4. [17] 

 

If  g( x ) C a,b  and g( x ) 0 , then we have 

( )

a bI g( x ) 0   with  b a .                 (2.4) 

 

Proof. [17] 

Let  g( x ) C a,b  and g( x ) 0 , then we have 

kg( x ) 0, k 0,1,2,...,M 1   . 

We take the partition of   a,b  is 
k k 1x ,x     for k 0,1,2,...,M 1  ,  

0 1 2 M 1 Mx a x x ... x x b       . 

Because 
i( x ) 0  , we have 

M 1
( )

a b k k
x 0

k 0

1
I g( x ) lim g( x )( x ) 0

(1 )

 

 



 


  


 . 

Hence, the proof of the property is finished. 

 

Property 2.5. [50] 

 

If   h( x ),g( x ) C a,b  and h( x ) g( x ) , then we have 

( ) ( )

a b a bI h( x ) I g( x )    with  b a .                  (2.5) 
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Proof. [50] 

Let  h( x ) g( x ) , then we have the relation  

h( x ) g( x ) 0     and   h( x ) g( x ) C a,b  . 

We take into account the Property 2.4 and the Property 2.1 , we get 

 ( )

a b

( ) ( )

a b a b

( ) ( )

a b a b

I h( x ) g( x ) 0,

I h( x ) I g( x ) 0,

I h( x ) I g( x ).



 

 

 

 



 

Thus, the result is achieved. 

 

Property 2.6. [49] 

 

Let  g( x ) C a,b  and let 
gM  and 

gm  are the maximum and minimum 

values of g( x ) in   a,b . Then, we have  

 

( )

g a b g

( b a ) ( b a )
M I g( x ) m

(1 ) (1 )

 


   

 
 

 
  with   b a .            (2.6) 

 

Proof. [49] 

Let  g( x ) C a,b and  we know 
g gm g( x ) M  . 

In this inequality, let's integrate all sides for b a . Moreover, we get 

inequality below by using the Property 2.3, 

( ) ( ) ( )

a b g a b a b g

b b

( )

g a b g

a a

( )

g a b g

I m I g( x ) I M ,

1 1
m ( dt ) I g( x ) M ( dt ) ,

(1 ) (1 )

( b a ) ( b a )
m I f ( x ) M .

(1 ) (1 )

  

  

 


   

   

 

 
 

 
 

 

   

The proof of this property is finished. 
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Property 2.7. [17] 

 

If  g( x ) C a,b ,  then we get 

( ) ( )

a b a bI g( x ) I g( x )  ,                   (2.7) 

with  b a . 

 

Proof. [17] 

We know that g( x ) g( x ) g( x )   . 

Taking the integration for b a  and taking into account the Property 2.5,we 

conclude 

( ) ( ) ( )

a b a b a bI g( x ) I g( x ) I g( x )     . 

Then, we obtain 

( ) ( )

a b a bI g( x ) I g( x )  . 

So, we finished the proof. 

 

Property 2.8. [50] 

 

If  g( x ) C a,b  and a k b  , then we have  

( ) ( ) ( )

a b a k k bI g( x ) I g( x ) I g( x )    .               (2.8) 

 

Proof. [50] 

Let  g( x ) C a,b  and a k b  then g( x ) is the local fractional 

integral on  C a,b ,  C a,k  and  C k,b . 

Let the partition of  a,b is  j j 1x ,x 
 
  , where  

0 1 2 M 1 Mx a x x ... x x b        and j 0,1,2...,M 1  . 

Because to the definition of integration in (2.1), 
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M 1
( )

a b j j
t 0

j 0

1
I g( x ) lim g( x )( x )

(1 )

 

 



 


 


 . 

Let the partition of  a,k  be 
i i 1x ,x   , where  

0 1 2 tx a x x ... x k       and i 0,1,2...,t 1  . 

Because to the definition of integration in (2.1), we have 

t 1
( )

a k i i
t 0

i 0

1
I g( x ) lim g( x )( x )

(1 )

 

 



 


 


 . 

Let the partition of  k ,b  be 
i i 1x ,x   , where  

t t 1 M 1 Mx k x ... x x b        and i t ,...,M 1  . 

Due to (2.1), we conclude 

M 1
( )

k b i i
t 0

i t

1
I g( x ) lim g( x )( x )

(1 )

 

 



 


 


 . 

Hence, it implies that  

M 1 t 1

i i i i
t 0 t 0

i 0 i 0

M 1

i i
t 0

i t

1 1
lim g( x )( x ) lim g( x )( x )

(1 ) (1 )

1
lim g( x )( x ) .

(1 )

 



   

 

 

   
 



 


  
 

 


 



 

 

Thus, we obtain (2.8). 

 

 

2.1.2. Theorems for Local Fractional Integral 

 

Theorem 2.9. (The Mean Value Theorem for Local Fractional Integrals) [50] 

 

If  g( x ) C a,b , then there exist a point  in ( a,b ) such that 

( )

a b

( b a )
I g( x ) g( )

(1 )


 

 





.                   (2.9) 
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Proof. [50] 

Let  g( x ) C a,b and  let
gM  and 

gm  are the maximum and minimum 

values of g( x ) in   a,b , due to (2.6)  

( )

g a b g

( b a ) ( b a )
M I g( x ) m

(1 ) (1 )

 


   

 
 

 
, 

and therefore  

( )

g a b g

g( )

(1 )
m I g( x ) M , ( a,b )

( b a )







 



  


. 

There exists a point   in ( a,b )providing the above inequality. 

and thus,  we obtain (2.9). 

 

Theorem 2.10. [17] 

 

Suppose that  g( x ) C a,b , then there is a function, 

( )

a x( x ) I g( x )  . 

The function has its derivative with respect to ( dx ) , namely, 

 

d ( x )
g( x ), a x b

dx






   .              (2.10) 

 

Proof. [17] 

Let  x a,b . There exists  x x a,b    such that 

 
( )

a x x( x ) I g( x )

  ,               (2.11) 
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x x x

a a

x x

x

( x ) ( 1 ) ( x x ) ( x )

(1 ) g( t )( dt ) g( t )( dt )

(1 ) g( t )( dt )



 



 

 

 





       

 
   

 

 
   

 

 



 

( )

x x x(1 ) I g( x ).   
             

(2.12)                    

 

Applying the Theorem 2.9, there exists a point  , such that 

 ( )

x x x

x
I g( x ) g( )

( 1 )



 
 







, 

 

( )

x x x(1 ) I g( x )
g( )

x





 
 




. 

From  (2.12), we obtain 

 

( x )
g( )

x






 



.                (2.13) 

Taking the limit 
 

( x )

x





 


 as x 0   it implies that  

 x 0

( x )
lim g( x )

x




 

 



.               (2.14) 

Here, there exists x a  and x 0   such that 

x a

d ( x )
g( a )

dx













 .               (2.15) 

Thus, there exists x b  and x 0   such that 

x b

d ( x )
g( b )

dx













 .                          (2.16) 
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Combing (2.15) and (2.16), the proof is completed. 

 

Theorem 2.11. [17] 

 

If  h( x ) C a,b , then there exists  C a,b   such that 

 
( )

a x( x ) I h( x )  .               (2.17) 

 

Proof. [17] 

Taking the Theorem 2.10  into account we deduce the desired result.  

 

Theorem 2.12. (The Local Fractional Integration is Anti-Differentiation [49]) 

 

If  ( )g( x ) h ( x ) C m,n

  , then we have 

 
( )

m nI g( x ) h( n ) h( m )   .                (2.18) 

 

Proof . [49] 

Let
( )

m x( x ) I g( x )  and  ( )g( x ) h ( x ) C m,n

  . 

Using the Theorem 2.10 to    x h x  ,we get 

          

   

d x h x d x d h x

dx dx dx

g x g x 0.

  

  

 
 

  

 

Thus, we conclude 

   x h x c   , 

( n ) h( n ) c
( n ) ( m ) h( n ) h( m )

( m ) h( m ) c


 



  
  

  
, 

( )

m nI g( x ) ( n ) ( m ) h( n ) h( m )      . 

