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Abstract—In this paper a shape matching algorithm for 

multiple component objects has been proposed which aims at 
matching shapes by a two-stage method. The first stage 
extracts the similarity features of each component using a 
generic shape representation model. The first stage of our 
shape matching method normalizes the components for 
orientation and scaling, and neglects minor deformations. In 
the second stage, the extracted similarity features of the 
components are combined with their relative spatial 
characteristics for shape matching. Some important 
application areas for the proposed multi-component shape 
matching are medical image registration, content based 
medical image retrieval systems, and matching articulated 
objects which rely on the a-priori information of the model 
being searched. In these applications, salient features such as 
vertebrae or rib cage bones can be easily segmented and used. 
These features however, show differences from person to 
person on one hand and similarities at different cross-sectional 
images of the same examination on the other hand. The 
proposed method has been tested on articulated objects, and 
reliable registration of 3-dimensional abdominal computed 
tomography images. 
 

Index Terms—Shape Matching, Articulated Shape 
Matching, Medical Image Processing. 

I. INTRODUCTION 

Human visual system is capable of recognizing many 
objects based on their shapes. This recognition is carried out 
so casually that in many cases we are not aware of the 
differences between objects that seem alike to us. Shape 
recognition has many applications in content based image 
retrieval [1],[2], categorizing objects [3],[4], biological 
image processing [5], optical character recognition [6], and 
so forth [7]. The fundamental characteristic of shape 
recognition is categorizing objects based on their geometry. 
However, a shape category may contain hundreds of slightly 
different instances. These dissimilarities are modeled by 
different means. A common approach is using graphs of 
nodes interconnected by strings [8]. These approaches 
assume that the model topology is an important shape 
feature [9]. The total energy of the system is minimized 
through a cost function and the shape is the graph of nodes 
and springs in its equilibrium. A modified form of spring 
graph model is representing the deformation through a 
transform. Here the assumption is that the corresponding 
nodes of the graph can be mapped to the nodes of the 
generic model through an affine or a non-linear transform 
[10], [11]. In practice however, the dissimilarities between 
the shapes of a category cannot be represented by a single 
transform. Besides, external factors such as photometric 
variation can greatly affect the detection of salient points in 
a shape and hence matching process. In [12] the authors 

propose a method for partial matching of 3D objects. Their 
approach uses the size of a part relative to the whole object, 
and the number of curvature changes and strength as the 
salient features for partial matching. They associate a 
number of rotation-and-scale invariant indices with each 
salient feature to accelerate matching operations. 
Probabilistic models are also utilized to extract the most and 
the least probable deformation in a generic representative of 
a shape [13], [14]. These models require a large dataset 
encompassing all variations which is difficult to acquire in 
many cases. Besides, representing articulated and 
deformable shapes is subject to error. To deform the model, 
affine [15], [16] similarity [17], [18] and polynomial [19] 
transformations have been used. At each iteration, the 
similarity between the model and the input image is re-
computed.  These models which are referred to as Atlas 
suffer from the complexity of the morphing step. They also 
require a large manually segmented and annotated data set 
for developing the initial model [20], [16], [19], [21]. The 
first step in model-based segmentation which tries to 
roughly align the model to the input image comprises of a 3-
dimensional registration and a 2-dimensional 
rotation/scaling/translation steps if the model is a 3-
dimensional volumetric model. The registration and 
alignment steps in this process require salient points having 
the properties of being detectable in both input image and 
model, being invariant with respect to the patient, disease, 
and applied treatment, and being capable of determining the 
image position in the 3-dimensional model.  

Shape descriptors are also defined based on the 
histograms [22], [23] however, these descriptors are not 
scale-invariant. Shape context is one of the methods utilized 
for the general problem of shape matching when the shapes 
differences are not limited to those coming from affine 
transforms [24], [25], [26], [27]. In fact, shape matching 
covers the extensive research work carried out to measure 
the distance between shapes in terms of similarity. Two 
category of similarity methods have been considered for 
comparing shapes which are methods based on the features 
extracted from a shape, and methods based on the 
appearance of the shape. Feature based methods have been 
used with features such as silhouette, object boundaries, 
corner points, Fourier descriptors, etc. Spatial distribution of 
the feature points have also been considered for shape 
matching. For instance, the method given in [28] uses 
feature point locations for voting for a model. The main 
advantage of the method is avoiding an explicit matching of 
the feature points. A comparative study of the feature based 
methods for shape matching has been given in [25]. The 
appearance based methods try to find the correspondence 

