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In this thesis, we present the discrete fractional calculus in the frame of the Delta 

difference operator and discuss the most important properties and theorems. In order to 

solve delta fractional difference initial value problems, we discuss the Laplace transform 

related to this calculus and give the main formulas that are needed to solve such 

problems. The discrete fractional calculus in the frame of the Nabla difference operators 

and the related  Laplace transforms  are discussed and some Nabla fractional difference 

initial value problems are solved as well. 
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Tez Yöneticisi: Yrd. Doç. Dr. Dumitru BALEANU 

 

Nisan 2015, 45 sayfa 

 

 

 

Bu tezde, Delta fark operatörü çerçevesinde ayrık kesirli analiz sunulmuş ve bu 
operatörün en önemli özellikleri ve  ilgili teoremler tartışılmıştır.  Kesirli mertebeden 
başlangıç değer Delta fark denklemleri çözmek için Laplace dönüşümü ele alınmış ve 
bunun gibi problemleri  çözmek için gerekli olan temel formüller verilmiştir. Nabla fark 
operatörlü Kesirli analiz ve ilgili Laplace dönüşümü de ele alınmış ve kesirli mertebeden 
Nabla fark denklemleri için bazı başlangıç değer problemleri de çözülmüstür. 

. 
 

AnahtarKelimeler: Gamma fonksiyonu, Delta operatörü, Nabla operatörü, Kesirli 

toplam, Kesirli fark, Laplace dönüşümü, Ustel mertebe. 
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CHAPTER 1 

 

INTRODUCTION  

 

 

 The fractional calculus deals with integrals and derivatives of any real or 

complex order. This type of calculus is as old as the usual calculus. Many great scientists 

like Euler, Bernoulli, Liouville and others who were the pioneers in developing the usual 

calculus contributed also in the birth of the fractional calculus. Since that time many 

people have been working on this field to help the development and applicability to 

various areas of mathematics, physics, engineering and other sciences. And it was 

founded that the fractional calculus can be extensively used in a big number of physical 

phenomena as a strong and effective tool for mathematical modeling [1, 2, 3]. 

 Now the question is whether the discrete version of this calculus can gain this 

fame and importance arises. To the extent of our knowledge, the first article on the 

discrete fractional calculus appeared in the middle of the twentieth century by Diaz and 

Osler [4]. Then, an article by Gray and Zhang appeared in 1988 [5] followed by an 

article by Miller and Ross [6]. 

 The discovery of the theory of the time scales [7,8], a theory which is used to 

combine the continuous and the discrete calculus, started a new era because it made it 

possible for scientists to make more development in the  theory  of the discrete fractional 

calculus as many authors used the tools in this theory of the time scales to report new 

results in the discrete fractional calculus  [9-26]. 

 Similar to the continuous fractional calculus, it turned out the discrete fractional 

calculus is a remarkable tool in mathematics to describe some physical and real world 
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phenomena and applications [27, 28, 29, 30, 31, 32-59]. Since the physical phenomena 

are described by equations but methods of solving such equations are needed. Due to 

that, very significant and well known transform called the Laplace transform was 

developed not only to solve such equations, but also to help go further in the theory of 

the discrete fractional equations. 

 The main goal of this thesis is to collect all basic scattered pieces of information 

on the discrete fractional calculus and gather them in one source that help people 

working on this subject to reach all facts and results of this calculus for using one 

reference only. 

 This thesis is organized as follows: 

 In the second chapter, we discuss the main features and theorems related to the 

fractional calculus in the frame of the Delta difference operator.  

 In the third chapter, we discuss the main features and theorems related to the 

fractional calculus in the frame of the Nabla difference operator.  

 In the fourth chapter, we present the Laplace transform in the calculus of Delta 

fractional sums and fractional differences and give some examples to show how to solve 

initial value problems using this transform. 

 In the fifth chapter, the Laplace transform, used to solve initial value problems 

of Nabla fractional sums and differences is discussed and interesting results will 

obtained. 

The sixth chapter is devoted to the conclusions. 

 

 

 

 



3 
 

 

 

 

CHAPTER 2 

 

THE DELTA DISCRETE FRACTIONAL CALCULUS 

 

 Before we discuss the discrete fractional calculus, we have to introduce two 

important concepts that will be continuously used in this thesis. 

