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a b s t r a c t

Nowadays, the conventional Euclidean models are mostly used to describe the behavior of
fluid flow through porous media. These models assume the homogeneity of the reservoir,
and in naturally fractured reservoir, the fractures are distributed uniformly and use the
interconnected fractures assumption. However, several cases such as core, log, outcrop
data, production behavior of reservoirs, and the dynamic behavior of reservoirs indicate
that the reservoirs have a different behavior other than these assumptions in most cases.
According to the fractal theory and the concept of fractional derivative, a generalized dif-
fusion equation is presented to analyze the transport in fractal reservoirs. Three outer
boundary conditions are investigated. Using exact analytical or semi-analytical solutions
for generalized diffusion equation with fractional order differential equation and a fractal
physical form, under the usual assumptions, requires large amounts of computation time
and may produce inaccurate and fake results for some combinations of parameters.
Because of fractionality, fractal shape, and therefore the existence of infinite series, large
computation times occur, which is sometimes slowly convergent. This paper provides a
computationally efficient and accurate method via differential quadrature (DQ) and gener-
alized integral quadrature (GIQ) analyses of diffusion equation to overcome these difficul-
ties. The presented method would overcome the imperfections in boundary conditions’
implementations of second-order partial differential equation (PDE) encountered in such
problems.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The 60% of the remaining oil in the world is found in carbonate reservoirs. Carbonate reservoirs specifically include
heterogeneous natural fractures on a wide range of spatial scales. These types of reservoirs that are heterogeneous cannot
be easily described and the paths of flow are unpredictable. In spite of these complexities, the pressure transient models
are developed under the assumption of standard geometry and homogeneity behavior, which are not realistic in most cases
ineering,
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Nomenclature

AðmÞik weighing coefficient of the mth-order derivative of pD with respect to rD

�AðnÞjk weighing coefficient of the nth-order derivative of pD with respect to tD

B oil formation volume factor, RB/STB [L3/L3]
cij

k weighing coefficient of the integral of pD with respect to tD

ct total isothermal compressibility factor, psi�1 [Lt2/m]
d fractal topological dimension
h net formation thickness, ft [L]
k reservoir rock permeability, md [L2]
M number of grids points in tD direction
N number of grids points in rD direction
pi initial reservoir pressure, psi [m/(Lt2)]
pD dimensionless pressure
pwf wellbore flowing pressure, psi [m/(Lt2)]
q flow rate, STB/D [L3/t]
r distance from the center of wellbore, ft [L]
rD dimensionless radius
rDi ith dimensionless grid point in rD direction
reD dimensionless external radius
rw wellbore radius, ft [L]
tD dimensionless time
tDi ith dimensionless grid point in tD direction
vr radial velocity, ft/s [L/t]
h fractal dynamical index
l oil viscosity, cp [m/(Lt)]
q oil density, lbm/ft3 (m/L3)
/ porosity of reservoir rock
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[1–9]. One of the aspects of the geometrical complexity is that flow distribution is affected by the distribution of fractures
most of the times. There may be some regions in the reservoir with a group of fractures whereas the reservoir does not con-
tain fractures. The different scale of fractures shows an uncertainty relevant element in developing the mathematical model
of reservoir. Thus, according to these high complexities, the weakness of the Euclidean models is clear in most cases. Alter-
natively, fractal geometry provides an appropriate approach to explain and model the complex fractured reservoirs [9,10].

Chang and Yortsos [11] were the first scholars who presented a mathematical model to describe the pressure behavior of
transport in fractally fractured reservoirs. They also obtained the analytical results, which showed that a fractal reservoir can
be identified by a log–log straight line with the slope equal to a function of the fractal topological dimension and the fractal
dynamical index. Beier [12] and Aprilian [13] applied fractal reservoir model to analyze well test data for complex reservoirs
which could not be matched by traditional model, and the results were consistent with field practice. Poon [14] extended the
concept of fractal distribution to find out the effect of a composite reservoir. He et al. [15] established a fractal model for
unsteady-state flow in double-porosity and permeability reservoirs based on Warren and Root [16] model, and solved it
by the Correction Prediction method. Meanwhile, they analyzed pressure performances and their effect on different factors.
On the basis of Warren and Root model, Zhang et al. [17], set up a model for deformed double-porosity fractal gas reservoirs
by introducing fractal parameters and compressibility factors. They solved this model by finite element method with con-
sideration of secondary boundary conditions, plotting the results into type curves. To consider threshold pressure gradient
in low permeability reservoir and gradual pressure propagation in the formation, Hou and Tong [18] established the non-
Darcy flow model for deformed double-porosity media [19]. The production of oil from fractally fractured systems indicates
that the system has an anomalous behavior, which cannot be modeled by the classical diffusion equation. Since the history of
flow is pivotal in all stages of production, the fractional derivative can be used as an appropriate approach to consider the
history of flow in the mathematical model [20].