       143

Digital Object Identifier 10.4316/AECE.2015.01019

1582-7445 © 2015 AECE

[Downloaded from www.aece.ro on Saturday, May 02, 2020 at 13:59:23 (UTC) by 141.196.175.196. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 15, Number 1, 2015 

between pixels using similarity of their gray level values 
[29]. Grouping the pixels into models such as deformable 
templates is among the attempts to make the method 
insensitive to certain transforms [30], [31]. The main 
disadvantage of these models is the need for human 
intervention in designing the model. The second group of 
approaches considers learning the statistical features of the 
gray-level pixels. Principal component analysis (PCA) is the 
most commonly used method from this group which is the 
basis for many face detection and identification solutions 
[32].  

Shape context considers a subset of the pixels of an object 
as its descriptors. The spatial distribution of these pixels is 
used as the similarity metric for comparing the objects. 
Therefore, shape context has characteristics from both 
groups of shape matching algorithms. Shape contexts have 
the property of grouping feature points according to their 
spatial distributions and relaxing the one-to-one 
correspondence requirement for shape matching. In [33] 
quad-trees are used for adaptive resolution representation of 
shapes after rotation and scaling. Their method of 
representing a shape is designed for solid single component 
objects and is not capable of matching articulated objects, or 
objects with multiple disjoint components. Beside to shape 
context, shape axis trees are also used for matching shapes. 
In representing shapes using a shape axis tree, the main axis 
of the shape is extracted and utilized.  

Figure 1 depicts sample shape and the corresponding 
shape axis.  
 

 
Figure 1: Sample shape and its shape axis 

 
In [34] a compact and stable shape representation named 

shape axis is presented. They use the self-similarity of the 
shape to define the shape axis. In their method a set of 
corresponding boundary points are determined. Connecting 
the corresponding points, line segments are found. Finally 
these line segments are used for defining the shape axis by 
connecting their mid points.  Special tree data structures are 
used for representing shape axis. The shape axis tree stores 
ending points of the shape axis in is leaf nodes while, 
junctions are stored as internal nodes. Although the main 
structure of the shape is captures by the shape axis 

representation, in articulated objects, matching can pose 
challenges.  

Transform domain shape representation is also used for 
shape matching. Fourier descriptors are used by authors in 
[35] and [36] to represent the boundary features. In [37] 
authors report a method to represent the internal area of a 
shape using Radon transform. As the Radon transform of an 
image is defined by the set of projections along lines taken 
at different angles, they define their descriptors as a matrix 
of frequencies computed on the Radon transform of an 
image aggregated by the angle parameter of the Radon 
transform. The main issues in their method have been the 
sensitivity of the method to noise and the difficulty of 
determining the descriptor size. 

In [38] the authors use the idea that the appearance of an 
interest region can be well characterized by the distribution 
of its local features. They use Scale-invariant feature 
transform (SIFT) descriptor to find and use gradient as the 
local feature. Besides, they introduce a texture feature called 
center-symmetric local binary pattern (CS-LBP) which is a 
modified version of the local binary pattern feature. They 
combine the SIFT and CS-LBP as their shape feature. 

3D shape perception and retrieval have been discussed in 
many shape matching applications. The main application of 
these methods is matching building models. Therefore, the 
databases used in these systems have been restricted to 
geometrical shapes. Some of these shapes have been 
illustrated in Figure 2. 

 
Figure 2: Different types of 3D building models 
 

Many proposed method however, convert the 3D models 
into a multiple of 2D shapes characterizing the 3D shape 
from different viewpoints. Silhouettes for instance have 
been utilized by the author in [39] to describe a 3D volume. 
The authors in [40] report on using sketches as input to their 
retrieval system. In [41] authors introduce a method based 
on 3D features extracted from shapes. Their method consists 
of three main steps: 

1. Normalization: This step performs translation, 
scaling and horizontal rotation. 

2. Feature extraction: They use two features namely 
shell and unevenness. Shell is defined as the 
bounding box of the shape, while unevenness 
includes features such as circularity, eccentricity, 
and Fourier descriptors. 

3. Matching: They define a feature vector for each 
shape and consider the angle between the vectors 
to decide whether the shapes match or not. 