 

2.1. Gamma Function and Falling Factorial 

 

 In this subsection, we introduce the Gamma function, the falling functions and 

discuss some of their properties which are used in our work. 

 

2.1.1. Gamma function and its properties 

 

 The Gamma function was first introduced by Euler in order to generalize the 

factorial function. 

Definition 1 [35]: The Gamma function  is defined by the integral 

.          (2.1) 

It follows that the Gamma function  is well defined for  and  
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        (2.2) 

We can use to obtain 

 

 

Some fundamental properties of the Gamma function are as below [2]: 

(i.) ,                                                                                   (2.3) 

(ii.)                                                                                       (2.4) 

(iii.)                                                                         (2.5) 

(iv.) ,               (2.6) 

where  is the set of positive integers and  is the set of the non-negative 

integers. 

 

2.1.2. The Falling Factorial Function  

 

The falling factorial power (read  to the  falling) is defined as follows: 

     (2.7) 

where  and  denotes the Gamma function. 

Below are some properties of the falling factorial function. 

Theorem [35]: 

(i.)                                                                                                  (2.8) 

where  is the difference operator, 
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(ii.) , 

(iii.) , 

(iv.) . 

Proof [35]: Depending on the definition of the falling factorial, its properties and proofs 

can be shown directly as follows: 

(i.)  

 

 

 
. 

(ii.) . 

(iii.)  it comes directly from definition of falling factorial. 

(iv.)   

 

2.2. The Differences Operators  

 

Definition 2: [35] Let  be a function of a real or complex variables. The differences 

operator  is defined by:  

          (2.9) 

We introduce some properties of this operator namely; 

Theorem [39] Let  be integers 
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(i.) ,                                                                          (2.10) 

(ii.)                                                                (2.11) 

(iii.) , If c is constant,                                                          (2.12) 

(iv.) 
,                                                                                                    (2.13) 

(v.)  ,                                                                      (2.14) 

where . 

Proof [35]: The proofs of (i.), (ii.) and (iii.) are trivial. We will prove iv while v is 

proved similarly. 

 

 

 

. 

For the second equality we have: 

 

 

 

. 

Remark [35]: From the equation (2.13),we have 

. 
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Applying 

 

 

 

where  is an integer. This is known as the summation by parts formula in discrete 

calculus [35]. 

 

2.3. The Delta Fractional Sums and Differences  

 

Definition 3[35]: 

 

: 

 

where  

. 

. 

Definition 4 [11]: 

Let
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.  order fractional difference of  

. 

Definition 5 [11]: 

Let  

(i.)  fractional sum of  is given by 

, 

(ii.)  fractional difference of  is written as 

 

 

2.4. Composing Delta Fractional Sums and Differences  

 

Here we present the rules of composing a fractional sum with a fractional sum, a 

fractional difference with a fractional sum, fractional sum with fractional difference and 

a fractional difference with fractional difference. 

Theorem [11]:(Composing a Sum with a Sum) 

Let . Then  

.                                                         (2.17) 

Proof [11]: Suppose . Then for . 
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Let  and continue with 

 

 

 

 
Since  and  are arbitrary, we conclude more generally that 

 
Before considering the general composition , we first restrict  to be a 

natural number.  

Lemma [9]: Let  

 

 

. 

Theorem [9]:(Composing a Difference with Sum) 

Let . 

Then we have, 

. 

Proof [9]: Let  be given as n the statement of the theorem and let 

 . Then, we obtain: 
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. 

Theorem [11]: (Composing a Sum with a Difference)  

 

we have 

 

 

we have 

 

Proof: It can be found in [15]. 

Theorem [9]: (Composing a Difference with a Difference)  

 

 

 

Proof: The proof of this theorem can be seen in [9]. 

 

2.5. Taylor Monomials and Power Rule  
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The Taylor monomials are very important when we want to find the Laplace 

transform of the discrete fractional and sums. These monomials are defined and 

developed in the time scale theory in [7].   