Since most analytical, semi-analytical, and numerical methods are slowly convergent and may produce inaccurate results
to differential equations, Bellman et al. [21] introduced another numerical method that gives acceptable accurate results
using small number of grid points [22–26] This alternative method was called differential quadrature method (DQM) and
was further developed by Bellman and Roth [27]. The double-porosity reservoirs were discussed in Ref [9], and the response
of these reservoirs assuming fractal structure was analyzed. A model was developed for analysis of double-porosity reser-
voirs where it was passed up the effect of fractal topological dimension (d), which was assumed to be equal to Euclidean
dimension (D). The mathematical model was analyzed by using the Laplace transform.

This paper establishes the solution of generalized diffusion equation for single-porosity naturally fractured reservoirs
based on a new application of DQM and generalized integral quadrature (GIQ). The method weighting coefficients are not
exclusive and any methods that can be used in conventional DQM for evaluation of the weighting coefficients, such as
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the generalized differential quadrature method (GDQM) which is claimed to be most computationally efficient and accurate
[1], may be employed. Recall that three main types of reservoirs exist in petroleum engineering including infinite reservoir,
bounded circular reservoir, and circular reservoir with constant pressure outer boundary, which are represented mathemat-
ically by three different outer boundary conditions. To prove the versatility of the presented approach, we investigated these
three different outer boundary conditions.

The organization of this paper is as follows. Section 2 provides some preliminaries including the necessary definitions of
fractional calculus and the necessary relations of DQ and GIQ methods. The fractal diffusion equation and generalized diffu-
sion equation are discussed in Section 3. Section 4 presents the results of DQ and GIQ methods and their advantages in linear
partial differential equations (PDEs). Our conclusions can be seen in Section 5.

2. Preliminaries

In this section, two preliminaries are presented, namely, fractional calculus and the differential quadrature method.

2.1. Basic definitions

There are various definitions for fractional order operator, and each of them has its unique prominent feature. For engi-
neering applications, the Riemann–Liouville fractional order integral is the most applied operator for integration, which is
defined as follows:
aD�c
tD

pDðtDÞ :¼ 1
CðcÞ

Z tD

a
ðtD � sÞc�1pDðsÞds; c 2 Rþ; ð1Þ
in which CðcÞ ¼
R1

0 e�zzc�1dz; c > 0 is the Gamma function.
On the other hand, from an engineering view point, there are two operators for fractional order differentiations [28]:

1. Riemann–Liouville (RL) fractional order derivative for m � 1 < c < m e Z+:
a
RLDc

tD
pDðtDÞ :¼ Dm

aD�ðm�cÞ
tD

pDðtDÞ ¼
1

Cðm� cÞ
dm

dtm

Z tD

a
ðtD � sÞm�c�1pDðsÞds: ð2Þ
2. Caputo (C) fractional order derivative for m � 1 < c < m e Z+:
CDc
tD

pDðtDÞ :¼ a
RLD�ðm�cÞ

tD
DmpDðtDÞ ¼

1
Cðm� cÞ

Z tD

a
ðtD � sÞm�c�1pðmÞD ðsÞds: ð3Þ
2.2. The differential quadrature method

We recall that by using the DQM, the nth derivative of the function pD(rD, tD) at point rDi and the mth derivative of the
function pD(rD, tD) at point tDj are approximated as:
pðnÞðDrDÞðrDi; tDjÞ ¼
XN

k¼1

AðnÞik pDðrDk; tDjÞ; ð4Þ

pðmÞðDtDÞðrDi; tDjÞ ¼
XM

k¼1

�AðmÞjk pDðrDi; tDkÞ; ð5Þ
respectively, where AðnÞik and AðmÞjk are the weighting coefficients associated with the nth- and mth- order derivatives of pD with
respect to rD and tD, respectively. The number of grid points in the rD direction and tD direction are represented by N and M,
respectively.

