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Abstract
In recent years, many approaches have been utilized for finding the exact solutions of
nonlinear partial differential equations. One such method is known as the first integral
method and was proposed by Feng. In this paper, we utilize this method and obtain
exact solutions of two nonlinear partial differential equations, namely double
sine-Gordon and Burgers equations. It is found that the method by Feng is a very
efficient method which can be used to obtain exact solutions of a large number of
nonlinear partial differential equations.
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1 Introduction
With the availability of symbolic computation packages like Maple or Mathematica, the
search for obtaining exact solutions of nonlinear partial differential equations (PDEs) has
become more and more stimulating for mathematicians and scientists. Having exact so-
lutions of nonlinear PDEs makes it possible to study nonlinear physical phenomena thor-
oughly and facilitates testing the numerical solvers as well as aiding the stability analysis
of solutions. In recent years, many approaches to solve nonlinear PDEs such as the ex-
tended tanh function method [–], the modified extended tanh function method [, ],
the exp-functionmethod [–], theWeierstrass elliptic functionmethod [], the Laplace
decomposition method [, ] and so on have been employed.
Among these, the first integral method, which is based on the ring theory of commuta-

tive algebra, due to Feng [–] has been applied bymany authors to solve different types
of nonlinear equations in science and engineering [–]. Therefore, in the present arti-
cle, the first integral method is applied to analytic treatment of some important nonlinear
of partial differential equations.
The rest of this article is arranged as follows. In Section , the basic ideas of the first

integral method are expressed. In Section , the method is employed for obtaining the
exact solutions of double sine-Gordon (SG) andBurgers equations, and finally conclusions
are presented in Section .
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2 The first integral method
Let

P(u,ut ,ux,uxx,uxt , . . .) =  ()

be a nonlinear partial differential equation (PDE) with u(x, t) as its solution.We introduce
the transformation

u(x, t) = u(ξ ), ξ = x – ct, ()

where c is constant. Then we have

∂

∂t
(·) = –c

∂

∂ξ
(·), ∂

∂x
(·) = ∂

∂ξ
(·), ∂

∂t
(·) = c

d

dξ  (·), . . . . ()

Thus PDE () is then transformed to the ordinary differential equation (ODE)

Q(u,uξ ,uξξ , . . .) = . ()

We now introduce a new transformation, namely

X(ξ ) = u(ξ ), Y (ξ ) = uξ (ξ ), ()

and this gives us the system of ODEs

⎧⎨
⎩Xξ (ξ ) = Y (ξ ),

Yξ (ξ ) = F(X(ξ ),Y (ξ )).
()

If we canfind the integrals of () under the same conditions, the qualitative theory of differ-
ential equations [] tells us that the general solutions of () can be obtained directly. But
in general, it is very difficult even for a single first integral. Since for a plane autonomous
system, there is no methodical theory which gives us first integrals, we will therefore ap-
ply the division theorem to find one first integral (), which will reduce () to a first-order
integral for an ordinary differential equation. By solving this equation, exact solutions of
() will be obtained. We recall the division theorem.

Theorem . (Division theorem, see []) Let P(x, y) and Q(x, y) be polynomials of two
variables x and y in C[x, y], and let P(x, y) be irreducible in C[x, y]. If Q(x, y) vanishes at
all zero points of P(x, y), then there exists a polynomial G(x, y) in C[x, y] such that Q(x, y) =
P(x, y)G(x, y).

The division theorem follows immediately from the Hilbert-Nullstellensatz theo-
rem [].

Theorem . (Hilbert-Nullstellensatz theorem) Let K be a field and L be an algebraic
closure of K . Then:

(i) Every ideal γ of K[X, . . . ,Xn] not containing  admits at least one zero in Ln.
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(ii) Let x = (x, . . . ,xn), y = (y, . . . , yn) be two elements of Ln; for the set of polynomials of
K[X, . . . ,Xn] zero at x to be identical with the set of polynomials of K[X, . . . ,Xn]
zero at y, it is necessary and sufficient that there exists a K-automorphism S of L
such that yi = S(xi) for  ≤ i ≤ n.

(iii) For an ideal α of K[X, . . . ,Xn] to be maximal, it is necessary and sufficient that
there exists an x in Ln such that α is the set of polynomials of K[X, . . . ,Xn] zero at x.

(iv) For a polynomial Q of K[X, . . . ,Xn] to be zero on the set of zeros in Ln of an ideal γ
of K[X, . . . ,Xn], it is necessary and sufficient that there exists an integer m >  such
that Qm ∈ γ .

3 Applications
3.1 Exact solutions to the double sine-Gordon equation
Consider the double sine-Gordon (SG) equation [, ]

uxt = sinu + sinu. ()

In order to apply the first integral method described in Section , we first introduce the
transformations

sinu =
v – v–

i
, sinu =

v – v–

i
, v = eiu. ()

Using () and (), Eq. () becomes

–cu′′ =
v – v–

i
+
v – v–

i
. ()

We next use the transformation
⎧⎪⎪⎨
⎪⎪⎩
v = eiu,

u′ = v′
iv ,

u′′ = 
i (

v′′
v – (v′)

v ).

