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From the local fractional calculus viewpoint, Poisson and Laplace equations were presented in this paper. Their applications to the
electrostatics in fractal media are discussed and their local forms in the Cantor-type cylindrical coordinates are also obtained.

1. Introduction

Poisson and Laplace equations had successfully played an
important role in electrodynamics [1–3]. Mathematically,
they are two-order partial differential equations and exist
in the spaces of different kinds [4, 5]. Their solutions were
studied by different. There are approximate and numerical
methods for them, such as the finite difference method [6],
the finite element method [7], the random walk method [8],
the quadrilateral quadrature element [9], and the complex
polynomial method [10].

Since Mandelbrot [10] described the fractals, the frac-
tional calculus [11–13] and local fractional calculus [14–16]
were applied to the real world problem based on them. For
example, Engheta discussed the fractional-order electromag-
netic theory [17]. Tarasov studied the fractal distribution of
charges [18]. Calcagni et al. suggested the electric charge in
multiscale space and times [19]. In [20], the local fractional
approach for Maxwell’s equations was considered. Local

fractional calculus [20–25] has been successfully applied
to describe dynamical systems with the nondifferentiable
functions. For example, the Maxwell theory on Cantor sets
was studied in [20]. The Heisenberg uncertainty relation was
discussed by using the local fractional Fourier analysis [21].
The system of Navier-Stokes equations arising in fractal flows
was reported in [22]. The local fractional nonhomogeneous
heat equations arising in fractal heat flow were presented
in [23]. The fractal forest gap within the local fractional
derivative was investigated in [24].

In the present paper, the local fractional Poisson and
Laplace equations within the nondifferentiable functions
arising in electrostatics in fractal domain and in the Cantor-
type cylindrical coordinates [25] based upon the local frac-
tional Maxwell equations [20] will be derived from the
fractional vector calculus.

The outline of the paper is depicted below. Section 2
introduces the local fractional Maxwell equations. Section 3
discusses the local fractional Poisson and Laplace equations
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arising in electrostatics in fractal media. In Section 4, the
local fractional Poisson and Laplace equations in the Cantor-
type cylindrical coordinates are presented. Finally, Section 5
is devoted to the conclusions.

2. Local Fractional Maxwell’s Equations

In this section, the local fractional Maxwell’s equations are
introduced and the concepts of the local fractional vector
calculus are reviewed. We first introduce the local fractional
vector calculus and its theorems [14, 20–23].

The local fractional line integral of the function u along a
fractal line 𝑙𝛼 was defined as [14, 20]

∫
𝑙
(𝛼)

u (𝑥
𝑃
, 𝑦
𝑃
, 𝑧
𝑃
) ⋅ 𝑑l(𝛼) = lim

𝑁→∞

𝑁

∑

𝑃=1

u (𝑥
𝑃
, 𝑦
𝑃
, 𝑧
𝑃
) ⋅ Δl(𝛼)
𝑃

,

(1)

where the quantity Δl(𝛼)
𝑃

is elements of line, |Δl(𝛼)
𝑃

| → 0 as
𝑁 → ∞, and 𝛼 ∈ (0, 1].

The local fractional surface integral was defined as [14,
20–23]

∬ u (𝑟
𝑃
) ⋅ 𝑑S(𝛽) = lim

𝑁→∞

𝑁

∑

𝑃=1

u (𝑟
𝑃
) ⋅ n
𝑃
Δ𝑆
(𝛽)

𝑃
, (2)

where the quantity Δ𝑆
(𝛽)

𝑃
is elements of surface, the quantity

n
𝑃
is 𝑁 elements of area with a unit normal local fractional

vector, and Δ𝑆
(𝛽)

𝑃
→ 0 as𝑁 → ∞ for 𝛽 = 2𝛼.

