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The flow through porous media can be better described by fractional models than the clas-
sical ones since they include inherently memory effects caused by obstacles in the struc-
tures. The variational iteration method was extended to find approximate solutions of
fractional differential equations with the Caputo derivatives, but the Lagrange multipliers
of the method were not identified explicitly. In this paper, the Lagrange multiplier is deter-
mined in a more accurate way and some new variational iteration formulae are presented.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The diffusion process has been observed in many real physical systems such as highly ramified media in porous systems,
anomalous diffusion in fractals and heat transfer close to equilibrium. Fractional calculus is a power tool for finding solution
of non-linear problems. Some numerical methods [1–6] and analytical methods [7–12] have been developed for fractional
differential equations (FDEs).

The variational iteration method (VIM) [13,14] was extended to FDEs and has been one of the methods used most often.
Generally speaking, the use of the variational iteration method (VIM) follows the three steps: (a) to establish the correction
functional; (b) identification of the Lagrange multipliers; (c) determination of the initial iteration. Obviously, the step (b) is
crucial to derive a variational iteration formula.

Noting the applications of the VIM [13,15] only handled the term of fractional derivatives as restricted variations, we con-
sider a more general FDE
C
0Da

t uþ R½u� þ N½u� ¼ f ðtÞ; ð1Þ
where 0D
C
a
t is the Caputo derivative, R[u] is a linear term and N[u] is a nonlinear one. Momani and Inc et al. [16–20] applied

the VIM to the above equation and suggested a variational iteration formula
unþ1 ¼ un þ
R t

0 kðt; sÞð0CDa
sun þ R½un� þ N½un� � f ðsÞÞds; 0 < t; 0 < a 6 1;

kðt; sÞ ¼ �1;

(
ð2Þ
.-C. Wu).
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where the function kðt; sÞ is called the Lagrange multiplier.
This paper gives a new way to identify the Lagrange multiplier and improves the variational iteration formula (2) as
unþ1 ¼ un þ
R t

0 kðt; sÞð0CDa
sun þ R½un� þ N½un� � f ðsÞÞds; 0 < t; 0 < a;

kðt; sÞ ¼ ð�1Þaðs�tÞa�1

CðaÞ :

8<
: ð3Þ
The above iteration formula is also valid for differential equations when a is an arbitrary positive integer.

2. Preliminaries
Definition 2.1. The Caputo derivative is given as
C
0Da

t u ¼ 1
Cðm� aÞ

Z t

0

1

ðt � sÞa�mþ1 uðmÞðsÞds; 0 < t; m ¼ ½a� þ 1: ð4Þ
Definition 2.2. The Riemann–Liouville (R–L) integration of u is defined as
0Iat uðtÞ ¼ 1
CðaÞ

Z t

0
ðt � sÞa�1uðsÞds; 0 < t; 0 < a: ð5Þ
Definition 2.3. Laplace transform of the term C
0Da

t u is given as
L½C0Da
t u� ¼ sa�uðsÞ �

Xm�1

k¼0

uðkÞð0þÞsa�1�k; m� 1 < a 6 m; ð6Þ
where L is Laplace transform and �uðsÞ ¼ L½uðtÞ�.
Assuming �hðsÞ ¼ L½hðtÞ� and �gðsÞ ¼ L½gðtÞ�, the convolution theorem is
hðtÞ�gðtÞ ¼
Z t

0
hðt � sÞgðsÞds; ð7Þ
and
�hðsÞ�gðsÞ ¼ L½hðtÞ�gðtÞ�: ð8Þ
The detail properties of fractional calculus and Laplace transform can be found in [21–23], respectively.