The main challenge in 3D shape modeling is related to the 
complexity arising from complex and multiple shapes, many 
researchers have only considered the case of single and 
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isolated shapes having geometric models. 
Ma and Latecki [42] proposed a shape matching method 

which is based on defining a shape context for boundary 
segments and using an object localization algorithm as 
maximal clique computation in a weighted graph for partial 
object detection.  Since their method is similar to our 
proposed method in terms of matching shape components in 
the first stage, and considering the relative position of the 
detected components for shape matching, we compare the 
experimental results of our method with their results. 
Assuming that a boundary segment is given by a planar set 
X, the shape context proposed in [42] is defined as both the 

length and direction of the vectors from xϵX to all other 
points in X. In order to compare boundary segments, they 
define a distance matrix named AD and an angle difference 
matrix named . These matrices are defined in Equation 1. A
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where P,Q,T, and U are point sets representing four 
boundary segments, D(X,Y)(i,j) is the distance from boundary 

segment X to boundary segment Y, and  is 

defined as the orientation of vectors x

),(),( jiyx

i - yj. They define 
their similarity criteria as: 

 A(P, Q, T, U) = AD(P, Q, T, U) + AΘ(P, Q, T, U)  
which measures the similarity between two shapes assuming 
boundary segments P and Q are from the first shape, and 
boundary segments T and U are from the second segment. 
Assuming each boundary segment as a node of a graph, the 
authors use a maximal clique computation in a weighted 
graph for shape matching.  

The method proposed in [34] uses a two-stage shape 
matching and hence similar to our proposed method. We 
have considered this method one of the benchmarks for 
verifying the performance of our method. Our main 
contribution is introducing a method for representing objects 
of multiple (probably disjoint) components, and the 
necessary algorithms for measuring their similarities and 
matching them.  

In the following section we introduce our multi-level 
shape representation model and the feature vector used for 
registration of the image with the model. Then we introduce 
our experimental set-up and evaluation metrics. The results 
and their analysis conclusions are presented subsequently. 

II. PROPOSED METHOD 

The proposed method is based on a multi-level shape 
representation. In the following sections, representing 
components at each layer and their matching algorithms are 
presented.  

 
Representing Components  
The lowest level in this model uses a scale and orientation 

invariant approach to represent each component. However, 
the size and orientation parameters are computed and used 
in the upper level for multi-component shape matching. 
Besides, minor boundary deformations are smoothed out to 

avoid over-fitting of the comparison algorithm to the generic 
shape model of the component. 

Our assumption is that the shape is provided as a binary 
area. This assumption is compatible with the results 
obtained from the threshold filtering algorithms. In order to 
make the shape orientation invariant, the coordinates of the 
shape boundary in a bounding box have been utilized. 
Assuming the lower left corner of the bounding box as the 
origin of the coordinate system,  each shape boundary pixel 

is considered as a vector such as where a and b 

are the coordinates of the boundary pixels.  

Tbax ),(

We then compute the covariance matrix for the boundary 
pixel vectors. The shape is rotated to align the coordinate 
axes with the eigenvectors of the covariance matrix of 
boundary pixels. The amount of rotation is preserved as the 
orientation feature of the component for comparison stage. 
A new bounding box parallel to the new coordinate system 
is defined for the shape. The width and height of the 
bounding box are normalized with respect to the length of 
the multi-component shape and stored as normalized size 
feature of the component.  

Figure 1 depicts a vertebrae segmented from a CT image 
and rotated to align with the eigenvectors of the covariance 
matrix of its boundary pixels.  

 

 
Figure 3.  Segmented area of vertebrae from a CT image (left), Direction of 
edge pixels (middle), Vertebrae after being aligned with the eigenvectors of 
the covariance matrix of its boundary pixels (right). 

 
To represent the shape, we consider utilizing a quad tree 

to describe the shape area. To handle the minor difference 
along the boundary of the shape, we restricted the minimum 
size of any side of the rectangular cells in the quad tree to 4. 
Besides, the cells are not split if at least 90% of the pixels 
have the same intensity value. This relaxing measurement 
helps us avoid creating trees with large heights. Besides, 
minor changes are ignored in the initial stage of estimating 
the shape. However, for each cell, size, intensity, and purity 
parameters are defined. Intensity parameter specifies 
whether the cell is part of the shape or the background and is 
the intensity value of the majority pixels falling in that cell, 
while purity defines the ratio of the pixels having cell 
intensity value (Intensity parameter) to the total number of 
pixels falling into that cell. Hence if 75 out of 100 pixels in 
a cell are black the Intensity will be black and the purity will 
be 0.75.  