Thus, the proof is finished. 
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Theorem 2.13. [17] 

 

Suppose that  1h( x ) C a,b ,  ( goh )( s ) C h( a ),h( b ) , then we 

have 

 
 ( ) ( )

h( a ) h( b ) a bI g( x ) I ( goh )( s ) h̀ ( s )
  .                 (2.19) 

 

Proof. [17] 

Let 
( )

a xG( x ) I g( x ) , then we arrive at the formula  

( )

h( a ) h( b )I g( x ) G( h(b )) G( h( a ))   .            (2.20) 

By using the Theorem 2.11 in (2.20) , we have  

( )

a b

( ) ( ) ( 1 ) ( ) ( 1 )

a b a b

G( h( b )) G( h( a )) I D ( Goh ) ( s )

I G ( h( s )) h ( s ) I ( goh )( s ) h ( s )

 

   

    

            

(2.21) 

 

From (2.20) and (2.21), the proof of this theorem is provided. 

 

Theorem 2.14. (Local Fractional Integration by Parts) [49] 

 

Suppose that g( x ),m( x ) D ( a,b )  and  ( ) ( )g ( x ),m ( x ) C a,b 

 , 

then, we have [49] 

 
b( ) ( ) ( ) ( )

a b a ba
I g( t )m ( t ) g( t )m( t ) I g ( t )m( t )     .            (2.22) 

 

Proof. [49] 

 

We know that, 

  ( ) ( )d g( t )m( t )
g ( t )m( t ) g( t )m ( t )

dt



 


  ,                             (2.23) 

therefore, 
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b( )

a b a

d g( t )m( t )
I g( t )m( t )

dt







 
 

 
.            (2.24) 

From (2.23) and (2.24), we obtain 

   
b( ) ( ) ( )

a b a
I g ( t )m( t ) g( t )m ( t ) g( t )m( t )    , 

     
b( ) ( ) ( ) ( )

a b a b a
I g ( t )m( t ) I g( t )m ( t ) g( t )m( t )     . 

Then, we conclude that

     
b( ) ( ) ( ) ( )

a b a ba
I g( t )m ( t ) g( t )m( t ) I g ( t )m( t )     . 

So, we get the desired result. 

 

Proposition 2.15. [43] 

 

Suppose that for 0 1  , 
( m )g ( x ) C ( a,b )

 , thus 

 
0

( m )
( m )

x xI g( x ) g( x )


  ,              (2.25) 

where 

0 0 0

( m ) ( ) ( )

x x x x x x

mtimes

I g( x ) I ... I g( x )     and 
( m ) ( ) ( )

x x

mtimes

g ( x ) D ...D g( x )   . 

 

Proof. [43] 

Taking the Theorem 2.10 into account we deduce the result. 

 

Proposition 2.16. [68] 

Suppose that 
( n ) (( n 1 ) )h ( x ),h ( x ) C ( a,b ) 



   for 0 1  , then we 

have  

0 0

n
( n ) ( n ) (( n 1 ) ) (( n 1 ) ) ( n ) 0

x x x x 0

( x x )
I h ( x ) I h ( x ) h ( x )

( n 1)


    

 

  
        

, 

where                    (2.26) 
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0 0 0

(( n 1 ) ) ( ) ( )

x x x x x x

n 1times

I h( x ) I ... I h( x )  





  

and 

(( n 1 ) ) ( ) ( )

x x

n 1times

h ( x ) D ...D h( x )  



 . 

 

Proof. [68] 

Using the Theorem 1.18, we report that, 

0 0

0

0

0 0

x

(( n 1 ) ) (( n 1 ) ) ( n ) (( n 1 ) )

x x x x

x

( n ) ( n ) ( n )

x x 0

( n ) ( n ) ( n ) ( n )

x x x x 0

1
I h ( x ) I h ( x )( dt )

(1 )

I h ( x ) h ( x )

I h ( x ) I h ( x ).

    

  

   

 

  
 

        

   

 



     

(2.27) 

 

Considering the formula in (2.27), we have 

0 0

0

0

( n ) ( n ) ( n ) ( n )

x x 0 0 x x

( n ) (( n 1 ) )

0 x x 0

( n ) (( n 2 ) ) 2

0 x x 0

n
( n ) 0

0

I h ( x ) h ( x ) I 1

1
h ( x ) I ( x x )

(1 )

(1 ) 1
h ( x ) I ( x x )

(1 2 ) (1 )

.

.

.

( x x )
h ( x ) .

(1 n )

   

  

  




 

 

   

 







 
  

 

 
  

  






   

Applying this formula in (2.27),  we obtain (2.26). 

 

Theorem 2.17. [68] (Generalized Mean Value Theorem for Local Fractional 

Integrals) 

 Suppose that   ( )g( x ) C a,b ,g ( x ) C ( a,b )

   , we have 
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( ) 0
0 0

( x x )
g( x ) g( x ) g ( ) a x x b.

(1 )


  

 


     


                            (2.28) 

 

Proof. [68] 

 Taking n=1 in (2.26), the proof of this theorem is completed. 

 

2.2.  Local Fractional Taylor’s Theorem 

 

Theorem 2.18. [43] 

 

Suppose that 
(( t 1 ) )g ( x ) C ( a,b )



   for  t 0,1,...,n  and 0 1  , 

 then we have, 

( t ) ( ( n 1 ) )n
t ( n 1 )0

0 0

t 0

g ( x ) g ( )
g( x ) ( x x ) ( x x )

(1 t ) (1 ( n 1) )

 
 

   






   
  

 ,     (2.29) 

with 0a x x b, x ( a,b )      , where 
(( t 1 ) ) ( ) ( )

x x

t 1times

g ( x ) D ...D g( x )  



 . 

Proof. [43] 

From the Proposition 2.16, we arrive at this formula in (2.26) 

t
( t ) ( t ) (( t 1 ) ) (( t 1 ) ) ( t )

a x a x

( x a )
I g ( x ) I g ( x ) g ( a )

( t 1)


    

 

  
        

. 

That is, 

tn n
( t ) ( t ) (( t 1 ) ) (( t 1 ) ) ( t )

a x a x

t 0 t 0

(( n 1 ) ) (( n 1 ) )

a x

( x a )
I g ( x ) I g ( x ) g ( a )

( t 1)

g( x ) I g ( x ) ( 2.30 )


    

 

 

 

 

 


        

   

 
, 

Applying the theorem 2.9 into (2.30). 
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x

( ( n 1 ) ) ( ( n 1 ) ) ( n ) ( ( n 1 ) )

a x a x

a

( n ) ( ( n 1 ) )

a x

( n )
(( n 1 ) ) a x

(( n 1 ) ) ( n 1 )

1
I g ( x ) I g ( x )( dt )

(1 )

I g ( )( x a )

(1 )

I ( x a )
g ( )

(1 )

g ( )( x a )
,

(1 ( n 1) )

    

  

 


 

 



 


 



 

  





 

    

  












 



           

(2.31) 

with  a x, x a,b    . Thus, we finish the proof. 

 

Theorem 2.19. [49] 

 

Suppose that 
(( t 1 ) )g ( x ) C ( a,b )



   for t 0,1,...,n  and 0 1  , 

then 

( t )n
t0

0 n 0

t 0

g ( x )
g( x ) ( x x ) R ( x x )

(1 t )





 

   


 ,           (2.32) 

with 0a x x b    , x ( a,b )  , 

such that
(( t 1 ) ) ( ) ( )

x x

t 1times

g ( x ) D ...D g( x )  



  and  n

n 0 0R ( x x ) O ( x x ) .

     

 

Proof. [49] 

 

Applying the Proposition 2.16, we have 

( ( n 1 ) ) ( n 1 ) ( ( n 1 ) )

n 0 0
0n n

0 0

R ( x x ) g ( )( x x ) g ( )
( x x )

( x x ) (1 ( n 1) )( x x ) (1 ( n 1) )

  


 

 

   

   
  

     

And that is , 

0 0

(( n 1 ) )

n 0
0n

x x x x
0

R ( x x ) g ( )
lim lim ( x x ) 0

( x x ) (1 ( n 1) )








 



 


  

  
. 
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Hence, we obtain the desired result. 

 

Theorem 2.20. [43] 

Suppose that 
(( m 1 ) )h ( x ) C ( a,b )



  for m 0,1,...,n  and 0 1  , 

( m ) ( ( n 1 ) )n
m ( n 1 )

m 0

h (0 ) h ( x )
h( x ) x x

(1 m ) (1 ( n 1) )

 
 

   






 
  


               

(2.33) 

with 0 1  , x ( a,b )    where 
(( m 1 ) ) ( ) ( )

x x

m 1times

h ( x ) D ...D h( x )  



 . 