3. Some new Lagrange multipliers
Theorem 3.1. If the correction functional for Eq. (1) is established via the R–L integration
unþ1 ¼ un þ 0Iat kðt; sÞ C
0Da

sun þ R½un� þ N½un� � f ðsÞ
� �

; ð9Þ
the terms R[un] and N[un] are restricted variations, the Lagrange multiplier can be identified as
kðt; sÞ ¼ �1: ð10Þ
Proof. Take Laplace transform (6) on the both sides of Eq. (9)
�unþ1ðsÞ ¼ �unðsÞ þ L 0Iat kðt; sÞ C
0Da

sun þ R½un� þ N½un� � f ðsÞ
� �� �

: ð11Þ
Consider the term
0Iat k0
CDa

sun ¼
1

CðaÞ

Z t

0
ðt � sÞa�1kðt; sÞC0Da

sunðsÞds: ð12Þ
Setting the Lagrange multiplier kðt; sÞ ¼ kðXÞ=X¼t�s, Eq. (12) is the convolution of the function aðtÞ ¼ kðtÞta�1

CðaÞ and the term

0
CDa

t unðtÞ: The terms R[un] and N[un] are considered as restricted variations which implies dR[un] = 0 and dN[un] = 0, respec-
tively. Make the correction functional (11) stationary with respect to �unðsÞ and take the classical variation derivative d on the
both sides of Eq. (11). Then Eq. (11) can be calculated as
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d�unþ1ðsÞ ¼ d�unðsÞ þ d �aðsÞsa�unðsÞ �
Xm�1

k¼0

uðkÞð0þÞsa�1�k

" #
¼ ð1þ �aðsÞsaÞd�unðsÞ: ð13Þ
From Eq. (13), we can obtain the equation
1þ �aðsÞsa ¼ 0; ð14Þ
which results in
�aðsÞ ¼ � 1
sa and aðtÞ ¼ � ta�1

CðaÞ : ð15Þ
h

As a result, the Lagrange multiplier can be identified as
kðt; sÞ ¼ aðt � sÞCðaÞðt � sÞ1�a ¼ �1: ð16Þ
The iteration formula (9) reads
unþ1 ¼ un � 0Iat
C
0Da

sun þ R½un� þ N½un� � f ðsÞ
� �

: ð17Þ
We can check our iteration formula’s validness through the relaxation oscillator equation [24]
0
CDa

t uþxau ¼ 0; uð0Þ ¼ 1; u0ð0Þ ¼ 0; 0 < t; 1 < a 6 2;x > 0: ð18Þ
The iteration formula of Eq. (18) can be given as
unþ1 ¼ un � 0Iat ðC0Da
sun þxaunÞ;

u0 ¼ 1:

(
ð19Þ
As a result, we can obtain the series solution
u0ðtÞ ¼ 1;
u1ðtÞ ¼ 1� xata

Cð1þaÞ ;

u2ðtÞ ¼ 1� xata
Cð1þaÞ þ x2at2a

Cð1þ2aÞ :

. . .
For n ?1, unðtÞ ¼
Pn

k¼0
ð�xtÞka
Cð1þkaÞ rapidly tends to the exact solution Ea(�(xt)a) which is the Mittag-Leffler function.

Theorem 3.2. If the correction functional for Eq. (1) is established via the Riemann integration
unþ1 ¼ un þ
Z t

0
kðt; sÞ C

0Da
sun þ R½un� þ N½un� � f ðsÞ

� �
ds; ð20Þ
and the terms R[un] and N[un] are restricted variations, the Lagrange multiplier can be identified as
kðt; sÞÞ ¼ ð�1Þaðs� tÞa�1

CðaÞ : ð21Þ
From Eq. (17), we can derive
unþ1 ¼ un � 0Iat
C
0Da

sun þ R½un� þ N½un� � f ðsÞ
� �

¼ un �
Z t

0

ðt � sÞa�1

CðaÞ
C
0Da

sun þ R½un� þ N½un� � f ðsÞ
� �

ds

¼ un þ
Z t

0

ð�1Þaðs� tÞa�1

CðaÞ
C
0Da

sun þ R½un� þ N½un� � f ðsÞ
� �

ds:
As a result, for Eq. (20), the Lagrange multiplier is derived
kðt; sÞ ¼ ð�1Þaðs� tÞa�1

CðaÞ ;
which completes the proof of (21).
One can check that the following iteration formula (See Eq. (25a) in [25]) for the ordinary differential equation (ODE)

dmu
dtm þ R½u� þ N½u� ¼ f ðtÞ,
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unþ1 ¼ un þ
R t

0 kðt; sÞ dmu
dsm þ R½un� þ N½un� � f ðsÞ
� �

ds; 0 < a;

kððt; sÞ ¼ ð�1Þmðs�tÞm�1

ðm�1Þ! ;

8<
: ð22Þ
is a special case of Eq. (3). We can conclude that our iteration formula is a ‘‘uniform’’ one for both ODEs and FDEs.