The weighting coefficients in our analysis are evaluated by GDQM. In this method, the weighting coefficients for evalu-
ating derivatives of a function may be obtained directly, irrespective of the number and position of the grid points from an
explicit formula [8]. These coefficients for the first-order derivatives are given by
Að1Þij ¼

Pð1ÞðrDiÞ
ðrDi�rDjÞPð1ÞðrDjÞ

j – i

�
XN

j¼1;j–i

Að1Þij

8>>><
>>>:

; ð6Þ
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for i; j ¼ 1;2; . . . ;N
�Að1Þij ¼

Q ð1ÞðtDiÞ
ðtDi�tDjÞQ ð1ÞðtDjÞ

j – i

�
XM

j¼1;j–i

�Að1Þij

8>>><
>>>:

; ð7Þ
for i; j ¼ 1;2; . . . ;M
where
Pð1ÞðrDiÞ ¼
YN

j¼1;j–i

ðrDi � rDjÞ; ð8Þ
and
Q ð1ÞðtDiÞ ¼
YM

j¼1;j–i

ðtDi � tDjÞ: ð9Þ
Now, the weighting coefficients of higher order derivatives can be obtained from the following recursive formulas:
AðnÞij ¼
n Að1Þij Aðn�1Þ

ii �
Aðn�1Þ

ij

rDi�rDj

� �
j – i

�
XN

j¼1;j–i

AðnÞij

8>>>><
>>>>:

; ð10Þ
for n ¼ 2;3; . . . ;N � 1; i; j ¼ 1;2; . . . ;N
�AðmÞij ¼
m �Að1Þij

�Aðm�1Þ
ii �

�Aðm�1Þ
ij

tDi�tDj

� �
j – i

�
XM

j¼1;j–i

�AðmÞij

8>>>><
>>>>:

; ð11Þ
for m ¼ 2;3; . . . ;M � 1; i; j ¼ 1;2; . . . ;M
Equally spaced points as a convenient choice are often chosen for the grid points. Another kind of grid points are

unequally spaced grid points which give more accurate results [8]. A well accepted and practical set of grid points is the
cosine-type (or the Gauss–Lobatto–Chebyshev) points given by
rDi ¼
1
2

1� cos
ði� 1Þp

N � 1

� �
; ð12Þ

tDi ¼
1
2

1� cos
ði� 1Þp
M � 1

� �
; ð13Þ
in the rD direction and tD direction, respectively.
In this study, weighting coefficients are evaluated by GDQM in conjunction with unequally spaced grid points [29,30].
As a general case for GIQ, the integral of pD(rD, tD) over a part of the whole domain is approximated by a linear combina-

tion of all the functional values in the overall domain, namely, with the form
Z tDj

tDi

pDðrDi; tDÞdtD ¼
XM

k¼1

cij
kpDðrDl; tDkÞ; ð14Þ
where tDi and tDj are the coordinates that can be altered. The cij
k coefficients are given by cij

k ¼ wjk �wik, where wjk and wik are
the elements of the matrix W. This matrix is obtained by reversing of another matrix A with the following elements:
aij ¼
tDi � c
tDj � c

xð1Þij ; ð15Þ
when j – i
aii ¼ xð1Þii þ
1

tDi � c
; ð16Þ
where xð1Þij is the weighting coefficient, which was used to calculate the first-order derivative in DQM. It should be noted that
c must be considered a point other than the given grid points tDi and tDj [31].
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3. Problem statement and theory development

In spite of all the heterogeneous models, which are considered in the literature, the double-porosity reservoirs have been
the most frequently discussed. They assume the existence of two distinct porous media regions within the formation. These
two regions include the fissure system, with low storativity and high permeability, and the matrix blocks, with high storativ-
ity and low permeability. The main assumptions that are considered to develop a mathematical model are:

(1) The fissure system is assumed to be uniformly distributed throughout the reservoir.
(2) The matrix is not produced directly into the wellbore, but only into the fissures.
(3) Only the fissure system provides the total mobility, but the matrix blocks supply most of the storage capacity.