The Taylor Monomials related to delta difference theory are defined recursively as 

                                                                  (2.18) 

For the specific domain , the Taylor Monomials can be written explicitly as  

                                                                      (2.19) 

In general we can write  

                                                                        (2.20) 

where the above generalized falling functions is given by: 

 

Here, we take the convention that  whenever  This generalized 

falling function allows us to extend (2.18) to define a general Taylor Monomial that will 

serve us well in the discrete fractional calculus setting. 
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CHAPTER 3 

 

THE NABLA DISCRETE FRACTIONAL CALCULUS 

 

In this chapter we discuss the fractional discrete calculus in the frame of the 

Nabla difference. Before start the discussion let us introduce the Nabla difference 

operator. 

 

3.1 Nabla Difference Operators 

 

Definition 1[14]: For any function  we define the backward operator,  by 

.                                                                    (3.1) 

The higher order difference is defined by  

. 

Moreover, we consider  the identity operator. 

Theorem [15]:(Fundamental Theorem of Nabla Calculus) 

 

 



13 
 

                                                                  (3.2) 

Proof [15]:   

The Nabla product rules for two functions  and  is given 

by 

, where  . 

This immediately leads to the summation by parts formula for Nabla calculus: 

 

Below we define the rising function which plays an important role in the theory of the 

Nabla fractional calculus. For  the rising factorial function is defined by 

. 

This definition can be generalized as follows by using the gamma function as follows: 

Definition 2 [15]:  

,                                                                                                                 (3.3) 

of  where the right side is well defined. Moreover, if  

. 

     We observe the following regarding the rising factorial function: 

Theorem [15]: 

(i.)                                                                                      (3.4) 

(ii.) ,                                                                              (3.5) 
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(iii.) ,                                                      (3.6) 

Proof: It can proved directly using the definition of Rising Factorial. 

 

3.2 Nabla Fractional Sums and Differences  

 

Here we define the fractional discrete fractional sums and differences within the Nabla 

operator. 

Definition 3 [15]: 

 

                                                                   (3.7) 

Next we define the fractional difference in terms of a fractional sum. 

Definition 4[15]: 

 

 

                                                                           (3.8) 

 

3.3 Fractional Taylor Monomials  

 

 Here, we define the fractional Taylor monomials, which will help us solving 

initial value problems for Nabla fractional equations.  

Definition 5 [15]:  
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                                                                           (3.9) 

It is well known that this implies that 

 

The generalization is given below. 

Definition 6 [15]: (Fractional Order Taylor Monomials) 

 

                                                                                          (3.10) 

Now we can apply the fractional power rule in the following theorem. 

Theorem [16]: : 

                                                                                             (3.11) 

 

 

. 

Proof [15]: 

 

 . 

The next Lemma relates two Taylor monomials based at values that differ by one. 
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Lemma [15]: (One Step Taylor Monomial Shifting) 

 

.                                                                             (3.12) 

Proof [15]: Let us consider: 

 

 

 

 

The previous theorem can be extended to the following general formula. 

Theorem [15]: (General Taylor Monomial Shifting) 

 

 

Proof: The proof is by induction on . The base case, , follows from the previous 

Lemma. Assume that: 

 

From the previous Lemma we obtain 

. 
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Applying the induction hypothesis to both terms on the right side of this equation gives 

 

 

 

 

 

 

 

 

3.4  Composition Rules 

 

 Here we present the rules of composing a fractional sum with a fractional sum, a 

fractional difference with a fractional sum, fractional sum with fractional difference and 

a fractional difference with fractional difference. 

Theorem [13]: (Nabla Sum Composed with a Nabla Sum)  

: 
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.                                                                                       (3.13) 

Proof [13]: We will use the definition of the Laplace transformation which will be 

discussed later: 

 

Because the Laplace transform is unique we have: 

. 

 Now we will first consider the case of whole order differences composed with 

fractional sums and fractional differences. 

Lemma [13]: (Whole Order Differences Composed with Fractional Sums and 

Differences) 

 

,                                                                                           (3.14) 

and 

                                                                                             (3.15) 

Proof [13]: 

, and choose  such that  be given. 

Case 1: . 

First note the following: 
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So, then, for the case of  we have  

 

 

 

. . . 

. 

This shows for this particular case. 

Case 2: Let  

First we will show that . 

We have 

 

 

 

. 