Proof. [43] 

Applying the Theorem 2.18 , for 0x 0  and 0a x x b    , we obtain 

( m ) ( ( n 1 ) )n
m ( n 1 )

m 0

h (0 ) h ( )
h( x ) x x

(1 k ) (1 ( n 1) )

 
 

   






 
  

 .           (2.34) 

If x   in (2.34), then we have 

( ( n 1 ) ) ( ( n 1 ) )
( n 1 ) ( n 1 )h ( ) h ( x )

x x
(1 ( n 1) ) (1 ( n 1) )

 
  

   

 
 

   
, 

with 0 1  . 

Thus, we obtain (2.33). 

 

 

Theorem 2.21. [31] (Taylor's Series) 

 

Suppose that 
(( m 1 ) )g ( x ) C ( a,b )



  for m 0,1,...,n  and 0 1  , 

( m )
m0

0

m 0

g ( x )
g( x ) ( x x )

(1 k )




 





 


 ,              (2.35) 

with 0a x x b   , x ( a,b )    where 
(( m 1 ) ) ( ) ( )

x x

m 1times

g ( x ) D ...D g( x )  



 . 

Proof. [31] 

According to the local fractional Taylor theorem ,we have 
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( m ) (( n 1 ) )n
m ( n 1 )0

0 0
n

m 0

( m )n
m0

0
n

m 0

( m )
m0

0

m 0

g ( x ) g ( )
f ( x ) lim ( x x ) ( x x )

(1 m ) (1 ( n 1) )

g ( x )
lim ( x x )

(1 m )

g ( x )
( x x ) .

(1 m )

 
 









   

 

 














   
  

 


 








 

Thus, we get (2.35). 

 

Theorem 2.22. [31] (Mc-Laurin’s Series) 

 

Suppose that 
(( m 1 ) )g ( x ) C ( a,b )



  for m 0,1,...,n,...  and 0 1 

then we have 

( m )
m

m 0

g (0 )
g( x ) x

(1 m )




 








 ,              (2.36) 

with 0a x x b   , x ( a,b )    where 
(( m 1 ) ) ( ) ( )

x x

m 1times

g ( x ) D ...D g( x )  



 . 

Proof. [31] 

In the Theorem 2.21, we take 0x 0 , so the proof is completed. 

An example for Mc-Laurin’s series is the Mittag-Leffler function [51], 

namely  

k

k 0

x
E ( x )

(1 k )





 








 .                                                             (2.37) 

2.3.  Local Fractional  Indefinite Integral  

 

2.3.1. Local Fractional Anti-Differentiation 

Let g( x ) and h( x ) are two local fractional continuous functions defined on 

( a,b ) . If 
( )h ( x ) g( x )   for each x  in ( a,b ) , then h( x ) is called the local 

fractional anti-derivative of g( x ) on ( a,b ) . 
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Theorem 2.23. [17] 

 

If 1h ( x )  and 2h ( x ) are any local fractional anti-derivative of g( x ) on 

( a,b ) ,then there is  a constant C , 1 2h ( x ) h ( x ) C  . 

 

Proof.  [17] 

We take 1 2t ( x ) h ( x ) h ( x )  , then we have 

( ) ( ) ( )

1 2t ( x ) h ( x ) h ( x ) g( x ) g( x ) 0       , 

for x ( a,b )  . 

Thus, there is a  constant C for all x  in ( a ,b ) , such that 

1 2C t( x ) h ( x ) h ( x )   , 

Hence, we conclude that 1 2h ( x ) h ( x ) C  . 

 

2.3.2. Local Fractional Indefinite Integral 

 

If h( x )  is an local fractional anti-derivative of  g( x )on ( a,b ) ,then the set  

 h( x ) C :Cisconstant  

 

is called a one-parameter family of local fractional anti-derivative of  g( x ). We call 

this one-parameter family of local fractional anti-derivatives the local fractional 

indefinite integral of   g( x ) on ( a,b )  and write it [17], 

 

1
g( x )( dx ) h( x ) C

(1 ) 
 

  .             (2.38) 
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2.3.3. Local Fractional Indefinite Integral of Elementary Functions 

 

For a constant C ,these formulas are valid [17]; 

1
E ( x )( dx ) E ( x ) C

(1 )

  

 
 

 
  ,  (1) 

( k 1 )
k1 (1 k )x

x ( dx ) C
(1 ) (1 ( k 1) )


   

   


 

   , (2)  

1
sin x ( dx ) cos x C

(1 )

  

 
 

  
  ,  (3) 

1
cos x ( dx ) sin x C

(1 )

  

 
 

 
  .  (4) 
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CHAPTER 3 

 

 

3.1. The Local Fractional Differential Equations 

 

Suppose that m( x ) and n( x )  are defined on some interval ( a,b ) , then the 

form of the following equation [17], 

d g( x )
m( x )g( x ) n( x ), 0 1

dx




   

              
(3.1) 

is called   local fractional differential equation of  g( x ). 

 

Theorem 3.1. [17] 

 

A model for Mittag-Leffler growth is the local fractional ordinary differential 

equation, 

0

d y
ty 0 ,t 0 ,y(0 ) y

dx




    .                  (3.2) 

 

The solution of this local fractional differential equation is given, 

0y( x ) y E ( tx )

  .                   (3.3) 

 

Proof. [17] 

 

In (3.2)  we take the integration on both sides with respect to x, 

 

d y
ty,

dx

d y
tdx ,

y
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1 d y 1
t( dx ) ,

(1 ) y (1 )

ln y tx c,

y( x ) E ( tx c ),

y( x ) C.E ( tx ).
















   
 

 

  

  

 

 

 

 Let 0y y(0 ) C  , then we arrive at (3.3). 

Similarly, a model for Mittag-Leffler growth is the local fractional differential 

equation  

0

d y
ty ,t 0 ,y(0 ) y

dx




   .                 (3.4) 

Similarly, the solution of  this local fractional differential equation is given by 

0y( x ) y E ( tx )

 . 

 

Theorem 3.2. [17] 

 

Suppose that t 0  and m( x )  is local fractional continuous on ( a,b ) , then 

the local fractional equation 

d y
ty m( x )

dx




  ,                   (3.5) 

has the one-parameter of solutions, namely 

1
y( x ) E ( tx ) m( x )E ( tx )( dx ) c

(1 )

  

 
 

 
   

 
 .            (3.6) 

 

Proof. [17] 

 

We multiply the given local fractional differential equation in (3.5) by 

E ( tx )

 which is called the integration factor. 
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d
E ( tx ) y

dx

d y
E ( tx ) tE ( tx )y m( x )E ( tx )

dx






  

  

 
 

  .                (3.7) 

By using the notation of the indefinite integral, we arrive at 

1
E ( tx )y m( x )E ( tx )( dx ) c

(1 )

  

 
 

 
  .               (3.8) 

From (3.8), we obtain  

1
y( x ) E ( tx ) m( x )E ( tx )( dx ) c

(1 )

  

 
 

 
   

 
 . 

The proof of theorem is completed. 

 

If m( x )  and n( x )
 

are defined on ( a,b ) , then the equation 

2

2

d g( x ) d g( x )
m( x ) n( x )g( x ) r( x ), 0 1

dx dx

 

 
     ,            (3.9) 

is called 2  local fractional differential equation in the variable g( x ), [17]. 

 

Theorem 3.3. [17] 

 

Suppose that m  and t  are constant coefficients, then the local fractional 

equation, 

2

2

d g( x ) d g( x )
m tg( x ) 0

dx dx

 

 
  

             
(3.10) 

has two-parameter family of solutions [17] 

2 2
2m m 4t m m 4t

g( x ) KE x LE x ,m 4t 0
2 2

 

 

       
      

   
   

, 

with two constants K  and L .              (3.11) 
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Proof. See [17] . 

 

Theorem 3.4. [17] 

 

The local fractional equation which has two constant coefficients [17] 

2

2

d g( x ) d g( x )
m tg( x ) 0

dx dx

 

 
   ,             (3.12) 

In (3.12), m  and t  are coefficients. 

2 2

2

m i m 4t m i m 4t
g( x ) KE x LE x ,

2 2

m 4t 0,

 
 

 

       
    

   
   

 

     (3.13)     

with two constants K  and L . 

