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Abstract: In this paper the fractional sub-equation method is used to construct exact solutions of the fractional gener-
alized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation.The fractional deriva-
tive is described in the Jumarie’s modified Riemann-Liouville sense. Two illustrative examples are given,
showing the accuracy and convenience of the method.
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1. Introduction

Fractional equations, both partial and ordinary ones,have been applied in modeling of many physical, engineer-ing, chemistry, biology, etc in recent years [1–4]. Investi-gation of the exact travelling wave solutions for nonlinear
∗E-mail: jafari@umz.ac.ir

partial differential equations (PDEs) plays an importantrole in the study of nonlinear physical phenomena.Finding exact solutions of most of the fractional PDEs isnot easy, so searching and constructing exact solutions fornonlinear fractional partial differential equations is a con-tinuing investigation. Many powerful methods for obtain-ing exact solutions of nonlinear fractional PDEs have beenpresented such as, Hirota’s bilinear method [5], Bäcklundtransformation [6], sine-cosine method [7], tanh-functionmethod [8], Adomian decomposition method [9, 10], vari-
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ational iteration method [11, 12], homotopy perturbationmethod [13], homotopy analysis method [14], Laplace iter-ative method [15] and so on.Recently, the Fan sub-equation method to obtain exact so-lution of nonlinear partial equations has attracted muchattention [16–20]. Moreover there are more wave solu-tions of nonlinear fractional PDEs that satisfy a generalRiccati equation that can be represented as a polynomial.This method is based on the Jumarie’s modified Riemann-Liouville derivative [21, 22], on the homogeneous balanceprinciple [17] and on the symbolic computation in order toobtain analytical solutions of fractional PDEs.In the present manuscript a method is suggested tofind exact analytical solutions of some type of nonlin-ear fractional PDEs with the Jumarie’s modified Riemann-Liouville derivative of order α . Here we summarizesome useful formulas of Jumarie’s modified Riemann-Liouville [21]
Dα
x xγ = Γ(γ + 1)Γ(γ − α + 1)xγ−α , γ > 0, (1)

Dα
x [f (x)g(x)] = g(x)Dα

x f (x) + f (x)Dα
x g(x), (2)

Dα
x f [g(x)] = f ′g[g(x)]Dα

x g(x) = Dα
g f [g(x)](g′x )α , (3)

which will be used in the following sections.In this paper, we applied the fractional sub-equationmethod [16, 23, 24] to obtain the exact solutions of thefractional generalized reaction Duffing model in the form
∂2αu
∂t2α + p∂

2αu
∂x2α + qu+ ru2 + su3 = 0. (4)

where p, q, r and s are all constants. Eq. (4) reduc-tions many well-known nonlinear fractional wave equa-tions such as(i) Fractional Klein-Gordon equation
∂2αu
∂t2α −

∂2αu
∂x2α + αu+ βu3 = 0.

(ii) Fractional Landau-Ginzburg-Higgs equation
∂2αu
∂t2α −

∂2αu
∂x2α −m2u+ g2u3 = 0.

(iii) Fractional φ4 equation
∂2αu
∂t2α −

∂2αu
∂x2α + u− u3 = 0.

(iv) Fractional Duffing equation
∂2αu
∂t2α + bu+ cu3 = 0.

(v) Fractional Sine-Gordon equation
∂2αu
∂t2α −

∂2αu
∂x2α + u− 16u3 = 0.

We also consider fractional Sharma-Tasso-Olver equationin the form
∂αu
∂tα + β ∂

αu3
∂xα + 32β ∂2αu2

∂x2α + β ∂
3αu
∂x3α = 0. (5)

where β is a real constant. Eq. (5) is a double nonlin-ear dispersive, integrable equation that be called Sharma-Tasso-Olver equation [26]. Recently many physicists havestudied equation (5) in [27–29]. In [30] the solitons so-lutions of Sharma-Tasso-Olver equation are obtained bythe tanh method, the extended tanh method.The rest of this paper is organized as follows. In Section2, we describe the algorithm for solving exact solutionsto nonlinear fractional partial differential equations. InSection 3, consists of a brief conclusion.
2. Exact solutions of some nonlin-
ear fractional PDEs
In this section we will derive the fractional generalizedreaction Duffing model

∂2αu
∂t2α + p∂

2αu
∂x2α + qu+ ru2 + su3 = 0. (6)

Several families of exact solutions including bell-shapedwaves and shock waves of Eq. (6) when α = 1 have beenreported in [25, 31].To solve Eq. (6) by using fractional sub-equation method,with the assistance of the traveling wave transformation,
u(x, t) = u(ξ), ξ = kx + ct, (7)

where ξ is a wave variable and c and k are a wave speed,we reduce nonlinear fractional partial differential equa-tions into nonlinear fractional differential equation (FDE).Substituting Eq. (7) into Eq. (6) yields the following frac-tional differential equation for u(ξ),
c2αD2α

ξ u+ pk2αDα
ξ u+ qu(ξ) + ru2(ξ) + su3(ξ) = 0. (8)

Now we suppose that the Eq. (8) has a solution in theform
u(ξ) = n∑

i=0 aiφ
i(ξ), (9)

1483



Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation

where ai are constants to be determined later and the newvariable φ = φ(ξ) satisfies the following fractional Riccatiequation:
Dα
ξ φ = σ + φ2, 0 < α ≤ 1. (10)

Substituting Eq. (9) along with Eq. (10) into Eq. (8) andbalancing the highest order derivative term D2α
ξ with non-linear term u3 in Eq. (8) gives n = 1, from which we have

u(ξ) = a0 + a1φ(ξ). (11)
Then setting the coefficients of φj (j = 0, 1, . . . , 3) to zero,we finally obtain a system of algebraic equations

a20r + a30s+ a0q = 0,2a1σc2α + 2a1pσk2α + 2a0a1r + 3a20a1s+ a1q = 0,
a21r + 3a0a21s = 0,2a1c2α + 2a1pk2α + a31s = 0.