So for any , 
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Theorem [15]: (Nabla Differences Composed with a Nabla Sum) 

For , we have .                                                       (3.16) 

Proof [15]:  be given, and  such that .  

Then, we have: 

 

          

Theorem [14]: (Nabla Sum Composed with a Whole Order Nabla Difference) 

 

      (3.17) 

Proof [14]: 

Let  be given and suppose  . We first state the following 

identity which follows from the product rule for the Nabla operator: 

 

Then we have 
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Continuing in this manner and summing by parts  more times yields 

 

Theorem [15]:(Nabla Difference Composed with a Whole Order Nabla Difference)  

 

                  (3. 18) 

Proof [15]: Consider 
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Taking the difference inside the summation  more times, we get 
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CHAPTER 4 

 

DELTA FRACTIONAL LAPLACE TRANSFORM 

 

4.1 Definitions  

 

Definition 1[11]: The Laplace transform of a function ,   can be written as 

 

for each for which the above series converges.  

Definition 2 [11]: We say that a function is of exponential order  if 

there exists a constant  such that 

                                                      (4.2) 

Suppose that a given function is of some exponential order . Then 

there exist a constant  and a natural number  such that for each 

. We have . We may write, therefore, for any outside of 

the ball  
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Lemma 1 [11]: (Existence of the Laplace Transform)  

Suppose   are of exponential order . Then  

. 

Lemma 2 [11]: (Linearity and Uniqueness of the Laplace Transform)  

.  

Then  

 

and 

. 

The relation between the shifted Laplace transform and the original one is important 

when solving difference equation. This is explained d in the upcoming Lemma. 

Lemma 3 [11]: (Shifting Property) 

 Let  
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Proof [11]: Let 

 

 

 

 

 

and 
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Now, one can easily verify that by applying formulas consecutively yields the identity  

 

 

4.2 The convolution 

 

In the following, we define the convolution of two functions [7]. 

Definition 3 [11]:  

 

The following Lemma gives the Laplace transform of the convolution of two functions. 

Lemma [11]: (The Laplace Transform of the Convolution)  

 

 

Proof [11]: Let  and  be as in the statement of the Lemma. Then 
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where by applying the change of variables  yields the two independent 

summations: 

 

 

Corollary 1 [11]: Suppose that  is of exponential order  and let  

be given, with  Then  

 

both exist for  .  

Proof [11]: Let f, r and v be as given in the statement of the corollary. By Lemma 2, we 

know that for each , both  and   are of exponential order . Now, fix 

an arbitrary point . Since , there exists an  small 

enough so that . Since  and  are both exponential order , it 

follows that both series   and    converges at 

. 

  

4.3 The Laplace Transform of Fractional Operators 

 

Below we discuss the Laplace transforms of the delta fractional sums and differences. 

Theorem [11]: (The Laplace Transform of a Delta Fractional Sum)  
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is  

 

                                                                                  (4.6) 

and 

                                                                       

(4.7) 

Proof [11]:  and  be as given in the statement of the theorem. Note that 

though we assume  is of exponential order , it does hold that  is of exponential 

order  is of exponential order 1. 

Therefore, the assumption  is not for excluding functions of exponential order 

, but rather for insuring that the previous Lemma applied below, will hold 

whenever . 

We have 

 

 

Taking the  zeros of  into account. Moreover, we conclude that 
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By using the Laplace transform of the convolution, we have  

 

 

Thus proving (4.6) we obtain (4.7) as consequence  

 

 

Theorem [11]: (Laplace of Difference) 

. Then for s , 
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Proof [11]: Let  and  be as given in the statement of the theorem. We already 

know that (4.8) holds when . If , on the other hand, then 

 and we may apply (4.7) and composition rule in succession as follows: 

 

 

 

 

Theorem [11]: We may certainly compose the results from the previous theorem. In 

particular, observe that under the same assumption as in these two theorems, we have for 

 

 

 

 

. 

Proof [11]: The proof is similar to the proof of the previous theorem.  

 

4.4 A Power Rule and Composition Rule 
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 In this subsection we prove the power rule and composition rule using the 

Laplace transform. 