Figure 4 depicts the quad tree created using the bounding 
box of the shape shown in Figure 3. 
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Figure 4. Quad tree representation of the segmented area of vertebrae from 
a CT image 

 
Shape Matching  
In this section we present our proposed algorithm for 

matching shapes of single components. Later on we present 
our method for representing the multi-component shapes, 
and matching them. Assuming that the shapes to be matched 
have been rotated and aligned with the eigenvectors of their 
covariance matrices, a minimum bounding box is used to 
define their extension, and are represented using the 
modified quad-tree. We match the shapes as shown in 
Algorithm 1.  

 
Algorithm 1. Matching shapes represented by quad-trees 

 
 Similarity (input: QTree1, QTree2; Output: SimilarityValue) 
 IF QTree1.Root.Purity > 0.9 AND QTree2.Root.Purity >0.9 THEN 

» IF QTree1.Root.Intensity = QTree2.Root.Intensity THEN 
 SimilarityValue = Min (QTree1.Root.Purity, QTree2.Root.Purity) 

» ELSE 
 SimilarityValue = 1-Max (QTree1.Root.Purity, Qtree2.Root.Purity) 

 ELSE IF QTree1.Root.Purity > 0.9 THEN 
» SimilarityValue = QTree2.Root.Purity 

 ELSE IF QTree2.Root.Purity > 0.9 THEN 
» SimilarityValue = QTree1.Root.Purity 

 ELSE 
» SimilarityValue = 

))(.).2(),(.).1((
4

1 4

1

iChildRootQTreeiChildRootQTreeSimilarity
i



 

Since the leaf nodes of the quad tree either have a purity 
value of 0.9 or contain no more than 16 pixels, the proposed 
algorithm finds the sum of minimum purity values of 
corresponding cells in both shapes. The algorithm assumes 
the components have been oriented along their covariance 
matrix eigenvectors. However, there exists the possibility of 
a 180-degree rotation difference between the two 
components. To consider these cases, the quad tree of the 
component after 180-degree rotation is also compared with 
the reference quad tree.  

 
Multi-Component Shape Representation 
The proposed multi-layer model defines a spatial tree to 

represent the components of the shape in the second layer. 
The tree is constructed based on a root or origin which is 
located at the centroid of the shape. Each component is 
represented by its spatial features, and shape features. 
Spatial features of a component are the angles of the arc of 

the circular sector in a counter clockwise measurement 
encompassing the component, and the distance from the 
centroid of the component to the root of the tree. Figure 5 
depicts the spatial features of a sample component. 

 

 
Figure 5. Spatial features of each shape component: the angles describing 
the circular sector encompassing the component (θ1 and θ2), and the 
distance of the centroid of each component to the shape origin (d). 

 
Shape features are the feature values obtained from level 

one of the multi-layer model (quad-tree representation, 
orientation, and normalized size). To represent a component 
using its spatial features, we have used a K-d tree data 
structure. The first level in our K-d tree represents the angles 
of the arc of a circular sector containing at least one 
component. If a circular sector contains more than one 
component, level two distinguishes them by considering the 
distance of their centroids to the origin of the tree. Figure 6 
depicts a sample shape and Figure 7 its K-d tree 
representation. 

  
Figure 6. A sample multi-component shape 

 
Figure 7. The K-d tree representation of the multi-component shape shown 
in Figure 6. 

It should be noted that the branches of the K-d tree at the 
second level are sorted according to their distance to the 
shape origin. At the leaves of the K-d tree we store the 
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components. Each component is represented by its 
normalized size, orientation and shape features of its quad-
tree. 

 
Multi-Component Shape Matching  
The final step in our proposed method is matching the K-

d spatial trees representing the multi-component shapes. The 
intuitive description of our comparison method is as below: 

Two shapes are similar iff  
» They contain the same number of components, 
» The spatial features of the components namely, relative 

location with respect to the shape origin, orientation, 
and normalized sizes are the same, 

» The corresponding components have the same shape. 
The first two similarity criteria are verified by comparing 

the K-d trees of the shapes. The comparison is based on 
computing a cost function which objectively measures the 
difference between the two K-d trees. The cost function of 
our method is a weighted sum of the similarity values 
obtained from tree structure comparison, and component 
similarities. Equation 2 defines the spatial similarity metric 
between components where W1,2,3 are the weight values of 
the equation. 

Component spatial similarity=W1×|C1.distance-C2.distance|+ 
   W2×|C1.Arcbegin-C2.Arcbegin|+ 
   W3×|C1.Arcend-C2.Arcend|        

(2

s and component shape similarity as shown 
in Equation 3. 