Remarks:

(I) The iteration formula is also valid for approximately solving FDEs of arbitrary order in sense of the R–L derivative RL
0 Da

t

and the sequential derivatives. The differences are the initial iterations.
(II) The Lagrange multiplier presented in (3) is a simplest one. If we consider more terms in R[u] in Eq. (1), more explicit

Lagrange multipliers can be identified. For example, consider the FDE
C
0Da

t uþxauþ N½u� ¼ f ðtÞ;0 < a and RL
0 Da

t uþxauþ N½u� ¼ f ðtÞ;0 < a: ð23Þ
Similarly, the following variational iteration formulae can be given as
unþ1 ¼ un þ
R t

0 kðt; sÞð0CDa
sun þxaun þ N½un� � f ðsÞÞds;

k ¼ �ðt � sÞa�1Ea;að�xaðt � sÞaÞ;

(
ð24Þ
and
unþ1 ¼ un þ
R t

0 kðt; sÞð0RLDa
sun þxaun þ N½un� � f ðsÞÞds;

k ¼ �ðt � sÞa�1Ea;að�xaðt � sÞaÞ:

(
ð25Þ
For a = 1 and a = 2, Eqs. (24) and (25) reduce to the results in (see the iteration formula in [25])
unþ1 ¼ un þ
R t

0 kðt; sÞ dun
ds þxun þ N½un� � f ðsÞ
� �

ds;

k ¼ �ðt � sÞa�1Ea;a �xaðt � sÞa
� ���

a¼1 ¼ �exðs�tÞ;

(

and
unþ1 ¼ un þ
R t

0 kðt; sÞ d2un
ds2 þx2un þ N½un� � f ðsÞ
� �

ds;

k ¼ �ðt � sÞa�1Ea;a �xaðt � sÞa
� ���

a¼2 ¼
sinðxðs�tÞÞ

x ;

8<
:

where Ea;bðtÞ is the Mittag-Leffler function with two parameters.
The Lagrange multipliers (24) and (25) lead to approximate solutions of higher accuracies than the results from the var-

iational iteration formula (3). For example, only with one step, one can derive the exact solution of (18).
Fig. 1. g = sin(2px), a = 0.9, v = 0.1.
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(III) The simplest variational iteration formula (17) can reduce to the Volterra integral equation and the analysis of the con-
vergence and the existence of the solutions can be found in [26].

4. Approximate solutions of the Burgers’ flow with fractional derivatives

The classical Burgers equation often appears in traffic flow and gas dynamics. Recently, some researchers considered var-
ious fractional Burgers equation to model the diffusion behaviors of the flow through porous medium [27–31]. In this sec-
tion, the VIM is applied to the time-fractional Burgers equation [10]
0
CDa

t uþ u
@u
@x
¼ v @

2u
@x2 ; 0 < t; 0 6 x 6 1; 0 < a 6 1; ð26Þ
where u is the flow’s velocity and v is the viscosity coefficient. It is revealed that the effect of the fractional derivative accu-
mulates slowly to give rise to a significant dissipation.
Fig. 3. g = sin(2px), a = 0.9, v = 0.9.

Fig. 2. g = sin(2px), a = 0.9, v = 0.5.
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We consider the Burgers equations with the initial condition uðx;0Þ ¼ gðxÞ. From Eq. (17), we can have
unþ1 ¼ un �
R t

0
ðt�sÞa�1

CðaÞ

�
C
0Da

sun þ un
@un
@x � v @2un

@x2

�
ds; 0 < a 6 1;

u0 ¼ uðx;0Þ ¼ gðxÞ; uð0; tÞ ¼ uð1; tÞ ¼ 0:

(
ð27Þ
More generally, for the time-fractional couple Burgers equations of fractional order in [32]
C
0Da

t uþ 2u @u
@x �

@2ðuvÞ
@x2 ¼ 0;0 < a;