Theorem [11]: (Power rule)   

 we have 

                                                          (4.9) 

Proof [11]: With the previous Remark in hand, we have for , 

 

 

 

 

 

 

By the one-to-one property of the Laplace transform, it follows that 

 

Theorem [7]: (Composition of a Fractional Sum with a Fractional Sum) 
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Suppose that  is of exponential order  and let  be given. Then 

for  

. 

Proof [7]: Let  and  be as given in the statement of the theorem. It follows from 

the Corollary 1 that 

 

all exist on . Therefore, we may apply (4.6) multiple times to write for , 

 

 

 

. 

The result then follows from symmetry and the one-to-one property of the Laplace 

transform. 

 

4.5 A Fractional Initial Value Problem 

 

 By the far most substantial of the Laplace transform is presented in theorem 

below. Note that the fractional initial value problem solved below by the fractional 

Laplace transform method is identical to problem solved in previous chapter using the 

fractional composition rules. 
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Theorem [11]: Suppose  is of exponential order  and let  be given 

with . The unique solution to the fractional initial value problem 

 

is given by 

 

where  

 

. 

Proof: The proof  is presented in [11]. 
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CHAPTER 5 

 

NABLA FRACTIONAL LAPLACE TRANSFORM 

 

 The Laplace transform of the Nabla fractional discrete calculus is similar that 

one of the Delta fractional discrete calculus. But all the results in here look easier to be 

obtained when this transform is performed. 

 

5.1 Definitions and Properties 

 

Definition 1 [13]:For a function  we define the Laplace transform 

of  by 

 

or in its sum form  

 

which is easily verified using the techniques explained in time scales books.  

The linearity of this transform follows from its definition. However, we still need to 

discuss the uniqueness and existence of such transform.  
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Definition 2 [15]: A function  is said to be exponential order  if there exist a 

constant  and a number   such that  for all . 

Theorem (Existence of the Laplace Transform) [16]: The Laplace transform of any 

function of exponential order  exists for . 

Proof [15]: Let  be a functional of exponential order , so there are constants  

and  such that  for all . Fix an integer  such that it 

is both greater than one and greater than , so . Then for all , we 

have that 

 

Multiply both sides by  and taking the sum from  to infinity, it follows 

that for , 

 

 

It follows that  converges absolutely for . 

Theorem [13]: (Uniqueness of the Laplace Transform). 

. 

Proof [13]: The backward direction is trivial. Now we consider the forward direction. 

Assume that . This means that  Let 

, shift the index of the sum down by 1 and let . So now we 

have . Suppose for a contradiction that there is an integer  such that 
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and without loss of generality, suppose  is the smallest such integer. Since 

, then  for all . By definition of , it follows that . 

However, this implies that , which is a contradiction. We therefore have that 

 for all , so .  

Theorem [13]:(Laplace Transform of Taylor Monomials with Integer Index) 

For all non-negative integers n, we have  

                                                                    (5.3) 

Proof [13]: The proof is by induction on . By definition , so  

 for  

Suppose now that  for some  and  

for  Then, consider . We will 

apply the integration by parts formula (1) with , 

. It then follows that  and it can be shown that 

  is a (Nabla) antidifference of . This means that  

 

 

Evaluating the first terms as , given the assumption that , it means that 

the term goes to zero. Likewise, it is easy to show that  for all , thus 

we have that   completing the proof. 
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Now we present the Laplace transform the factional order Nabla Taylor monomials. 

Theorem [13]: (Laplace Transform of Taylor Monomials with Non-Integer Index) 

For  

                                                                     (5.4) 

Proof [13]: 

We have 

 

 

 

 

 

 

5.2 The Convolution of Two Functions 

 

 In order to find the Laplace transform of the Nabla fractional sums and 

differences we have to define the convolution of two functions in the frame of Nabla 

discrete calculus. 
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Definition 3 [13]:  and all  

 

 

Theorem [13]: (Fractional Sum as Convolution)  

then 

                                                                                     (5.6) 

Proof [13]: 

We have 

 

 

Theorem [13]: (Convolution Theorem) 

      (5.7) 

Proof [13]: 
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5.3 The Laplace Transforms of Nabla Fractional Sums and Differences  

 

In order to be able to solve initial value problems for Nabla fractional difference 

equations we need to extend the properties of the Laplace transfom. So that it contains 

The Laplace transforms of Nabla fractional sums and differences. 