 

Proof.  [17] 

Suppose that E ( kx )

  is a solution of  2  local fractional ordinary 

differential equation, namely 

2k mk t 0   .               (3.14) 

From (3.14) and 
2m 4t 0  , we have  

 

2

1

m i m 4t
k

2

  
  and 

2

2

m i m 4t
k

2

  
 , respectively. 

Due to the fact that for any constant C, CE ( kx )

  is a solution of the 2  

local fractional ordinary differential equation, we show that, 

1 2g( x ) KE ( k x ) LE ( k x ) 

    then 

2 2m i m 4t m i m 4t
g( x ) KE x LE x

2 2

 
 

 

       
    

   
   

, 

with two constants K  and L . 
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3.2.  The Total Local Fractional Differentials 

 

3.2.1. Local Fractional Partial Derivative 

 

Let a non-differentiable function g( x,y ) be defined in the domain D of the 

xy plane . If y  is fixed and x  as variable are thought of, local fractional 

derivative of g( x,y ) with respect to x  is called the local fractional derivative with 

respect to x , which is denoted as [17] 

0
0

0

x x
x x 0

g( x,y ) g( x ,y )g( x,y )
lim

x ( x x )



 




    
 

,            (3.15) 

where 
0 0g( x ,y ) g( x ,y ) ( 1 ) g( x,y ) g( x ,y )             . 

 

Similarly, the local fractional partial derivative of g( x,y ) with respect to y  

is called the local fractional derivative with respect to y, which is denoted by as [17], 

0
0

0

y y
y y 0

g( x,y ) g( x,y )g( x,y )
lim

y ( y y )



 




    
 

,            (3.16) 

where 
0 0g( x,y ) g( x,y ) ( 1 ) g( x,y ) g( x,y )             . 

 

3.2.2. Local Fractional Partial Derivative of Higher-Order [68] 

 

Let h( x,y ) has partial derivatives at each points ( x,y )  in the domain D

of the xy plane , then  

h( x,y )

x








 and 

h( x, y )

y








, 

are themselves functions of x  and y , which may also have local fractional partial 

derivatives.  
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The 2  local fractional derivatives are denoted as given below, 

 

2

2
2

x

h( x,y ) h( x,y )
( x,y )

x x x x
h

  


   

  
 

   
, 

2

2
2

y

h( x,y ) h( x,y )
( x,y )

y y y y
h

  


   

  
 

   
, 

2
2

yx

h( x,y ) g( x,y )
( x,y )

x y x y
h

  


   

  
 

   
, 

2
2

xy

h( x,y ) h( x,y )
( x,y )

y x y x
h

  


   

  
 

   
. 

 

Similarly, we have 

 

3

3
3

x

h( x,y ) h( x,y )
( x,y )

x x x x x x
h

   


     

   
 

     
, 

3
3

xyx

h( x,y ) h( x,y )
( x,y )

x y x x y x
h

   


     

   
 

     
. 

 

If k  is positive integer, then 

 

k

k
k

x

k times k times

h( x,y )
... h( x,y ) ( x,y )

x x x ... x
h

  


   

  
 

   
. 

If k  and t  are positive integers, then 

t k

( k t )
( k t )

y x

k times t timesk times t times

h( x,y )
... ... h( x,y ) ( x,y )

x x y y x ... x y ... y
h
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Theorem 3.5. [68] 

 

If 
2

yx
( x,y )g



 and 
2

xy
( x,y )g



are local fractional continuous on the domain 

D of the xy plane , then we have 

2 2

yx xy
( x,y ) ( x,y )g g

 

 .               (3.17) 

 

3.2.3. The Total Local Fractional Differentials 

 

Let non-differentiable function g g( x,y ) have the total increment 

 g (1 ) g( x x,y y ) g( x,y )          , 

which is expressed as [17] 

g K( x ) L( y ) O( )  

      , 

where  K  and L are independent on ( x )  and ( y ) , which are dependent on 

x  and y  and  

2 2( x ) ( y ) 

     . 

Then, g( x,y ) is the  local fractional differential at a point ( x,y ) and 

K( x ) L( y )    is the total local fractional differential at a point ( x,y ) , 

denoted by g K( x ) L( y )       . 

Suppose that g g( x,y )  have the  local fractional differential at a point 

( x,y ) D ,  then g g( x,y ) is the  local fractional differential in the region 

D . If g g( x,y ) is the  local fractional differential at a point ( x,y ) D , then 

we have  

0
lim g 0




 
  .                (3.18) 
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Theorem 3.6. [17] 

Suppose that g g( x,y )  is the  local fractional differential at a point 

( x,y ) , then the partial derivatives are 

g( x,y )

x








,

g( x,y )

y








, 

exist and there is the total local fractional differential at the point ( x,y ) , denoted by 

g( x,y ) g( x,y )
d g ( dx ) ( dy )

x y

 
  

 

 
 

 
.            (3.19) 

 

Proof. [17] 

Assume that function g g( x,y )  is the  local fractional differential at a 

point ( x,y ) . Any points of interval ( x x,y y )    , the neighborhood of 

( x,y ) , is always satisfied below 

g K( x ) L( y ) O( )  

      , 

 Suppose that, y 0  , 

g K( x ) L( y ) O( )  

      , 

exist and 
2 2( x ) ( y ) ( x )  

       , 

thus, we obtain the relation 

g K( x ) O( ( x ) )       , 

then  

( x ) 0

g g( x,y )
K lim

( x ) x

 

 
 

 
 

 
. 

Similarly, if we take x 0  , then we obtain 
g( x,y )

L
y









. 

Hence, the proof of the Theorem is completed. 
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Theorem 3.7. [17] 

 

Suppose that h h( x,y )  is the local fractional partial derivatives 

h( x,y )

x








,

h( x,y )

y








, 

and both  
h( x,y )

x








and 

h( x,y )

y








are local fractional continuous at the point 

( x,y ) , then 
h( x,y ) h( x,y )

d h ( dx ) ( dy )
x y

 
  

 

 
 

 
. 

 

Proof.  [17] 

Assume that 
h( x, y )

x








 and 

h( x,y )

y








are local fractional continuous at 

the point ( x,y ) . 

At any point of the neighborhood, there is the total increment, denoted by  

 

    

h (1 ) h( x x , y y ) h( x,y )

(1 ) h( x x, y y ) h( x,y y ) h( x,y y ) h( x,y ) .

  

 

       

            

 By using the mean value theorem we have the following identity, 

( )h ( x,y y )
h( x x,y y ) h( x,y y ) ( x )

(1 )




 

 
        


,  

which yields 

( )

xh ( x x , y y )
h( x x,y y ) h( x,y y ) ( x )

(1 )




 

   
        


. 

Suppose that 
( )

xh ( x,y )
is local fractional continuous at a point ( x,y ) , we 

have  

h( x x , y y ) h( x ,y y )       , 

which is translated into 
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  ( )

x

( )

x 1

(1 ) h( x x ,y y ) h( x ,y y ) h ( x x ,y y )( x )

h ( x,y ) ( x ) .

 

 

 



             

    
 

Here, 1  is dependent on ( x )  and ( y )  and 1 0   as ( x ) 0 

and ( y ) 0  . 

 

Similarly, we have the following relation, 

  ( )

y 2(1 ) h( x , y y ) h( x,y ) h ( x,y ) ( y )            , 

where 2  is dependent on  ( y )  and 2 0   as ( y ) 0  . 

Hence, the total increment of  h( x,y )is expressed as 

( ) ( )

x y

1 2

h h ( x,y )( x ) h ( x ,y )( y )

( x ) ( y )

    

  

    

   
           

(3.20) 

From (3.20), we obtain 

1 2
1 2

( x ) ( y ) 



 
 



  
  , 

Therefore, 
1 2( x ) ( y ) 0       as 0  and 

( ) ( )

x yh h ( x ,y )( x ) h ( x,y )( y )         . 