The first assumption may be violated in a real double-porosity system, and consequently the fluid flow can have a differ-
ent behavior. Fractal geometry can be used as a useful and effective tool to analyze and model the effect of heterogeneities in
disordered fractured media. For a naturally fractured reservoir (double porosity), when the matrix does not participate in the
production (single porosity and single permeability), many approaches have been proposed to derive an appropriate diffu-
sion equation for analyzing the behavior of these reservoirs. Basically, there are two equations to analyze these reservoirs.

3.1. Fractal diffusion equation: classical approaches

The main assumptions of the model include: (1) d-dimensional fractal flowing grids in two-dimensional Euclidean non-
permeable rock and full penetration of the wellbore into reservoir with thickness of h and under radial flow; (2) a single well
with single-phase and slightly compressible reservoir fluid of density q; and (3) ignore the effect of gravity and threshold
pressure gradient [19].

Before deriving differential equation for fluid flow in a porous medium, the following dimensionless variables should be
introduced [9]:
pD ¼
2pkwhðpi � pÞ

ql
; rD ¼

r
rw
; tD ¼

kwt
/wlctr2

w
;

where p and pi are reservoir pressure and initial reservoir pressure, respectively. kw, h, q, and l denote wellbore permeability,
formation thickness, flow rate, and viscosity, respectively. r and rw are radial distance and wellbore radius, respectively. t, /w,
and ct represent time, wellbore porosity, and total compressibility, respectively.

According to fractal theory [32], permeability and porosity of the system is
kðrÞ ¼ kw
r

rw

� �d�h�2

; ð17Þ

/ðrÞ ¼ /w
r

rw

� �d�2

; ð18Þ
where d is the fractal topological dimension and h is the dynamical fractal dimension that is related to the dynamic property
of diffusion.

Continuity equation for fluid flow is
1
r
@

@r
ðrqv rðrÞÞ ¼ �

@

@t
ð/ðrÞqÞ: ð19Þ
Darcy’s law becomes:
v rðrÞ ¼ �
kðrÞ
l

@p
@r
: ð20Þ
Combining Eqs. (17)–(20) yields the diffusion equation for flow through fractal porous media
@2p
@r2 þ

d� h� 1
r

@p
@r
¼ r

rw

� �h l/wct

kw

@p
@t
; ð21Þ
or
1
rd�h�1

@

@r
rd�h�1 @p

@r

� �
¼ r

rw

� �h l/wct

kw

@p
@t
; ð22Þ
where
cl ¼
1
q
@q
@p

; c/ ¼
1
/
@/
@p

and ct ¼ cl þ c/:
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The dimensionless forms of Eqs. (21) and (22) can be written as:
1
rh

D

@2pD

@r2
D

þ d� h� 1
rhþ1

D

@pD

@rD
¼ @pD

@tD
; ð23Þ
or
1
rd�1

D

@

@rD
rd�h�1

D
@pD

@rD

� �
¼ @pD

@tD
; ð24Þ
respectively.
The initial pressure distribution is assumed uniform everywhere pD(rD, 0) = 0. The inner boundary condition without well-

bore storage and skin effect is ðrðd�h�1Þ
D @pD=@rDÞrD¼1 ¼ 1 or equivalently ð@pD=@rDÞrD¼1 ¼ 1. It should be noted that the inner

boundary condition can be written as ð@pD=@rDÞrD¼1 ¼ �1, if the positive direction inverses. The outer boundary conditions
are lim

rD!1
pDðrD; tDÞ ¼ 0, ð@pD=@rDÞrD¼reD

¼ 0 and pD(reD, tD) = 0 for infinite reservoirs, bounded circular reservoirs, and circular

reservoirs with constant pressure outer boundary, respectively.
Both the single porosity reservoir and the corresponding diffusion equation have been presented by O’Shaughnessy and

Procaccia [33] and Chang and Yortsos [11], respectively. This expression should be abbreviated as the OP equation. For this
case, gaskets, such as the Sierpinski gasket, are characterized in d dimensions by [33] d ¼ lnðDþ1Þ

ln 2 and h = ln (D + 3)/ ln 2 � 2,
where D is Euclidean dimension [8].