C
0Db

t v þ 2v @v
@x �

@2ðuvÞ
@x2 ¼ 0; 0 < b;

8<
: ð28Þ
the variational iteration formula can be given as
unþ1 ¼ un þ
R t

0 k1ðt; sÞ C
0Da

sun þ 2un
@un
@x �

@2unvn
@x2

� �
ds; k1ðt; sÞ ¼ ð�1Þaðs�tÞa�1

CðaÞ ; 0 < a;

vnþ1 ¼ vn þ
R t

0 k2ðt; sÞ C
0Db

svn þ 2vn
@vn
@x �

@2unvn
@x2

� �
ds; k2ðt; sÞ ¼ ð�1Þbðs�tÞb�1

CðbÞ ; 0 < b;

8><
>: ð29Þ
Fig. 5. g = sin(2px), a = 0.9, v = 0.5.

Fig. 4. g = sin(2px), a = 0.5, v = 0.5.
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For Eq. (26), the successive approximate solutions can be obtained
u0 ¼ gðxÞ ¼ g;

u1 ¼ g � gg0 � vgð2Þ
� �

ta
Cðaþ1Þ ;

u2 ¼ g � gg0 � vgð2Þ
� �

ta
Cð1þaÞ þ 2gg02 þ g2gð2Þ � 2vggð3Þ � 4vg0gð2Þ þ v2gð4Þ

� �
t2a

Cð1þ2aÞ

� gg0 � vgð2Þ
� �

g02 þ ggð2Þ � vgð3Þ
� �

Cð1þ2aÞ
C2ð1þaÞ

t3a

Cð1þ3aÞ ;

..

.

where g0 denotes dg
dx and gðmÞ ¼ dmg

dxm .
We get the approximate solution u2 as the second term approximation. For g(x) = sin(2px) and the fractional order a = 0.9,

Figs 1–3 show the velocity of the flow with various viscosity coefficients v. For g(x) = sin(2px) and the viscosity coefficient
v = 0.5, Figs 4–6 illustrate the velocity at different fractional orders.

5. Conclusions

FDEs have been proven to be a useful tool to describe the nonlocal diffusion of the flow in porous media. As one of the
analytical methods in FDEs, the existing applications of the VIM in FDEs handled the terms of fractional derivatives as re-
stricted variations or directly employed the one for ODEs. So the Lagrange multipliers determined in that way are not good
enough to obtain the approximate solutions of high accuracies. The main reason is that it is difficult for one to use the inte-
gration by parts to derive the Lagrange multipliers explicitly.

In this study, the Lagrange multiplier is identified by Laplace transform and such a drawback is overcomed. The VIM for
FDEs is completed now.

Furthermore, with the result in this study, the following aspects can be considered in future work:

� New analytical methods employing other linearized techniques, for example, the Adomian decomposition series, which
can handle the nonlinear terms of FDEs and improve the accuracies of approximate solutions;
� To develop numerical algorithms of fractional partial differential equations based on the VIM which can fully use the mer-

its of the method;
� To consider other applications of the VIM in new non-classical models such as fractional fuzzy equations, fractional time-

delay models, the fractional q-difference equations and other dynamical equations on time scales.

Acknowledgment

The first author would like to feel grateful to the referees’ suggestions. This work is financially supported by the Key Pro-
gram of NSFC (No. 51134018).



6190 G.-C. Wu, D. Baleanu / Applied Mathematical Modelling 37 (2013) 6183–6190
References

[1] K. Diethelm, N.J. Ford, A.D. Freed, A predictor–corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn. 29
(2002) 3–22.

[2] K. Diethelm, N.J. Ford, Multi-order fractional differential equations and their numerical solution, Appl. Math. Comput. 154 (2004) 621–640.
[3] F.W. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker–Planck equation, J. Comput. Appl. Math. 166 (2004) 209–219.
[4] C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys.