Considering ( x ) ( dx ) ,( y ) ( dy )        and y d y    

we have  

( ) ( )

x yd h h ( x,y )( dx ) h ( x,y )( dy )      .            (3.21) 

Considering (1.86), h h( x,y )  has the  local fractional differential at a 

point( x,y ) . 
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Theorem 3.8. [17] 

 

Suppose that h h( x ,y,z )  has the  local fractional differential at a point 

( x,y,z ) , then the local fractional partial derivatives [17], 

h( x,y,z )

x








,

h( x,y,z )

y








,

h( x,y,z )

z








 

exist and there is the total local fractional differential at the point ( x,y,z ) ,denoted 

by 

h( x,y,z ) h( x,y,z ) h( x,y,z )
d h ( dx ) ( dy ) ( dz )

x y z

  
   

  

  
  

  
. (3.22) 

 

 

Proof. See [17]. 

 

Theorem 3.9. [17] 

 

If h h( x,y,z )  has the local fractional partial derivatives 

h( x,y,z )

x








,

h( x,y,z )

y








,

h( x,y,z )

z








 

and if 
h( x,y,z )

x








,

h( x,y,z )

y








and 

h( x,y,z )

z








are local fractional 

continuous at the point ( x,y ) , then [17] 

h( x,y,z ) h( x,y,z ) h( x,y,z )
d h ( dx ) ( dy ) ( dz )

x y z

  
   

  

  
  

  
. 

 

Proof. [17] 

Taking the notation of local fractional differential into account, we conclude 

the result. 
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3.2.4. Local Fractional  Derivative of Composite Function 

 

Theorem 3.10. [17] 

 

Suppose that g g( x,y )
 

and its local fractional partial derivatives 

( )

xg ( x,y )
 and 

( )

yg ( x,y )
are local fractional continuous, and x x( t )  and 

y y( t )  are themselves differentiable functions of t . 

Let  

G(t ) g( x( t ),y( t )) ,then 
d G

dt




is local fractional differentiable and  

d G d g dx d g dy

dt dx dt dy dt

   

  

   
    

   
.              (3.23) 

 

Proof. [17] 

Assume that g g( x,y ) and its local fractional partial derivatives 

( )

xg ( x,y )
 and 

( )

yg ( x,y )
are local fractional continuous. We obtain the 

following formula 

( ) ( )

x y 1 2g g ( x,y ) ( x ) g ( x,y )( y ) ( x ) ( y )                , 

when x 0   and y 0   as 1 0   and 2 0  . 

When x 0   and y 0   , we have 

x dx

t dt

 
   

   
   

and 
y dy

t dt

 
   

   
   

 as t 0  , 

( ) ( )

x y
t 0

d G G x y
lim g ( x,y )( ) g ( x,y ) ( )

dt ( t ) dt dt

d g dx d g dy
.

dx dt dy dt

 
   

 

  

 

 

  
  



   
    

   

 

This finish the proof of the theorem. 
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3.3. Local Fractional Fourier Series 

 

3.3.1.  Fractional Trigonometric Forms of  Local Fractional Fourier Series 

 

Suppose that f ( x ) is a periodic function which 2  is the period of  f ( x ) . 

For m Z , the local fractional Fourier series of  f ( x )  is explained  by the 

following expression as [17], 

 0
m m

m 1

a
f ( x ) a cos ( mx ) b sin ( mx )

2

 

 





   ,           (3.24) 

where the Fourier coefficients have the forms; 

m

m

1
a f ( x ) cos ( mx ) ( dx ) ,

1
b f ( x ) sin ( mx ) ( dx ) .



 







 





















              (3.25) 

 

3.3.2. Generalized Fractional Trigonometric Forms of  Local Fractional Fourier 

Series 

 

Suppose that f ( x ) be a  periodic function which 2t  is the period of f ( x ) . 

For m Z , the local fractional Fourier series of  f ( x )  is explained  by the 

following expression as [17] 

0
m m

m 1

a ( mx ) ( mx )
f ( x ) a cos b sin

2 t t

   

  

 



 
   

 
 ,          (3.26) 

where the Fourier coefficients are 

t

m

t

t

m

t

1 ( mx )
a f ( x )cos ( dx ) ,

t t

1 ( mx )
b f ( x )sin ( dx ) .

t t

 


 

 


 
















             

(3.27) 
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We consider  (3.27), the weights of the fractional trigonometric functions are 

given below [44] 

t

t
m t

2

t

t

t

m t

2

t

x
1 / (1 ) f ( x )cos m ( ) ( dx )

t
a ,

x
1 / (1 ) cos m ( ) ( dx )

t

x
1 / (1 ) f ( x )sin m ( ) ( dx )

tb .
x

1 / (1 ) sin m ( ) ( dx )
t

  



  



  



  




 


 


 


 



























           

(3.28) 

3.4.  The Local Fractional Laplace Transform 

 

3.4.1. Definition of the Laplace Transform 

 

The Laplace transform of f ( x )is given as [17,20] 

  L,

s

0

1
L f ( x ) f ( s ) : E ( s x ) f ( x )( dx ) , 0 1

(1 )

   

  
 



    
  . 

                   (3.29) 

3.4.2. Inverse of the Laplace Transforms [20] 

 

We can define the inverse Laplace transform of f ( x )  given in (3.29) as [20] 

 
i

1 L, L,

s s
i

1
L f ( s ) : E ( s x ) f ( s )( ds )

( 2 )

 
    

   





  , 

where s i       and Re( s ) 0    . 
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CHAPTER 4 

 

 

4.1. Fractal Heat Conduction [52] 

 

Our aim here is to show how the variational iteration method [66] can be applied 

to local fractional heat conduction equation.   

The non-linear equation, which is 

 
2

2

N( x,t ) N( x,t )
0 ,x 0,1

x t

 

 

 
  

 
,               (4.1) 

with a fractal boundary condition  

N(0,t )
E ( t ) , N(0,t ) 0

x







 


, 

reads as a sum of  linear K
 and non-linear M

local fractional operators 

K N+M N 0   , 

which  permits the following correction functional to be constructed. In [66], the 

given correction functional is 

 
0

( )

n 1 n t t n nN ( t ) N ( t ) I K N (s)+M N ( s )   
     .           (4.2) 

In (4.2),
nN  is a restricted local fractional variation and 

 is a fractal 

Lagrange multiplier. The determination of 
  needs the stationary conditions of the 

functional, which is 
nN 0  . 

In (4.2), the given equation becomes  

2
( ) n n

n 1 n 0 x 2

N N
N ( x ) N ( x ) I

x

 
 

 





   
    

   
                          (4.3) 

and the stationary condition allow: 
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( ) n
n 1 n

x x

2( )

0 x n
x

N
N ( x ) 1 ( ) N

x

I ( ) N


     


 

  



    

 


 




     

 
  

                

(4.4) 

In (4.4), we have 

 2( )

x x x

1 ( ) 0 , 0 , ( ) 0
   

  

  
  

      , 

then, the Lagrange multiplier is obtained as 

( x )

(1 )


 


 





.                  (4.5) 

Thus, the equation in (4.3) becomes  

2
( ) n n

n 1 n 0 x 2

( x ) N ( x, ) N ( x, )
N ( x ) N ( x ) I

(1 ) x

  


 

  

  


    
    

    
.    (4.6) 

Choosing an initial approximation N( x,t ) x E ( t ) / (1 ) 

    ,we 

obtain 

2
( ) 0 0

1 0 0 t 2

( 2m 1 )1

m 0

( t ) N ( x, ) N ( x, )
n ( x,t ) n ( x,t ) I

(1 ) x

t
E ( t ) ,

(1 ( 2m 1) )

  


 






  

  

 





    
    

    


 



 

2
( ) 1 1

2 1 0 t 2

( 2m 1 )2

m 0

( t ) N ( x, ) N ( x, )
n ( x,t ) n ( x,t ) I

(1 ) x

t
E ( t ) ,

(1 ( 2m 1) )

  


 






  

  

 





    
    

    


 



 

                                   . 

                                   . 

                                   . 

Hereby, the local fractional series solution n
n

N lim N


  becomes 
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( 2m 1 )n

n

m 0

x
N ( x,t ) E ( t )

(1 ( 2m 1) )





 






 

 .                  (4.7) 

Then, we obtain  (4.7). 

 
( 2m 1 )n

n
m 0

x
N( x,t ) lim E ( t ) E ( t )sinh x

(1 ( 2m 1) )


  

  
 






 
  

  
 , 

                    (4.8) 

where 

 
E ( x ) E ( x )

sinh x
2

 
  



 
 . 