3.2. Generalized diffusion equation: Fractional calculus approach

As Velázquez et al. [8] stated, the fractal reservoirs cannot be fully described by the OP equation because the diffusion
process of these reservoirs is history dependent. In fractally fractured reservoirs, the history of flow has an important role
in all stages of production. Including a temporal fractional derivative, Metzler et al. [20] proposed a mathematical model that
generalizes the OP equation:
1
rh

D

@2pD

@r2
D

þ d� h� 1
rhþ1

D

@pD

@rD
¼ @

cpD

@tc
D

; ð25Þ
where c = 2/(2 + h), and @cpD=@tc
D is given by the Caputo derivative. So, 0 < c 6 1. This equation reduces to the OP equation

(Barker 1988) when c = 1 and to the traditional Euclidean diffusion equation when c = 1, h = 0 and d = 2. This equation has
been developed under the assumption that all fluid diffuses between backbone fractures and the fractal fracture loops only
(i.e. the matrix is not participating). Eq. (25) may also be called the fractally fractional diffusion (FFD) equation [9]. It should
be noted that Eq. (25) is given to describe the pressure behavior of single porosity reservoirs, while in Ref [9], two equations
were developed together for the analysis of the pressure behavior in double-porosity reservoirs.

4. Results and discussion

There are several exterior boundary conditions to solve generalized diffusion equation numerically. As mentioned in
Section 3.1, we provide the solution of three cases as given below.

4.1. Infinite reservoir case

For infinite reservoir, for purposes of convenience during numerical computations, rD is normalized by
RD ¼ 1� expð1� rDÞ: ð26Þ
Using Eq. (26), Eq. (25) can be transformed to
ð1� RDÞ2

ð1� lnð1� RDÞÞh
@2pD

@R2
D

þ ð1� RDÞðd� h� 2þ lnð1� RDÞÞ
ð1� lnð1� RDÞÞhþ1

@pD

@RD
¼ @

cpD

@tc
D

: ð27Þ
Using DQM, the left-hand side of Eq. (27) can be discretized as follow:
I ¼ ð1� RDiÞ2

ð1� lnð1� RDiÞÞh
XN

k¼1

Að2Þik pDðRDk; tDjÞ þ
ð1� RDiÞðd� h� 2þ lnð1� RDiÞÞ

ð1� lnð1� RDiÞÞhþ1

XN

k¼1

Að1Þik pDðRDk; tDjÞ; ð28Þ
that can be written as
I ¼
XN

k¼1

uikpDðRDk; tDjÞ; ð29Þ
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where
uik ¼
ð1� RDiÞ2

ð1� lnð1� RDiÞÞh
Að2Þik þ

ð1� RDiÞðd� h� 2þ lnð1� RDiÞÞ
ð1� lnð1� RDiÞÞhþ1 Að1Þik ; ð30Þ
for i ¼ 1;2; . . . ;N and j ¼ 1;2; . . . ;M
For infinite reservoir, the following boundary conditions are given
XN

k¼1

Að1Þ1k pDðRDk; tDjÞ ¼ 1; ð31Þ

pDðRDN; tDjÞ ¼ 0; ð32Þ

for j ¼ 1;2; . . . ;M

Solving Eqs. (31) and (32) simultaneously gives
pDðRD1; tDjÞ ¼
1�

PN�1
j¼2 Að1Þ1k pDðRDk; tDjÞ

Að1Þ11

: ð33Þ
Substitution of Eq. (33) into Eq. (29) yields
I ¼ ui1

Að1Þ11

þ
XN�1

k¼2

uik �
Að1Þ1k

Að1Þ11

ui1

 !
pDðRDk; tDjÞ: ð34Þ
By the Caputo definition of differentiation, the right-hand side of Eq. (27) may be written as:
J ¼ 1
Cð1� cÞ

Z tD

0
ðtD � sÞ�cpð1ÞD ðRD; sÞds: ð35Þ
To overcome discontinuity of integrand at tD, it can be used integration by parts that gives
J ¼ 1
ð1� cÞCð1� cÞ t1�c

D pð1ÞD ðRD;0Þ þ
Z tD

0
ðtD � sÞ1�cpð2ÞD ðRD; sÞds

� �
: ð36Þ
It should be noted that 0 < c 6 1. And when c = 1, the expression (1 � c)C(1 � c) may be considered equal to 1.
Based on DQM, the discretization of Eq. (36) is as follow:
J ¼ 1
ð1� cÞCð1� cÞ t1�c

Dj

XM

l¼2

�Að1Þjl pDðRDi; tDlÞ þ
XM

l¼2

gjlpDðRDi; tDlÞ
 !