The local fractional volume integral of the function uwas
defined as [14, 20–23]

∭u (𝑟
𝑃
) 𝑑𝑉
(𝛾)

= lim
𝑁→∞

𝑁

∑

𝑃=1

u (𝑟
𝑃
) Δ𝑉
(𝛾)

𝑃
, (3)

where the quantityΔ𝑉(𝛾)
𝑃

is the elements of volume, Δ𝑉(𝛾)
𝑃

→

0 as𝑁 → ∞, and 𝛾 = 3𝛼.
The local fractional Stokes’ theorem of the fractal field

states that [13, 20]

∮
𝑙
(𝛼)

u ⋅ 𝑑l(𝛼) = ∬
𝑆
(𝛽)

(∇
𝛼

× u) ⋅ 𝑑S(𝛽). (4)

The electric Gauss law for the fractal electric field was
suggested as [20]

∯
𝑆
(𝛽)

𝐷 ⋅ 𝑑S(𝛽) = ∭
𝑉
(𝛾)

𝜌 𝑑𝑉
(𝛾)

, (5)

which leads to

∇
𝛼

⋅ 𝐷 = 𝜌, (6)

where the quantity 𝜌 denotes the free charges density and the
quantity𝐷 is the fractal electric displacement.

The Ampere law in the fractal magnetic field was pre-
sented as [20]

∮
𝑙
(𝛼)

𝐻 ⋅ 𝑑l(𝛼) = ∬
𝑆
(𝛽)

(𝐽
𝑎
+

𝜕
𝛼

𝐷

𝜕𝑡𝛼
) ⋅ 𝑑S(𝛽), (7)

which leads to

∇
𝛼

× 𝐻 = 𝐽
𝑎
+

𝜕
𝛼

𝐷

𝜕𝑡𝛼
, (8)

where the quantity𝐻 is the fractalmagnetic field strength and
the quantity 𝐽

𝑎
denotes the fractal conductive current.

The Faraday law in the fractal electric field reads as [20]

∮
𝑙
(𝛼)

𝐸 ⋅ 𝑑l(𝛼) + 𝜕
𝛼

𝜕𝑡𝛼
∬
𝑆
(𝛽)

𝐵 ⋅ 𝑑S(𝛽) = 0, (9)

which leads to

∇
𝛼

× 𝐸 = −
𝜕
𝛼

𝐵

𝜕𝑡𝛼
, (10)

where the constitutive relationships in fractal electric field are

𝐷 = 𝜀
𝑓
𝐸 (11)

with the fractal dielectric permittivity 𝜀
𝑓
and the fractal

dielectric field 𝐸.
Themagnetic Gauss law for the fractal magnetic field was

written as [20]

∯
𝑆
(𝛽)

𝐵 ⋅ 𝑑S(𝛽) = 0, (12)

which leads to

∇
𝛼

⋅ 𝐵 = 0, (13)

where the constitutive relationships in fractal magnetic field
are

𝐻 = 𝜇
𝑓
𝐵 (14)

with the fractal magnetic permeability 𝜇
𝑓
and the fractal

magnetic field 𝐵.

3. Local Fractional Poisson and Laplace
Equations in Fractal Media

In this section, we derive the local fractional Poisson and
Laplace equations arising in electrostatics in fractal media.

In view of (11), from (6) we have

∇
𝛼

⋅ (𝜀
𝑓
𝐸) = 𝜌, (15)

so that

𝜀
𝑓
(∇
𝛼

⋅ 𝐸) = 𝜌, (16)

where 𝜌 denotes the free charges density in fractal homoge-
neous medium, 𝜀

𝑓
denotes the fractal dielectric permittivity,

and 𝐸 denotes the fractal dielectric field.
Hence, the local fractional differential form of Gauss’s law

in local fractional divergence operator reads as

∇
𝛼

⋅ 𝐸 =
𝜌

𝜀
𝑓

. (17)
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If the electrostatics in fractal domain is described by the
expression

∇
𝛼

× 𝐸 = −
𝜕
𝛼

𝐵

𝜕𝑡𝛼
= 0, (18)

then the fractal electric field within the local fractional
gradient is

𝐸 = −∇
𝛼

𝜓, (19)

where the quantity 𝜓 is a nondifferentiable term and 𝐸 is the
fractal dielectric field.