 

We know that the temperature field can be written in the form 

0 0 0E ( t ) E ( t ) E ( t ) t t   

         

and 

     0 0 0sinh x sinh x cosh x x x
   

       . 

Therefore, the fractal dimensions of both E ( t )

  and  sinh x are equal to 

 . It is shown that the temperature describes transports processes in fractal media 

[52]. 

 

4.2  Solutions of Diffusion and Wave Equation on Cantor  Sets  

 

Below, we apply the local fractional variational iteration method [66] to the sub-

diffusion and wave equation on Cantor sets. 

 

4.2.1 Solution of Sub-Diffusion Equation on Cantor Sets [16] 

 

Firstly, we can give the sub-diffusion equation on the Cantor sets 

2

2 2

N( x,t ) 1 N( x,t )
0

x a t

 

  

 
 

                 
(4.9) 
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with a fractal boundary value conditions, 

2N(0,t )
0, N(0,t ) a E ( t )

t


 




 


.             (4.10) 

We can take the initial value conditions by using (4.10), namely  

2

0N ( x,t ) a E ( t ) 

 . 

 We structure a correction local fractional iteration functional as  

2
( ) n n

n 1 n 0 x 2 2

( x ) N ( ,t ) 1 N ( ,t )
N ( x,t ) N ( x,t ) I

(1 ) a t

  


  

  

  


    
    

    
. 

The first term has the form 

2
( ) 0 0

1 0 0 x 2 2

( x ) N ( ,t ) 1 N ( ,t )
N ( x,t ) N ( x,t ) I

(1 ) a t

  


  

  

  

    
    

    
 

    

2 ( )

0 x

2m1
2

2m
m 0

( x )
a E ( t ) I ( E ( t ))

(1 )

1 t
a E ( t ) .

a (1 2m )


   

 


 

 



 

 

 
   

 

 
  

 


 

Similarly,  the second approximation term can be calculated 

2
( ) 1 1

2 1 0 x 2 2

2m2
2

2m
m 0

( x ) N ( ,t ) 1 N ( ,t )
N ( x,t ) N ( x,t ) I

(1 ) a t

1 t
a E ( t ) .

a (1 2m )

  


  


 

 

  

  

 

    
    

    

 
  

 


 

The third approximation term is  

2
( ) 2 2

3 2 0 x 2 2

2m3
2

2m
m 0

( x ) N ( ,t ) 1 N ( ,t )
N ( x,t ) N ( x,t ) I

(1 ) a t

1 t
a E ( t ) .

a (1 2m )

  


  


 

 

  

  

 

    
    

    

 
  

 


 

                                      . 

                                      . 

                                      . 
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If we continue, we obtain the fractional series solution as 
2mn

2

n 2m
m 0

1 x
N ( x,t ) a E ( t )

a (1 2m )


 

   

 
  

 
 . 

Hereby, the local fractional series solution n
n

N lim N



 
is  

n
n

2m
2

2m
n

m 0

2

N( x,t ) lim N ( x,t )

1 x
lim a E ( t )

a (1 2m )

x
a E ( t )cosh ( ).

a


 

 


 

  

 










 
  

 





           

(4.11) 

 

4.2.2 Solution of Wave Equation on Cantor Sets [16] 

 

The wave equation can be written as 

2

2 2 2

W( x,t ) 1 W( x,t )
0

x a t

 

  

 
 

 
,             (4.12) 

with a fractal value conditions given by 

2W(0,t )
a E ( t ), W(0,t ) 0

t


 




 


.             (4.13) 

We can take the initial value conditions by using (4.13) 

2

0

a E ( t )
W ( x,t )

(1 )

 



 



 . 

 We write a correction local fractional iteration functional, namely 

2
( ) n n

n 1 n 0 x 2 2 2

( x ) W ( ,t ) 1 W ( ,t )
W ( x,t ) W ( x,t ) I

(1 ) a t

  


  

  

  


    
    

    
 

We find the first term as 
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2
( ) 0 0

1 0 0 x 2 2 2

2
( )

0 x

( x ) W ( ,t ) 1 W ( ,t )
W ( x,t ) W ( x,t ) I

(1 ) a t

a x E ( t ) ( x ) x E ( t )
I ( )

(1 ) (1 ) (1 )

  


  

     
 

  

  



     

    
    

    

 
   

   

 

    

 

 

 

2m 11
3

2m 1
m 0

1 x
a E ( t ) .

(1 2m 1 )a


 

   






 
  

  
  

Similarly, the second approximation term can deem, that is 

 

 

 

2
( ) 1 1

2 1 0 x 2 2 2

2 3 3
( )

0 x 2

2m 12
3

2m 1
m 0

( x ) W ( ,t ) 1 W ( ,t )
W ( x,t ) W ( x,t ) I

(1 ) a t

a x E ( t ) x E ( t ) ( x ) 1 x E ( t )
I ( )

(1 ) (1 3 ) (1 ) a (1 3 )

1 t
a E ( t )

(1 2m 1 )a

  


  

       
  




 

 

  

  



       

 






    
    

    

 
   

    




 
 .


 


 In the same way, the third approximation term is reported, 

2
( ) 2 2

3 2 0 x 2 2 2

( 2m 1 )3
3

( 2m 1 )
m 0

( x ) W ( ,t ) 1 W ( ,t )
W ( x,t ) W ( x,t ) I .

(1 ) a t

1 t
a E ( t ) .

a (1 ( 2m 1) )

  


  


 

 

  

  

 






    
    

    

 
  

  


 

If we continue, we obtain the fractional series solution, namely 
( 2m 1 )n

3

n ( 2m 1 )
m 0

1 x
W ( x,t ) a E ( t )

a (1 ( 2m 1) )


 

   






 
  

  
 . 

Thus, we can obtain the following local fractional series solution as 

n
n

( 2m 1 )
3

( 2m 1 )
n

m 0

3

W( x,t ) limW ( x,t )

1 x
lim a E ( t )

a (1 ( 2m 1) )

x
a E ( t )sinh ( ).

a


 

 


 

  

 












 
  

  



          (4.14) 
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CHAPTER 5 

 

 

5.1 Analysis of Fractal Wave Equations by Using Local Fractional Fourier 

Series  

 

Here,our purpose investigate the following local fractional wave equation by 

using Local Fractional Fourier series [22] 

2 2

2 2

W( x,t ) W( x,t ) W( x,t )
0

t t x

  

  

  
  

  
,              (5.1) 

where initial and boundary conditions are given as 

W( r,0 )
W( 0,t ) W( r,t ) 0,

x

W( x,0 ) f ( x ),

W( x,0 )
g( x ).

t










  








               

(5.2) 

If there is a particular solution of (5.1) written as 

W( x,t ) ( x )U( t ),
                 

(5.3) 

then, we obtain the equations  

( 2 ) 2

( 2 ) ( ) 2

( x ) 0,

U U U 0,

 

  

  



 

                   

(5.4) 

where the boundary conditions are given by 

( )(0 ) ( r ) 0.    

Equation (5.1) has the following solution 

1 2( x ) c cos x c sin x ,   

    
              

(5.5) 

where 1c  and 2c are constant numbers [22]. 

In (5.5), for x 0  and x r  we obtain 
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1

2

x r

(0 ) c 0,

( r ) ( x ) c sin r 0. 





  


 

  
 

Clearly 2c 0 , otherwise ( x ) 0  . 

We attain  

n r n     , 

where n  is an integer. 

We get, the followings 

n n( x ) sin x

x
sin n ( ) , ( n 0,1,2,3,...).

r

 



 



 





 
 

For 
n

    and 0  , (5.4) means that 

n n n

n 1 n 1

t
U ( t ) E ( ) ( A cos t B sin t )

2


 

   
 

 

     ,              (5.6) 

where  

24( n / r ) 1

2





 . 

Thus, we have 

n n

n n

W ( x,t ) ( x )U ( x )

x 1 x 1
A cos ( ) E ( t ) B sin ( ) E ( t ).

r 2 r 2

   

   



 
 



   
      (5.7) 

We suppose a local fractional Fourier series of (5.1) as 

n

n 1

n n

n 1

W( x,t ) W ( x,t )

1 x
E ( t ) ( A cos t B sin t )( ) .