) 
We find the corresponding component of each component 

by comparing each component from the first shape with all 
components of the second shape, and each component of the 
second shape with all components of the first shape (cross 
correlation). The lowest component spatial similarity values 
give the correspondences. The shape similarity cost value is 
defined as a weighted sum of total component spatial 
similarity value
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Cost function considers the corresponding components 
for finding the differences. The second term (Similarity) is 
computed as given by Algorithm 1. OrientationDiff is the 
difference in orientation of the corresponding components. 
Finally SizeDiff defines the size feature difference between 
the corresponding components. Weight values have been 
empirically set in our experiments as W

c

iSizeDiff
W4 )(                                                    (3) 

y when the shape 

co

ary segments are considered 

ng 

f the boundary do not 

pe 
matching using incomplete data as our future work. 

from zero (no bone) to 10 (bone seen in all 10 
se

owever, we restricted the 
range to the area covered by liver. 

1=0.2, W2=0.35, 
W3=0.15, and W4=0.3. Here the tree structure similarity 
value is normalized with the number of components 
(parameter C). This means that as the number of 
components grows larger, the impact of a missing 
component on the similarity metric becomes smaller. 
Besides, the total similarity value of the components is 
normalized using the number of components to reduce the 
effect of single component dissimilarit

ntains a large number of components. 
The proposed method has the following properties: 
 The boundary information is combined with the area 

occupied by each component during the first stage of 
the shape matching. This is in contrast to the other 
shape matching methods where only the shape and 
orientation of the bound
as the similarity metric. 

 If an object is composed of two or more disjoint 
segments (or the current imaging conditions results in 
such a view of the object), the relative size, 
orientation, and location of each component become 
of importance during the matching stage. The 
proposed method considers all these features duri
the second stage of the shape matching procedure. 

 The proposed method is scale and rotation invariant. 
Besides, minor variations o
affect the matching process. 

The main disadvantage of the proposed method is its 
sensitivity to partial occlusion. Incomplete data can result in 
the different number of detected components which will 
cause a mismatch. We are considering the case of sha

III. EXPERIMENTAL RESULTS AND ANALYSIS  

The experimental verification of the proposed method 
was carried out using two sets of images. The first set 
contains nine object categories with no articulation from 
McGill 3D shape benchmark database where we have used 
their 2D images (Figure 8). The second set consists of ten 
series of abdominal CT images. The CT images are obtained 
from helical CT scanners, with slice thickness of 1.25mm, 
and dimension of 512 × 512 pixels. For this experiment, a 
model of the human chest was created by applying threshold 
to CT images and extracting thoracic skeleton. Manual 
cleaning of the threshold filtered images was necessary to 
remove some areas corresponding to the examination bed. 
The model was created by averaging 10 different abdominal 
CT image series. The model therefore, includes values 
ranging 

ries). 
Four CT examination series are used for testing the 

algorithm. Single images from different positions of the test 
series were used for evaluation. Choosing images from the 
test series is carried out randomly h

 
Figure 8. Sample images from McGill non-articulated objects categories. 

 
Figure 9 depicts a threshold filtered sample image from 
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our test series (left), and the most similar slice in the first 
series (right).  

 

 
 

Figure 9. Threshold filtered sample input image (left), and the result of 
matching it with an abdominal CT examination series (right). 

 the multi-component object to 
be

omponent objects which 
is the first stage of our algorithm.  

 
Two types of experiments are conducted to verify the 

performance of the proposed method. The first set of 
experiments, consider the matching of local areas or 
components. Hence, it measures the performance of our 
quad-tree based shape context algorithm. The images from 
McGill non-articulated objects categories are utilized in 
these experiments. In this experiment, each image from a 
category is considered and matched with all images in one 
category (Figure 10), and multiple categories (Figure 11). 
The second set is designed to evaluate the multi-component 
matching algorithm. For the second experiments we are 
using abdominal computed tomography images where each 
threshold filtered cross-section of a bone (ribs) is considered 
as a component and the threshold filtered image of the 
thoracic skeleton comprises

 matched (figure 9. left). 
Figures 10 and 11 depict the result of applying our 

proposed method to match single c

 
Figure 10. Precision-recall (PR) plot for three shape descriptors, applied to 
single categories of the McGill database of non-articulated shapes. 

tching criteria to include the 
ar given below: 

in ( QTree1.Root.Purity, QTree2.Root.Purity)×QTree1.Root.Area 

k in comparing the results of our proposed 
m

text as proposed in [25] 
fa

, we have considered the method 
described in [25].  