213 (2006) 205–213.
[5] W. Deng, Short memory principle and a predictor–corrector approach for fractional differential equations, J. Comput. Appl. Math. 206 (2007) 174–188.
[6] D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calculus Models and Numerical Methods, Complexity, Nonlinearity and Chaos, World Scientific,

Boston, Mass, USA, 2012.
[7] N.T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput. 131 (2002) 517–529.
[8] S. Momani, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A 365 (2007) 345–350.
[9] P. Zhuang, F.W. Liu, V. Anh, I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion

equation, SIAM J. Numer. Anal. 46 (2008) 1079–1095.
[10] C.P. Li, Y.H. Wang, Numerical algorithm based on Adomian decomposition for fractional differential equations, Comput. Math. Appl. 57 (2009) 1672–

1681.
[11] J. Hristov, Approximate solutions to fractional subdiffusion equations, Eur. Phys. J. Special Topics 193 (2011) 229–243.
[12] J.S. Duan, R. Rach, D. Buleanu, A.M. Wazwaz, A review of the Adomian decomposition method and its applications to fractional differential equations,

Commun. Fract. Calc. 3 (2012) 73–99.
[13] J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng. 167 (1998)

57–68.
[14] J.H. He, Variational iteration method – a kind of non-linear analytical technique: some examples, Int. J. Non-Linear Mech. 34 (1999) 699–708.
[15] S. Abbasbandy, An approximation solution of a nonlinear equation with Riemann–Liouville’s fractional derivatives by He’s variational iteration

method, J. Comput. Appl. Math. 207 (2007) 53–58.
[16] S. Momani, Z. Odibat, Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A 355 (2006) 271–279.
[17] M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration

method, J. Math. Anal. Appl. 345 (2008) 476–484.
[18] M.R. Yulita, M.S.M. Noorani, I. Hashim, Variational iteration method for fractional heat- and wave-like equations, Nonlinear Anal. Real World Appl. 10

(2009) 1854–1869.
[19] Y. Nawaz, Variational iteration method and homotopy perturbation method for fourth-order fractional integro–differential equations, Comput. Math.

Appl. 61 (2011) 2330–2341.
[20] M.G. Sakar, F. Erdogan, A. Yildirim, Variational iteration method for the time-fractional Fornberg–Whitham equation, Comput. Math. Appl. 63 (2012)

1382–1388.
[21] I. Podlubny, Fractional Differential Equations, Academic press, San Diego, 1999.
[22] L. Debnath, D. Bhatta, Integral Transforms and their Applications, Chapman & Hall/CRC, 2006.
[23] H. Sheng, Y. Li, Y.Q. Chen, Application of numerical inverse Laplace transform algorithms in fractional calculus, J. Franklin Inst. 348 (2011) 315–330.
[24] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals 7 (1996) 1461–1477.
[25] J.H. He, X.H. Wu, Variational iteration method: new development and applications, Comput. Math. Appl. 54 (2007) 881–894.
[26] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition using Differential Operators of Caputo type,

Springer, 2010.
[27] M.D. Ruiz-Medina, J.M. Angulo, V.V. Anh, Scaling limit solution of a fractional Burgers equation, Stochastic Process. Appl. 93 (2001) 285–300.
[28] T. Hayat, M. Khan, S. Asghar, On the MHD flow of fractional generalized Burgers’ fluid with modified Darcy’s law, Acta. Mech. Sin. 23 (2007) 257–261.
[29] C. Xue, J. Nie, W. Tan, An exact solution of start-up flow for the fractional generalized Burgers’ fluid in a porous half-space, Nonlinear Anal.-Theory

Methods Appl. 69 (2008) 2086–2094.
[30] M. Khan, S.H. Ali, H. Qi, On accelerated flows of a viscoelastic fluid with the fractional Burgers’ model, Nonlinear Anal.-Real World Appl. 10 (2009)

2286–2296.
[31] S.H.A.M. Shah, Some helical flows of a Burgers’ fluid with fractional derivative, Meccanica 45 (2010) 143–151.
[32] Y. Chen, H.L. An, Numerical solutions of coupled Burgers equations with time-and space-fractional derivatives, Appl. Math. Comput. 200 (2008) 87–95.


	Variational iteration method for the Burgers’ flow with fractional derivatives—New Lagrange multipliers
	1 Introduction
	2 Preliminaries
	3 Some new Lagrange multipliers
	4 Approximate solutions of the Burgers’ flow with fractional derivatives
	5 Conclusions
	Acknowledgment
	References