2 r

   

  


 











   




        (5.8) 

Thus, we get 
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n

n 1

W( x,t ) W ( x,t )

t t

 

 





 


 
 , 

where 

n
n n

n n

W ( x,t ) 1 1 x
E ( t )( A cos t B sin t )sin n ( )

t 2 2 r

1 x
E ( t )( A sin t B cos t )sin n ( )

2 r


    

   

    

   


 


  


   



   

 

with  

24( n / r ) 1
.

2





  

 

Take into account (5.8) and (5.2) we obtain [22] 

n

n 1

n

n 1

W( x,0 ) W ( x,0 )

x
A sin n ( ) f ( x ),

r

 















 




 

n n

n 1

W( x,0 ) 1 x
( A B )sin n ( ) g( x )

t 2 r


 











   


 .            (5.9) 

Thus, we report 

n n

n 1 n 1

x 1 x
B sin n ( ) g( x ) A sin n ( )

r 2 r

1
g( x ) f ( x ).

2

   

 

 


 

 

 

 

 

         

(5.10) 

We can take the function F( x )as 

1
F( x ) g( x ) f ( x )

2
  . 

Using (5.9) , we find that [22] 
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n

n 1

n

n 1

x
A sin n ( ) f ( x ),

r

x
B sin n ( ) F( x ).

r

 



 























 

 

We write the local fractional Fourier coefficients of this functions, 

respectively, 

r

0

n r

2

0

r

0

n r

2

0

x
1/ (1 ) f ( x )sin n ( ) ( dx )

rA , ( n 0,1,2,3...),
x

1 / (1 ) sin n ( ) ( dx )
r

x
1 / (1 ) F( x )sin n ( ) ( dx )

rB , ( n 0,1,2,3...),
x

1 / (1 ) sin n ( ) ( dx )
r

  



  



  



  




 


 


 




 


 




 










       

(5.11) 

and we can calculate as [22] 

r

2

0

1 x r
sin n ( ) ( dx )

(1 ) r 2 (1 )


  





   


  . 

Then, we report 

r

0

n

r

0

n

x
2 f ( x )sin n ( ) ( dx )

rA ,
r

x
2 F( x )sin n ( ) ( dx )

rB .
r

  





  



















 

Therefore, we obtain the solution of (5.1) as 

n

n 1

n n

n 1

W( x,t ) W ( x,t )

1 x
E ( t )( A cos t B sin t )sin n ( )

2 r
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and 

r

0

n

r

0

n

x
2 f ( x )sin n ( ) ( dx )

rA , ( n 1,2,3...)
r

x
2 F( x )sin n ( ) ( dx )

rB ( n 1,2,3...)
r

  





  











 

 





 

with  

1
F( x ) g( x ) f ( x )

2
  . 

 

5.2 The Factal Models for the One  Phase Problems of Discontinuous Heat 

Transfer   

In [2], it was suggested a one phase fractal problem describes the melting of a 

fractal solid semi-infinite material at its melt temperature. This problem comprises 

the following equations: 

2

2

m m
, 0 x s , t 0.

t x

 

 

 
   

              
(5.12) 

(5.12) states the flow of heat in the fractal liquid region [46] and (5.12) is 

derived from the local fractional one   dimensional heat conduction equation, namely 

m d s
, x s( t ), t 0.

x dt

 


 



  

             
(5.13) 

In (5.13)  the fractal Stefan condition is described and (5.13) expresses the 

absorption of  heat , wherein
  is Stefan number 

m 0 , x 0 , t 0,  
             

(5.14) 

m 0 , x s( t ) , t 0,  
             

(5.15) 

m 1 , x 0 , t 0.  
             

(5.16) 

The condition (5.13) can be derived from the fact that the local fractional 

derivative of the temperature at x s( t ) equal to zero. So, we have 
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D m( x,t )
0

Dt




 . 

We obtain the following expression 

m d s d m
0

x dt dt

 

 


 


.               (5.17) 

From (5.12) and (5.17), we conclude 

2

2

d m m
d s dt x

m mdt

x x

 

  





   
 

 

.               (5.18) 

We can use the expression in (5.13) and we get 

2

2

d m m m
, x s( t ), t 0.

dx x x

 


 


    
    

   
 

This result show  that the fractal low is local fractional continuous at x. If  m

is local fractional continuous and m  is continuous, we conclude that the fractal 

dimension is 1  . 

(5.13)  can be derived from  the local fractional derivative of the temperature 

at x s( t ) equals to zero. So, we have 

D m( x,t )
0.

Dt




  

We obtain the following expression  

m ds d m
0.

x dt dt

 

 

  
  

                  

(5.19) 

From (5.12) and (5.19), we finally obtain 

2

2

m
ds 1 d s 1 x

mdt (1 ) dt (1 )

x



  

   



         


.           (5.20) 
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By using (5.13), (5.18) and (5.20), we get the final form, 

2
2

2

d m m
, x s( t ) , t 0

dx (1 ) x

  

 



 

  
   

  
.            (5.21) 

 

5.3 Fractional Complex Transform Method in Order to Wave Equations  

 

In this application, it was considered  [1] the fractional complex transform 

method for differential equations. Firstly, some propositions are presented 

concerning the fractional complex transform method below. 

 

Proposition 5.1 [1] 

 

x
M

(1 )

y
N

(1 )





 

 


 

 


                  

(5.22)              

and  

1 2T ( x,y ) T ( x,y )
0

x y

 

 

 
 

 
, 

such that   

1 2T ( M , N ) T ( M , N )
0

M N

 
 

 
.             (5.23) 

 

Proof. [1] 

Let us mention about  the fractional complex transform in (5.22), then we can 

obtain, 
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1 1 1 1

2 2 2 2

T ( x,y ) T ( M ,N ) M T ( M ,N ) N T ( M ,N )
,

x M x N x M

T ( x,y ) T ( M ,N ) M T ( M ,N ) N T ( M ,N )
.

y M y N y N

  

  

  

  

     
  

     

     
  

     

 

Thus, we get (5.23). 

 

Proposition 5.2 [1] 

 

We consider (5.22), then we can convert  

2 2 2 2

2 1 2 2

2 2

T ( x,y ) T ( x,y ) T ( x,y ) T ( x,y )
0

x x y y x y

   

     

   
   

     
 

into 

2 2 2 2

2 1 2 2

2 2

T ( M ,N ) T ( M ,N ) T ( M ,N ) T ( M ,N )
0

M M N N M M

   
   

     
.(5.24) 

 

Proof. [1] 

 

Similarly with the previous proposition, we have; 

2 2

1 1 1 1

2 2 2 2

T ( x,y ) T ( M ,N ) M T ( M ,N ) N T ( M , N )
,

x M x N x M

  

  

     
  

     
 

2 2

2 2 2 2

2 2 2 2

T ( x,y ) T ( M ,N ) N T ( M ,N ) M T ( M ,N )
,

y N y N y M

  

  

     
  

     
 

2 2 2 2

1 1 1 1T ( x,y ) T ( M ,N ) N T ( M ,N ) N T ( M ,N )
,

y x M N y M N x N M

 

   

     
  

         
 

2 2 2 2

2 2 2 2T ( x,y ) T ( M ,N ) M T ( M ,N ) M T ( M ,N )
,

x y N M x M M y M N

  

   

     
  

         

 

Thus, we obtain (5.24). 
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Proposition 5.3 [1] 

 

We suppose that there is the following fractional complex transform 

x
M ,

(1 )

y
N ,

(1 )

z
K ,

(1 )







 

 

 














                 

(5.25) 

and we have 

1 2 3T ( x,y,z ) T ( x, y,z ) T ( x,y,z )
0

x y z

  
  

  
, 

such that   

1 2 3T ( x,y,z ) T ( x,y, z ) T ( x,y,z )
0

x y z

  

  

  
  

  
.           (5.26)  

 

Proof. [1] 

Let us use the fractional complex transform in (5.25), so we obtain 

1 1 1 1

1

T ( x,y,z ) T ( M ,N ,K ) M T ( M ,N ,K ) N T ( M ,N ,K ) K

x M x N x K x

T ( M ,N ,K )
,

M

   

   

      
  

      






 

2 2 2 2

2

T ( x,y,z ) T ( M ,N ,K ) M T ( M ,N ,K ) N T ( M ,N ,K ) K

y M y N y K y

T ( X ,Y ,Z )
,

Y

   

   

      
  

      






     (5.27) 

3 3 3 3

3

T ( x,y,z ) T ( M ,N ,K ) M T ( M ,N ,K ) N T ( M ,N ,K ) K

z M z N z K z

T ( M ,N ,K )
.