Theorem [13]: (Transformation of Fractional Sums) 

 

                                                                                      (5.8) 

Proof [13]: 

 

 

We want to establish similar properties of fractional differences; however, we must first 

establish integer-order difference properties. In order to do this, we need to find the 

Laplace transforms of the Nabla difference of integer orders.. 

Theorem [15]: (Transform of Nabla Difference) 

 

                                                                (5.9) 
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Proof [15]: 

 

 

 

 

 

 

Theorem [13]: (The Laplace Transform of Fractional Differences) 

 

Proof [13]: The results follow from induction on  with the previous theorem as a base 

case. The inductive step is omitted. Then, we want to find the Laplace transform of a  

order difference where  First, however, a useful lemma will be necessary. 

Lemma [13]: (Shifting Rule) 

Given , we have 

. 

Proof [13]: 
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The desired results follows from this form. 

With this, we are ready to provide the general from of the Laplace transform of a  

order,  fractional order difference. 

Theorem [13]: Given   and  then for  we have  

. 

Proof [13]: Consider the following: 

 

. 

We observe that 

 

therefore, we obtain: 

. 

 

5.4 Generalized Power Rule 
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Theorem [13]: (Generalized Power Rule) 

 

 

(i.) 

, 

(ii.) 

 

Proof [13]: We will first establish the result for (i.), after which (ii.) will follow. 

Consider the following: 

 

. 

By definiton 3 and the linearity of the Laplace transform, (i.) holds for . 

Obderving that for  and stated equality holds, hence (i.) follows for all . 

Now for (ii.), choose  such that  and consider the following: 

 

 

5.5 Solutions to Initial Value Problems 

 

  We now will consider a general -order fractional nabla initial-value problem 

and give a formula for its solution when, . Then, the fractional initial value 

problem. 
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, 

, 

has the unique solution 

 

Proof [15]: Taking the Laplace transform (based at ) of both sides of 

, we have 

 

Expanding this out, we get: 

 

. 

Now, we substitute  and , where  

. 

Also, note (by Lemma 2) that: 

 

and 

. 
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. 

Next, we combine all terms with respect to  and  with common denominator of 

. 

 

. 

We now rearrange the terms and solve for the Laplace transform of  . 

. 

Finally, we take the inverse Laplace transform to get the desired result 

 

. 

Next, we look at the non-homogenous equation with zero initial conditions. 

Theorem [15]: Let . Then, for , the fractional 

initial value problem: 

 

 

 

has the solution: 
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Proof [15]: We take the Laplace transform based at  of both sides of the equation. 

 

Next, we use the Corollary 1 on the left hand side and the Laplace transform shifting 

theorem on the right hand side of the equation. We have 

. 

Now, we plug in . Also, all of the fractional sums and and 

. Thus, we can plug in zero for them as well. 

. 

Next, we solve for the Laplace transform of  to get 

 

. 

Finally, we take the inverse Laplace transform and note that  

 to get: 
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CHAPTER 6 

 

CONCLUSION 

 

 The fractional calculus is a field of applied mathematics that studies the 

integration and differentiation of functions of any order. And it turned out that this 

calculus is a strong tool that can be used when scientists want to mathematically model 

physical phenomena happening in our real world. 

 Fractional calculus has a discrete version. The question is whether the discrete 

version of this calculus will also have its role in the mathematical modeling. Indeed, 

many papers have reported that the discretized fractional calculus is significant in 

mathematical modeling as well ( see for example Refs.[30-33] and the references 

therein). 

In this thesis, we discussed the discrete fractional calculus in the frame of two 

operators which are the forward operator (Delta) and the backward operator (Nabla). 

Even though they are similar in a sense, each of this calculus has its advantage and is 

superior to the other in other senses.  

Due to need of a method to solve fractional difference equations, we discussed 

the Laplace transform in both frames, the Delta and the Nabla operators. 

This thesis can be considered as a survey on discrete fractional calculus and the 

discrete fractional Laplace transform. And we hope that this thesis will be a useful 

reference for the next generation of young mathematicians in case they want to work on 

discrete fractional difference equations. 
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