 
Our quad-tree geometry representation method assumes 

the cells of the quad-tree have the same importance, and the 
purity of a cell is the determining factor. As a benchmark we 
have modified the proposed ma

ea of the cell as 
SimilarityValue =  
M

 
Since the tree is defined recursively, the root area returns 

the area of the quadrant pointed to y that tree branch. 
Meanwhile, the shape context based matching method 

proposed in [25] has been considered as a second 
benchmar

ethod. 
The outputs of the experiments indicate that the proposed 

method outperforms both other methods. The reason for this 
better performance is two-fold. Firstly, since the matching 
of the components is scale invariant and the size is passed as 
a parameter to the next stage, the main deterministic factor 
becomes the shape of the contour surrounding the 
component and hence, the internal area should not be 
considered with a large weight factor. Secondly, statistical 
distribution of the boundary pixels cannot be a reliable 
factor in comparing shapes if the shapes are close in 
geometry. This means the shape con

ils if the number of bins is small. 
The second group of experiments compares the multi-

component shapes using the results of the first stage of 
matching process. For these experiments we use abdominal 
CT images where a threshold is applied to the image to 
extract the bones of the thoracic skeleton. Each bone cross-
section is considered as a component. The input images are 
compared with a set of threshold filtered abdominal CT 
images which are considered as a 3D reference model. In 
these experiments

 
Figure 11. Precision-recall (PR) plot for three shape descriptors, applied to 
m i-categories of the McGill database of non-articulated shapes. 

 matching which benefits from the 
results of the first level.  

ult

 
The better performance of our proposed method is an 

indicator of the importance of applying shape matching in 
two levels: a local matching which is carried out in terms of 
components, and a global

 
Figure 12. Precision-recall (PR) plot for three shape descriptors, applied to 

u
 
m lti-component images of abdominal CT images. 

The poor performance of area weighted quad-tree method 
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indicates that the quad-trees are suitable for representing 
single component objects as is shown in Figures 10 and 11, 
however, multi-component shapes are not represented 
effectively because any change in the position, orientation, 
or

the results of the proposed
m

e results of applying t

Table 1. Compar tive detection  ie

 ted 

 size of a component affects the whole model drastically.  
The method has been modified to contain a shape context 

of radial parts which are 10 degrees apart, and include 5 
layers. This implementation is used as a benchmark where 
its results are compared with  

ethod as shown in Figure 12. 
Our third set of experiments compares the performance of 

the proposed method with the method proposed in [42]. We 
used three sets of shapes including simple, articulated, and 
threshold filtered medical images. In simple and articulated 
images, the rates are found by counting the number of times 
the test image is classified correctly. In case of medical 
images, we have counted the number of times that the best 
match for a sample image is found in a series of CT 
examination from abdomen. Th he 
algorithms are given in Table 1.  

a rates using

Simple 
different categor

Articula
s of images 

Medical 
Shapes Shapes Images 

Method proposed 89% 80% 64% 
by Latecki [34] 
Proposed method 94% 88% 83% 
 
The method proposed in [42] considers boundary 

segments normalized separately before comparison. This 
results in matching images of the same object with affine 
shape differences. Besides, in shapes with multiple disjoint 
components such as threshold filtered medical images, the 
orientation metric proposed in [42] shows a poor 
performance. This is indicated in Table 1 where the 
performance of the method is quite high in simple object 
images but very poor in medical images. The second stage 
of our proposed method clearly outperforms their pro
method. 

al CT images and 
can be considered with a higher weight. 
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IV. DISCUSSION 

A two-layer shape context based method has been 
proposed for matching multi-component objects. The 
proposed method matches the components using the shape 
geometry which is represented by a quad-tree. The 
representation is rotation and scale invariant, and minor 
differences in the object boundary do not affect the 
matching process. However, the size and orientation of the 
component are utilized in the next stage where the multi-
component matching is carried out. The experimental results 
illustrate that the method is very versatile in matching 
objects which are made of disjoint components. An 
important application for the proposed method is medical 
and biological images. In our experiments, we used CT 
images of abdomen where the bones had been threshold 
filtered in matching with a statistical 3D model. However, 
biological images such as microscopy images of Electron 
Microscopy Tomography (EMT) are a good application area 
for our proposed method. In our proposed method the 
geometric features are of equal importance however, the 
performance of the method can also be improved by 
assigning different weights to the features. For instance 

xiphoid process of sternum is an indicator of the topmost 
location of liver in transversal abdomin
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