; ð37Þ
where
gjl ¼
XM

k¼1

c1j
k

�Að2Þkl ðtDj � tDkÞ1�c
: ð38Þ
The initial condition of infinite reservoir in the DQM form is
pDðRD; tDj1Þ ¼ 0; ð39Þ
which is applied in Eq. (37).
and finally, we have
J ¼
XM

l¼2

v jlpDðRDi; tDjÞ; ð40Þ
where
v jl ¼
1

ð1� cÞCð1� cÞ t1�c
Dj

�Að1Þjl þ gjl

� �
: ð41Þ
Equating Eqs. (34) and (40), a linear algebraic system of equations will be obtained that can be solved by any standard method
(direct and iterative methods) such as Gaussian elimination method (direct), LU decomposition (direct), Gauss–Seidel
(iterative) method, or successive over-relaxation (SOR) iteration (iterative).

4.2. Bounded circular reservoir case

Using DQM, the left-hand side of Eq. (25) for finite reservoirs can be expressed as:
I ¼
XN

k¼1

uikpDðrDk; tDjÞ; ð42Þ
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where
uik ¼
Að2Þik

rh
i

þ d� h� 1
rhþ1

i

Að1Þik ; ð43Þ
for i ¼ 1;2; . . . ;N and j ¼ 1;2; . . . ;M
Application of the DQ method to discretize the boundary condition of finite reservoir case gives
XN

k¼1

Að1Þ1k pDðrDk; tDjÞ ¼ 1; ð44Þ

XN

k¼1

Að1ÞNk pDðrDk; tDjÞ ¼ 0; ð45Þ
for j ¼ 1;2; . . . ;M
From Eqs. (44) and (45), we have
pDðrD1; tDjÞ ¼
Að1ÞNN þ

PN�1
k¼2 ðA

ð1Þ
1N Að1ÞNk � Að1ÞNNAð1Þ1k ÞpDðrDk; tDjÞ

Að1Þ11 Að1ÞNN � Að1Þ1N Að1ÞN1

; ð46Þ

pDðrDN; tDjÞ ¼
�Að1ÞN1 þ

PN�1
k¼2 ðA

ð1Þ
N1Að1Þ1k � Að1Þ11 Að1ÞNk ÞpDðrDk; tDjÞ

Að1Þ11 Að1ÞNN � Að1Þ1N Að1ÞN1

: ð47Þ
Substitution of Eqs. (46) and (47) into Eq. (42) gives
I ¼ ui1Að1ÞNN � uiNAð1ÞN1

Að1Þ11 Að1ÞNN � Að1Þ1N Að1ÞN1

þ
XN�1

k¼2

uik þ ui1
Að1Þ1N Að1ÞNk � Að1ÞNNAð1Þ1k

Að1Þ11 Að1ÞNN � Að1Þ1N Að1ÞN1

þ uiN
Að1ÞN1Að1Þ1k � Að1Þ11 Að1ÞNk

Að1Þ11 Að1ÞNN � Að1Þ1N Að1ÞN1

 !
pDðrDk; tDjÞ: ð48Þ
The right-hand side of Eq. (25) can be written by Eq. (40). Again, equating Eqs. (48) and (40) yields a linear algebraic system
of equations that can be solved by some standard methods. These standard methods were mentioned in the previous case.

4.3. Constant-pressure outer boundary case

The discretization of constant-pressure outer boundary reservoirs can be expressed by Eqs. (42) and (43). The boundary
conditions of this case can be represented by Eq. (44) and the following equation:
pDðrDN; tDjÞ ¼ 0; ð49Þ
for j ¼ 1;2; . . . ;M
Substitution of Eqs. (44) and (49) into Eq. (42) gives
I ¼ ui1

Að1Þ11

þ
XN�1

k¼2

uik �
Að1Þ1k

Að1Þ11

ui1

 !
pDðrDk; tDjÞ: ð50Þ
The right-hand side of Eq. (25) can be written by Eq. (40). Similar to two previous cases, equating Eqs. (50) and (40) yields a
linear algebraic system of equations that can be solved by some standard methods.