In view of (16) and (19), we obtain

𝜀
𝑓
[∇
𝛼

⋅ (−∇
𝛼

𝜓)] = 𝜌, (20)

which leads to

−𝜀
𝑓
[∇
𝛼

⋅ ∇
𝛼

𝜓] = 𝜌, (21)

where the quantity 𝜓 is a nondifferentiable term and 𝜀
𝑓

denotes the fractal dielectric permittivity.
From (21) we arrive at

∇
𝛼

⋅ ∇
𝛼

𝜓 = −
𝜌

𝜀
𝑓

. (22)

Let us define the local fractional operator

∇
𝛼

⋅ ∇
𝛼

= ∇
2𝛼

. (23)

Making use of (22) and (23), we have

∇
2𝛼

𝜓 = −
𝜌

𝜀
𝑓

. (24)

In the Cantorian coordinates, from (24), the local fractional
Poisson equation arising in electrostatics in fractal domain
can be written as

𝜕
2𝛼

𝜕𝑥2𝛼
𝜓 (𝑥, 𝑦, 𝑧) +

𝜕
2𝛼

𝜕𝑦2𝛼
𝜓 (𝑥, 𝑦, 𝑧) +

𝜕
2𝛼

𝜕𝑧2𝛼
𝜓 (𝑥, 𝑦, 𝑧)

= −
𝜌 (𝑥, 𝑦, 𝑧)

𝜀
𝑓

,

(25)

where both 𝜓(𝑥, 𝑦, 𝑧) and 𝜌(𝑥, 𝑦, 𝑧) are nondifferentiable
functions; the local fractional operator ∇2𝛼 in the Cantorian
coordinates was written as [14]

∇
2𝛼

=
𝜕
2𝛼

𝜕𝑥2𝛼
+

𝜕
2𝛼

𝜕𝑦2𝛼
+

𝜕
2𝛼

𝜕𝑧2𝛼
. (26)

In the Cantorian coordinates, from (25), the local fractional
Laplace equation arising in electrostatics in fractal domain is

𝜕
2𝛼

𝜕𝑥2𝛼
𝜓 (𝑥, 𝑦, 𝑧) +

𝜕
2𝛼

𝜕𝑦2𝛼
𝜓 (𝑥, 𝑦, 𝑧) +

𝜕
2𝛼

𝜕𝑧2𝛼
𝜓 (𝑥, 𝑦, 𝑧) = 0,

(27)

where the quantity 𝜓(𝑥, 𝑦, 𝑧) is a nondifferentiable function.
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Figure 1: Plot of (31) with parameters 𝛼 = ln 2/ ln 3 and 𝑏 = 1.

From (25) the local fractional Laplace equation arising
in electrostatics in fractal domain with two variables can be
written as

𝜕
2𝛼

𝜕𝑥2𝛼
𝜓 (𝑥, 𝑦) +

𝜕
2𝛼

𝜕𝑦2𝛼
𝜓 (𝑥, 𝑦) = −

𝜌 (𝑥, 𝑦)

𝜀
𝑓

, (28)

where both 𝜓(𝑥, 𝑦) and 𝜌(𝑥, 𝑦) are nondifferentiable func-
tions.

From (27) the local fractional Laplace equation arising
in electrostatics in fractal domain with two variables can be
written as

𝜕
2𝛼

𝜕𝑥2𝛼
𝜓 (𝑥, 𝑦) +

𝜕
2𝛼

𝜕𝑦2𝛼
𝜓 (𝑥, 𝑦) = 0, (29)

where the quantity 𝜓(𝑥, 𝑦) is a nondifferentiable function.
For the boundary conditions on the fractal potential

𝜓 (0) = 0, 𝜓 (𝑏) = 8, (30)

we have the local fractional Laplace’s equation

𝜕
2𝛼

𝜕𝑧2𝛼
𝜓 (𝑧) = 0, (31)

which leads to the nondifferentiable solution given 𝑦

𝜓 (𝑧) = 8(
𝑧

𝑏
)

𝛼

(32)

and its graph is shown in Figure 1.
We notice that the local fractional Poisson’s equation

shows the potential behavior in the fractal regions with
nondifferentiable functions where there is the free charge,
while local fractional Laplace’s equation governs the nondif-
ferentiable potential behavior in fractal regions where there
is no free charge.
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4. Local Fractional Poisson and
Laplace Equations in the Cantor-Type
Cylindrical Coordinates

In this section, the local fractional Poisson and Laplace
equations in the Cantor-type cylindrical coordinates are
considered. We first start with the Cantor-type cylindrical
coordinate method.