K

   

   

      
  

      






 

We directly obtain (5.26) by using above equations. 
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Proposition 5.4 [1] 

 

When the fractional complex transform (5.25) is given, 

2 2 2

1 2 3

2 2 2

T ( x,y,z ) T ( x,y,z ) T ( x,y,z )
0

x y z

  
  

  
 

thus, we get 

2 2 2

1 2 3

2 2 2

T ( x,y,z ) T ( x,y,z ) T ( x,y,z )
0

x y z

  

  

  
  

  
. 

 

Proof. [1] 

 

Let us use the fractional complex transform in (5.25), so we obtain, 

2 2 2 2

1 1 1 1

2 2 2 2

2

1

2

T ( x,y,z ) T ( M ,N ,K ) M T ( M ,N ,K ) N T ( M ,N ,K ) K

x M x N x K x

T ( M ,N ,K )
,

M

   

   

      
  

      






 

2 2 2 2

2 2 2 2

2 2 2 2

2

2

2

T ( x,y,z ) T ( M ,N ,K ) M T ( M ,N ,K ) N T ( M ,N ,K ) K

x M x N x K x

T ( M ,N ,K )
,

M

   

   

      
  

      






 

2 2 2 2

3 3 3 3

2 2 2 2

2

3

2

T ( x,y,z ) T ( M ,N ,K ) M T ( M ,N ,K ) N T ( M ,N ,K ) K

x M x N x K x

T ( M ,N ,K )
.

M

   

   

      
  

      






 

 Take into account (5.25) and (5.27), we have completed this proof. 

 

5.3.1. Wave Equations on Cantor sets  

 

We mention the fractional complex transform method to operate three  

dimensional wave equations on Cantor sets.  
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Let’s mention three  dimensional wave equation. We write the fractional 

complex transform by using local fractional derivatives. 

 

 

 

t
T ,

(1 )

a x
M ,

(1 )

a y
N ,

(1 )

a z
K ,

(1 )









 

 

 

 







 






 






 

such that 

2

2

u( M ,N ,K ,T )
u( M ,N ,K ,T ) 0

T


  


, 

where,

2 2 2

2 2 2M N K

  
   

  
. 

Let’s mention two dimensional wave equation. We write the fractional 

complex transform by using local fractional derivatives [1] 

 

 

t
T ,

(1 )

a x
M ,

(1 )

a y
N ,

(1 )







 

 

 












 



 

such that 

2

2

u( M ,N ,T )
u( M ,N ,T ) 0

T


  


, 

where,

2 2

2 2M N

 
  

 
. 
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 If there is the mass function [47] 

 
1 ( b a )

F ,a,b H ( F ( a,b ))
(1 ) (1 )


 

   


  

 
, 

then, we obtain the following formula; 

 
( b a )

F ,la,lb l
(1 )


 

 





, such that 

 

 

 
 

 
 

 
 

t
T F ,0,t ,

(1 )

a x
M F ,0,a x ,

(1 )

a y
N F ,0,a y ,

(1 )

a z
K F ,0,a z .

(1 )

















 


 


 


 


 




  





 
 



 


 

 

From [47], we conclude  

1 2 1 1 2 2

1 2 1 1 2 2

T( t ) T( t ) , M( x ) M( x ) ,

N( y ) N( y ) , K( z ) K( z ) ,

 

 

 

 

   

   
 

 

for any i0   and i R  ,which means that the fractal dimensions of transferring 

pairs are  . 

 

5.4 Local Fractional Sumudu Transform  

 

The Sumudu transform can be used to solve the differential equations[44-48]. 

The aims of this applications are to connect the Sumudu transform and  (LFC). 
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We can take a new transform operator as 

LFS : f ( x ) F( t )  , 

  m m

m m

m 0 m 0

LFS f ( x ) LFS a x (1 m )a z 

   
 

 

 
   

 
  .          (5.28) 

 

We can give typical examples [20] as 

  m m

m 0

LFS E ( i x ) i z   

 





 , 

x
LFS z

(1 )





 

 
 

 
. 

 

Definition 5.5 [20] 

 

The local fractional Sumudu transform (LFST) of  g( x )of order  is 

defined as [20] 

 

 
0

1 g( x )
LFS g( x ) G ( z ) : E ( z x ) ( dx ) , 0 1

(1 ) z

  

   


 


    

 

                   

(5.29) 

The inverse of  LFST has the form 

 1LFS G ( z ) g( x ), 0 1      .             (5.30) 

 

Theorem 5.6 (The Linearity of  LFST) [20] 

Suppose that  

 

 

LFS h( x ) H ( z ),

LFS g( x ) G ( z ),

 

 




 

then we get  [20] 
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 LFS h( x ) g( x ) H ( z ) G ( z )     .            (5.31) 

 

Proof. [20] 

 We can get (5.31) by using the definition of  LFST. 

 

Theorem 5.7 [20] (Local Fractional Laplace-Sumudu Duality) 

Suppose that 

  L,

sL h( x ) h ( s )

   and  LFS h( x ) H ( z )   

then, we obtain 

 
1 1

LFS h( x ) L h
z x

 

  
   

  
,              (5.32) 

 
 LFS h(1/ s )

L h( x )
s


 

 .              (5.33) 

 

Proof . [20] 

 The definitions of  LFST and laplace transforms give directly  (5.32) and 

(5.33). 

 

Theorem 5.8 [20] (Local Fractional Sumudu Transform of Local Fractional 

Derivative) 

 

Suppose that  LFS g( x ) G ( z )  , then 

d g( x ) G ( z ) g(0 )
LFS

dx z




  

  
 

 
.             (5.34) 
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Proof. [20] 

We take 
d g( x )

H( x )
dx




 . From (5.32), we have 

 
 

 L H(1/ x )
LFS H( x )

z


 

  

and from [17]  

 
   L H(1/ x ) L g(1/ x ) / z g(0 )

   , 

 
   L H(1/ x ) L g(1/ x ) / z g(0 )

LFS H( x )
z z

G ( z ) g(0 )
.

z



 
  






 




          (5.35) 

 

 

Theorem 5.9 [20] (Local Fractional Sumudu Transform of the Local Fractional 

Integral) 

Suppose that  LFS g( x ) G ( z )  ,  then we have 

 ( )

0 xLFS I g( x ) z G ( z ) 

  .            (5.36) 

 

Proof .[20] 

We get    ( )

0 x

1
LFS I g( x ) L g( x )

s



 
 , from (5.32), namely 

  
1 1 1

LFS h( x ) L h L g( ) z G z
z x x



   

    
      

    
,              (5.37) 

where 
( )

0 xh( x ) I g( x ) . 

Thus, we complete this proof. 

 

Theorem 5.10 [20,70] (Local Fractional Convolution) 

Suppose that  LFS h( x ) H ( z )   and  LFS g( x ) G ( z )  , then 
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we have 

 LFS g( x ).h( x ) z G ( z )H ( z )

   ,
             

(5.38) 

where 

0

1
g( x ).h( x ) f ( t )g( x t )( dt )

(1 )



 



 
  .           (5.39) 

 

Proof. [20] 

From (5.32), we conclude that 

 
 L g( x ).h( x )

LFS g( x ).h( x )
z


 

 . 

As [20], we can write 

     L g( x ).h( x ) L g(1/ x ) .L h(1/ x )   .           (5.40) 

We obtain the followings 

 
   L g(1 / x ) .L h(1 / x )

LFS g( x ).h( x )
z

z G ( z )H ( z ),

 
 



 





 

where 
 L g(1/ x )

G ( z )
z


 

  and 
 L h(1 / x )

H ( z )
z


 

 . 

Thus, we complete this proof.  
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CONCLUSION 

 

 

The local fractional calculus is a new area of mathematics that studies the 

derivative and integration of functions of arbitrary order defined on fractals. So, it 

has attracted much attention of mathematicians, physicists and engineers. 

 

In this thesis, we reviewed the basic definitions and theorems of local 

fractional calculus.  Also we reviewed  some recent applications and we showed that 

in both fields of physics and mathematics the local fractional calculus gives effective 

results.  

 

We hope that, this thesis will be a useful tool  for researchers who would like 

to work on the local fractional calculus and its applications.
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