In the above DQ discretization, the grid points are the cosine type (or the Gauss–Lobatto–Chebyshev) points given by
rDi ¼
1
2

1� cos
i� 1
N � 1

� �
p

� �
ðreD � 1Þ þ 1; ð51Þ
for bounded and constant-pressure outer boundary reservoirs, and
RDi ¼
1
2

1� cos
i� 1
N � 1

� �
p

� �
; ð52Þ
for infinite reservoirs.
Razminia et al. [22] analyzed diffusion equation using DQM and compared with the other methods. Their results show

that DQM is an accurate and stable approach for diffusion equation.
The numerical results of this method are presented in Figs. 1–9, which are shown as type curves without wellbore storage

and skin effects. Three different discretizations N �M ¼ f25� 25;35� 25;35� 35g are considered for all three cases (infi-
nite, bounded, and constant-pressure outer boundary). Figs. 1–3 show the analysis results for infinite reservoirs. The numer-
ical results of DQ and GIQ for the Euclidean model are given in Fig. 1 (d = 2, h = 0 (c = 1)). Figs. 2 and 3 show the results of the
given approach for two different cases of FFD model d = {1.8, 1.6} and h = {0.2, 0.4} (c = {0.9090, 0.8333}). The applicability of
DQ and GIQ for closed-circle reservoir is presented in Figs. 4–6. Fig. 4 shows the numerical results of the Euclidean model,
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Fig. 4. Plot of pD vs. tD for bounded circular reservoir case (reD = 10) with d = 2, h = 0 (c = 1).
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Fig. 5. Plot of pD vs. tD for bounded circular reservoir case (reD = 10) with d = 1.8, h = 0.2 (c = 0.9090).
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where (d = 2, h = 0 (c = 1)). Figs. 5 and 6 present the results of FFD model for two different cases d = {1.8, 1.6} and h = {0.2, 0.4}
(c = {0.9090, 0.8333}). Finally, DQ and GIQ are applied to generalized diffusion equation for constant-pressure boundary res-
ervoir, where the numerical results are shown in Figs. 7–9. The numerical analysis of the Euclidean model is shown in Fig. 7
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Fig. 7. Plot of pD vs. tD for constant-pressure outer boundary case (reD = 20) with d = 2, h = 0 (c = 1).
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Fig. 8. Plot of pD vs. tD for constant-pressure outer boundary case (reD = 20) with d = 1.8, h = 0.2 (c = 0.9090).
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(d = 2, h = 0 (c = 1)). The numerical results of FFD model are depicted in Figs. 8 and 9 for two different cases d = {1.8, 1.6} and
h = {0.2, 0.4} (c = {0.9090, 0.8333}). The amounts of computation times are <1 s in all cases, which implies the great applica-
bility of this method in solving such fractional PDEs. The presented results of all three cases indicate that as the fractal topo-
logical dimension (d) decreases and the fractal dynamical index (h) increases, the dimensionless pressure increases. This
indicates the faster diffusion in Euclidean reservoirs compared to fractal reservoirs.

As can be seen from Figs. 1–9, the grid numbers have no effect on the accuracy and stability of numerical results. This
implies the accuracy of DQ and GIQ which can be used as practical methods to physical problems. The small amounts of com-
putation time for DQ and GIQ demonstrates the fast rate of convergence. On the other hand, the stability and consistency of
DQ and GIQ, which are necessary conditions of convergence, are independent of the number of grid points. The presented
results, which are shown in Figs. 1–9, indicate that the different values of fractal topological dimension (d) and fractal
dynamical index (h) have no effect on the applicability of DQ and GIQ methods.

Based on the results obtained in Ref [22], the DQM can be used as a practical and powerful method to solve the linear
PDEs because of two important reasons. First, the DQM has a fast rate of convergence in comparison with the other numer-
ical methods (e.g. finite difference method) because the acceptable results can be obtained by small number of grid points.
Second, the stability and consistency of the other numerical methods (e.g. finite difference method) depend on the number of
grid points, whereas the stability and consistency of DQM are independent of the number of grid points.
5. Conclusions

This work introduces a numerical approach to show a new application of DQM to generalized diffusion equation with
three geometry forms of boundaries. By generalized diffusion equation we mean the fractional order PDE of the equation.
Examples demonstrate the fast rate of convergence with few numbers of grid points. The amounts of computation times
are small in all cases, which is suitable and appropriate in solving such PDEs and can be considered as a good approach
for practical problems. The accuracy of the results with a few number of grid points shows that DQM can be used as an
unconditionally stable and efficient method for practical applications.
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