We now consider the Cantor-type cylindrical coordinates
given by [14, 25]

𝑥
𝛼

= 𝑅
𝛼cos
𝛼
𝜃
𝛼

,

𝑦
𝛼

= 𝑅
𝛼sin
𝛼
𝜃
𝛼

,

𝑧
𝛼

= 𝑧
𝛼

(33)

with 𝑅 ∈ (0, +∞), 𝑧 ∈ (−∞, +∞), 𝜃 ∈ (0, 𝜋], and 𝑥
2𝛼

+ 𝑦
2𝛼

=

𝑅
2𝛼.
From (33) we have [25]

∇
𝛼

𝜙 (𝑅, 𝜃, 𝑧) = e𝛼
𝑅

𝜕
𝛼

𝜕𝑅𝛼
𝜙 + e𝛼
𝜃

1

𝑅𝛼

𝜕
𝛼

𝜕𝜃𝛼
𝜙 + e𝛼
𝑧

𝜕
𝛼

𝜕𝑧𝛼
𝜙, (34)

∇
2𝛼

𝜙 (𝑅, 𝜃, 𝑧) =
𝜕
2𝛼

𝜕𝑅2𝛼
𝜙 +

1

𝑅2𝛼

𝜕
2𝛼

𝜕𝜃2𝛼
𝜙 +

1

𝑅𝛼

𝜕
𝛼

𝜕𝑅𝛼
𝜙 +

𝜕
2𝛼

𝜕𝑧2𝛼
𝜙,

(35)

where

e𝛼
𝑅
= cos
𝛼
𝜃
𝛼e𝛼
1
+ sin
𝛼
𝜃
𝛼e𝛼
2
,

e𝛼
𝜃
= −sin

𝛼
𝜃
𝛼e𝛼
1
+ cos
𝛼
𝜃
𝛼e𝛼
2
,

e𝛼
𝑧
= e𝛼
3
,

(36)

and the local fractional vector suggested by

r = 𝑅
𝛼cos
𝛼
𝜃
𝛼e𝛼
1
+ 𝑅
𝛼sin
𝛼
𝜃
𝛼e𝛼
2
+ 𝑧
𝛼e𝛼
3
= 𝑟
𝑅
e𝛼
𝑅
+ 𝑟
𝜃
e𝛼
𝜃
+ 𝑟
𝑧
e𝛼
𝑧
.

(37)

In view of (35), the local fractional Poisson equation in the
Cantor-type cylindrical coordinates is written as

𝜕
2𝛼

𝜕𝑅2𝛼
𝜓 (𝑅, 𝜃, 𝑧) +

1

𝑅2𝛼

𝜕
2𝛼

𝜕𝜃2𝛼
𝜓 (𝑅, 𝜃, 𝑧) +

1

𝑅𝛼

𝜕
𝛼

𝜕𝑅𝛼
𝜓 (𝑅, 𝜃, 𝑧)

+
𝜕
2𝛼

𝜕𝑧2𝛼
𝜓 (𝑅, 𝜃, 𝑧) = −

1

𝜀
𝑓

𝜌 (𝑅, 𝜃, 𝑧) ,

(38)

where both 𝜓(𝑅, 𝜃, 𝑧) and 𝜌(𝑅, 𝜃, 𝑧) are nondifferentiable
functions.