()

We obtain

–cvv′′ + c
(
v′) – v – v + v +  = . ()

Next, we introduce new independent variables X = v, Y = dv
dξ

which change () to the
system of ODEs

⎧⎨
⎩

dX
dξ

= Y ,
dY
dξ

= cY–X–X+X+
cX .

()

Assume that dξ = X dτ , then () becomes
⎧⎨
⎩

dX
dτ

= XY ,
dY
dτ

= Y  – aX – aX + aX + a,
()

where a = 
c .
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According to the first integral method, we suppose that X = X(τ ) and Y = Y (τ ) are non-
trivial solutions of Eq. () and

P(X,Y ) =
m∑
i=

ai(X)Y i

is an irreducible polynomial in the complex domain C[X,Y ] such that

P
(
X(τ ),Y (τ )

)
=

m∑
i=

ai
(
X(τ )

)
Y (τ )i = , ()

where ai(X) (i = , , . . . ,m) are polynomials in X and am(X) �= . Equation () is called
the first integral to Eq. (). Applying the division theorem, one sees that there exists a
polynomial H(X,Y ) = h(X) + g(X)Y in the complex domain C[X,Y ] such that

dP
dτ

=
∂P
∂X

∂X
∂τ

+
∂P
∂Y

∂Y
∂τ

=
(
h(X) + g(X)Y

)( m∑
i=

ai(X)Y i

)
. ()

Suppose that m =  in (), and then, by comparing with the coefficients of Y i (i = , , )
on both sides of (), we have

Xa′
(X) =

(
g(X) – 

)
a(X), ()

Xa′
(X) = h(X)a(X) + g(X)a(X), ()

a(X)
(
–aX – aX + aX + a

)
= h(X)a(X). ()

Since a(X) is a polynomial in X, from () we conclude that a(X) is a constant and
g(X) = . For simplicity, we take a(X) = . Then Eq. () indicates that degh(X) ≤
dega(X). Thus, from Eq. () we conclude that degh(X) = dega(X) = . Now suppose
that

h(X) = AX +AX +A, a(X) = BX + BX + B (A �= ,B �= ), ()

where A, A, A, B, B, B are all constants to be determined. Substituting Eq. () into
Eq. (), we obtain

A = B, A = , A = –B.

Then

h(X) = BX – B.

Substituting a(X), a(X) and h(X) in () and setting all the coefficients of powers X to
be zero, we obtain a system of nonlinear algebraic equations, and by solving it, we obtain

B = B = B = ±√
–a. ()
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Substituting () in (), we obtain

Y ± √
–a

(
X +X + 

)
= . ()

Combining Eq. () with (), second-order differential Eq. () can be reduced to

dv
dξ

= ∓√
–a

(
v + v + 

)
. ()

Solving Eq. () directly and changing to the original variables, we obtain the exact solu-
tions to Eq. ():

v(ξ ) = eiu = cosu + i sinu =



(
– +

√
 tan

[


(–i

√
aξ +

√
c)

])
, ()

v(ξ ) = eiu = cosu + i sinu =



(
– +

√
 tan

[


(i
√
aξ +

√
c)

])
, ()

where c is an arbitrary constant and a = 
c .

Therefore, the exact solutions to the double sine-Gordon (SG) equation can be written
as

u(x, t) = cos–
( (

√
 tan[–

√


c (x – ct +
√
c)]) + √

 tan[–
√


c (x – ct +
√
c)]

)
, ()

u(x, t) = cos–
( (

√
 tan[

√


c (x – ct +
√
c)]) + √

 tan[
√


c (x – ct +
√
c)]

)
, ()

where c is an arbitrary constant.

3.2 Exact solutions to the Burgers equation
The Burgers equation []

ut + uux – auxx =  ()

is one of the most famous nonlinear diffusion equations. The positive parameter a refers
to a dissipative effect.
Using () and (), Eq. () becomes

–cu′ + uu′ – au′′ = . ()

We rewrite () as follows:

u′′ =

a
uu′ –

c
a
u′. ()

By introducing new variables X = u and Y = uξ , Eq. () changes into a system of ODEs

⎧⎨
⎩X ′(ξ ) = Y ,

Y ′(ξ ) = 
aXY – c

aY .
()
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Now, the division theorem is employed to seek the first integral to (). Suppose that
X = X(ξ ) and Y = Y (ξ ) are nontrivial solutions to (), and P(X,Y ) =

∑m
i= ai(X)Y i is an

irreducible polynomial in C[X,Y ] such that

P
(
X(ξ ),Y (ξ )