Solving the set of algebraic equations yields
a0 = −3q2r , a1 = ± ia0√

σ
, σ = q4(c2α + k2αp) ,

r = ±3√sq√2 , (12)
by using five solutions of fractional Riccati equation (10)derived with Zhang et al. [18]

φ(ξ) =


−
√
−σ tanhα (√−σξ), σ < 0,

−
√
−σ cothα (√−σξ), σ < 0,

√
σ tanα (√σξ), σ > 0,
−
√
σ cotα (√σξ), σ > 0,

−Γ(1 + α)
ξα + ω , ω = const., σ = 0,

(13)

with the generalized hyperbolic and trigonometric func-tions and (7)-(12) exact solutions of Eq. (6), namely,generalized hyperbolic function solutions and generalizedtrigonometric function solutions as follows
u1(x, t)=−3q2r ± i3q2r√σ (√−σ tanhα (√−σ (kx + ct))),

σ < 0,
u2(x, t)=−3q2r ± i3q2r√σ (√−σ cothα (√−σ (kx + ct))),

σ < 0,
u3(x, t)=−3q2r ± i3q2r√σ (√σ tanα (√σ (kx + ct))), σ > 0,
u4(x, t)=−3q2r ± i3q2r√σ (√σ cotα (√σ (kx + ct))), σ > 0.
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Figure 1. Exact solutions u1(x, t) for Eq. (6) with α = 1, p =
−1, q = 19 , r = 1, s = −2, c = 0.7, k = 1; σ = −1.

In Figure 1 u1(x, t) shows exact solutions of Eq. (6) with
α = 1, p = −1, q = 19 , r = 1, s = −2, c = 0.7, k =1; σ = −1. When α = 1 these solutions give the solu-tions of standard form of the generalized reaction Duffingmodel [25, 31].The next step is to consider the nonlinear fractionalSharma-Tasso-Olver equation in the form

∂αu
∂tα + β ∂

αu3
∂xα + 32β ∂2αu2

∂x2α + β ∂
3αu
∂x3α = 0. (14)

To solve Eq. (14), we consider the following traveling wavetransformation
u = u(ξ), ξ = kx + ct, (15)

then Eq. (14) can be reduced to the following nonlinearfractional differential equation (FDE), namely
cαDα

ξ u+ 3βkαu2Dα
ξ u+ 3β((kαDα

ξ u)2 + k2αuDα
ξ u)++ βk3αD3α

ξ u = 0. (16)
Now we do the same process, like the previous example.We obtain following system of algebraic equations:
a1σcα + 3a21βσ 2k2α + 2a1βσ 2k3α + 3a20a1βσkα = 0,6a0a1βσk2α + 6a0a21βσkα = 0,
a1cα + 12a21βσk2α + 8a1βσk3α + 3a31βσkα++ 3a20a1βkα = 0, (17)6a0a1βk2α + 6a0a21βkα = 0,9a21βk2α + 6a1βk3α + 3a31βkα = 0.
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Figure 2. Exact solutions of Eq. (14) (u5(x, t)) for α = 0.9, β =
−1, ω = 10, c = 1, k = 1.

Solving (17) with the aid of Mathematica, we have
a0 = ±√

βσk3α − cα√3βkα , a1 = −kα ,
a0 = ± i

√
cα√3βkα , a1 = −kα , σ = 0, (18)

Finally, from Eqs. (13), (15)-(18) we obtain the follow-ing generalized hyperbolic function solutions, generalizedtrigonometric function solutions and rational solution ofEq. (14)
u1(x, t)=±√

βσk3α−cα√3√β√kα +kα (√−σ tanhα (√−σ (kx + ct)),
σ < 0,

u2(x, t)=±√
βσk3α−cα√3√β√kα +kα (√−σ cothα (√−σ (kx + ct)),

σ < 0,
u3(x, t)=±√

βσk3α − cα√3√β√kα − kα (√σ tanα (√σ (kx + ct)),
σ > 0,

u4(x, t)=±√
βσk3α − cα√3√β√kα + kα (√σ cotα (√σ (kx + ct)),

σ > 0,
u5(x, t)=± i

√
cα√3√β√kα + kαΓ(1 + α)(kx + ct)α + ω ,

ω = const, σ = 0.
In Figure 2 u5(x, t) shows one of exact solutions of Eq. (14)for α = 0.9, β = −1, ω = 10, c = 1, k = 1. When α = 1,these obtained exact solutions are same with those givensolutions in [26].

3. Conclusion
In this paper, based on a fractional sub-equation method,we obtained the exact solutions of the generalized frac-tional reaction Duffing equation and the nonlinear frac-tional Sharma-Tasso-Olver equation. The results showthat the fractional sub-equation method is accurate andeffective. These solutions may be useful for describingcertain nonlinear physical phenomena. This method canbe applied to other nonlinear fractional PDEs in mathe-matical physics that are worth studying.
Mathematica has been used for computations and pro-gramming in this paper.
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