From (35), the local fractional Laplace equation in the
Cantor-type cylindrical coordinates is

𝜕
2𝛼

𝜕𝑅2𝛼
𝜓 (𝑅, 𝜃, 𝑧) +

1

𝑅2𝛼

𝜕
2𝛼

𝜕𝜃2𝛼
𝜓 (𝑅, 𝜃, 𝑧)

+
1

𝑅𝛼

𝜕
𝛼

𝜕𝑅𝛼
𝜓 (𝑅, 𝜃, 𝑧) +

𝜕
2𝛼

𝜕𝑧2𝛼
𝜓 (𝑅, 𝜃, 𝑧) = 0,

(39)

where the quantity 𝜓(𝑅, 𝜃, 𝑧) is a nondifferentiable function.

Wenowconsider theCantor-type circle coordinates given
by [14]

𝑥
𝛼

= 𝑅
𝛼cos
𝛼
𝜃
𝛼

,

𝑦
𝛼

= 𝑅
𝛼sin
𝛼
𝜃
𝛼

(40)

with 𝑅 ∈ (0, +∞), 𝜃 ∈ (0, 2𝜋], and 𝑥
2𝛼

+ 𝑦
2𝛼

= 𝑅
2𝛼.

Making use of (37), we obtain

∇
𝛼

𝜙 (𝑅, 𝜃) = e𝛼
𝑅

𝜕
𝛼

𝜕𝑅𝛼
𝜙 + e𝛼
𝜃

1

𝑅𝛼

𝜕
𝛼

𝜕𝜃𝛼
𝜙, (41)

∇
2𝛼

𝜙 (𝑅, 𝜃) =
𝜕
2𝛼

𝜕𝑅2𝛼
𝜙 +

1

𝑅2𝛼

𝜕
2𝛼

𝜕𝜃2𝛼
𝜙 +

1

𝑅𝛼

𝜕
𝛼

𝜕𝑅𝛼
𝜙, (42)

where [14]

e𝛼
𝑅
= cos
𝛼
𝜃
𝛼e𝛼
1
+ sin
𝛼
𝜃
𝛼e𝛼
2
,

e𝛼
𝜃
= − sin

𝛼
𝜃
𝛼e𝛼
1
+ cos
𝛼
𝜃
𝛼e𝛼
2
,

(43)

and the local fractional vector is suggested by [14]

r = 𝑅
𝛼cos
𝛼
𝜃
𝛼e𝛼
1
+ 𝑅
𝛼sin
𝛼
𝜃
𝛼e𝛼
2
= 𝑟
𝑅
e𝛼
𝑅
+ 𝑟
𝜃
e𝛼
𝜃
. (44)

From (28) and (42) the local fractional Poisson equation in
fractal domain with two variables can be written as

𝜕
2𝛼

𝜕𝑅2𝛼
𝜓 (𝑅, 𝜃) +

1

𝑅2𝛼

𝜕
2𝛼

𝜕𝜃2𝛼
𝜓 (𝑅, 𝜃) +

1

𝑅𝛼

𝜕
𝛼

𝜕𝑅𝛼
𝜓 (𝑅, 𝜃)

= −
1

𝜀
𝑓

𝜌 (𝑅, 𝜃) ,

(45)

where both 𝜓(𝑅, 𝜃) and 𝜌(𝑅, 𝜃) are nondifferentiable func-
tions.

From (29) and (42) the local fractional Laplace equation
in fractal domain with two variables can be written as

𝜕
2𝛼

𝜕𝑅2𝛼
𝜓 (𝑅, 𝜃) +

1

𝑅2𝛼

𝜕
2𝛼

𝜕𝜃2𝛼
𝜓 (𝑅, 𝜃) +

1

𝑅𝛼

𝜕
𝛼

𝜕𝑅𝛼
𝜓 (𝑅, 𝜃) = 0,

(46)

where the quantity 𝜓(𝑅, 𝜃) is a nondifferentiable function.

5. Conclusions

In this work we derived the local fractional Poisson and
Laplace equations arising in electrostatics in fractal domain
from local fractional vector calculus. The local fractional
Poisson and Laplace equations in the Cantor-type cylindrical
coordinates were also discussed. The nondifferentiable solu-
tion for local fractional Laplace equation was also given.
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