)
=

m∑
i=

ai(X)Y i = , ()

where ai(X) (i = , , . . . ,m) are polynomials in X and am(X) �= . Equation () is called the
first integral to Eq. (). Due to the division theorem, there exists a polynomial H(X,Y ) =
h(X) + g(X)Y in C[X,Y ] such that

dP
dξ

=
∂P
∂X

∂X
∂ξ

+
∂P
∂Y

∂Y
∂ξ

=
(
h(X) + g(X)Y

)( m∑
i=

ai(X)Y i

)
. ()

Suppose thatm =  in (). By comparing the coefficients of Y i (i = , , ) on both sides of
(), we have

a′
(X) = g(X)a(X), ()

a′
(X) = h(X)a(X) – a(X)

(

a
X –

c
a

)
+ g(X)a(X), ()

h(X)a(X) = . ()

Since a(X) is a polynomial in X, from () we conclude that a(X) is a constant and
g(X) = . For simplicity, we take a(X) = , and balancing the degrees of h(X) and a(X),
we conclude that degh(X) =  or . If degh(X) = , suppose that h(X) = A, then from (),
we find

a(X) = –

a

X +
(
A +

c
a

)
X + B,

where B is an arbitrary integration constant.
Substituting a(X) and h(X) in () and setting all the coefficients of powers X to be

zero, we obtain a system of nonlinear algebraic equations, and by solving it, we obtain

A = , B �= . ()

Using () in (), we obtain

Y (ξ ) =

a

X –
c
a
X – B. ()

Combining Eq. () with the first part of (), we obtain the exact solutions of Eq. () as
follows:

X(ξ ) = c +
√
aB + c

[
 – tanh

(√
aB + c

a
(ξ + ξ)

)]
, ()

where ξ is an arbitrary constant.

http://www.boundaryvalueproblems.com/content/2013/1/117


Jafari et al. Boundary Value Problems 2013, 2013:117 Page 7 of 9
http://www.boundaryvalueproblems.com/content/2013/1/117

Therefore, the exact solutions to the Burgers equation can be written as

u(x, t) = c +
√
aB + c

[
 – tanh

(√
aB + c

a
(x – ct + ξ)

)]
, ()

where ξ is an arbitrary constant and a > .
Now suppose that m = . By an application of the division theorem, we can conclude

that there exists a polynomial H(X,Y ) = h(X) + g(X)Y in C[X,Y ] such that

dP
dξ

=
∂P
∂X

∂X
∂ξ

+
∂P
∂Y

∂Y
∂ξ

=
(
h(X) + g(X)Y

)( ∑
i=

ai(X)Y i

)
. ()

Comparing the coefficients of Y i (i = , , , ) of both sides of () yields

a′
(X) = g(X)a(X), ()

a′
(X) = h(X)a(X) – a(X)

(

a
X –

c
a

)
+ g(X)a(X), ()

a′
(X) = h(X)a(X) – a(X)

(

a
X –

c
a

)
+ g(X)a(X), ()

h(X)a(X) = . ()

Since a(X) is a polynomial of X, from () we conclude that a(X) is a constant and
g(X) = . For simplicity, we take a(X) = , and balancing the degrees of h(X), a(X) and
a(X), we conclude that degh(X) =  or . If degh(X) = , suppose that h(X) = A. Then
from (), we find

a(X) = –

a
X +

(
A +

c
a

)
X + B,

where B is an arbitrary constant of integration. From () we have

a(X) =


a
X –

(

a

A +
c
a

)
X +

(
A


+
c
a

A +
c

a
–

B
a

)
X

+
(
AB +

cB
a

)
X +D,

where D is an arbitrary constant of integration. Substituting a(X) and h(X) in () and
setting all the coefficients of powers ofX to zero, we obtain a system of nonlinear algebraic
equations. Solving these equations, we obtain

A = , B �= , D �= . ()

Now using () in (), we get

Y (ξ ) =

a

X –
c
a
X –

B


±
√
B – D


. ()
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Combining Eq. () with the first part of (), we obtain the exact solutions to Eq. () in
the form

X(ξ ) = c +
√
aB + c ∓ a

√
B – D

×
[
 – tanh

(√
aB + c ∓ a

√
B – D

a
(ξ + ξ)

)]
, ()

where ξ is an arbitrary constant of integration. Therefore, the exact solutions to the
Burgers equation can be written as

u(x, t) = c +
√
aB + c ∓ a

√
B – D

×
[
 – tanh

(√
aB + c ∓ a

√
B – D

a
(x – ct + ξ)

)]
, ()

where ξ is an arbitrary constant and a > .

4 Conclusions
The first integral method was employed successfully to solve some important nonlinear
partial differential equations, including the double sine-Gordon and Burgers equations,
analytically. Some exact solutions for these equations were formally obtained by applying
the first integral method. Due to the good performance of the first integral method, we feel
that it is a powerful technique in handling a wide variety of nonlinear partial differential
equations. Also, this method is computerizable, which permits us to accomplish difficult
and tiresome algebraic calculations on a computer with ease.
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