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Abstract
In this paper, we obtain a unique common coupled fixed point theorem by using
(ψ ,α,β)-contraction in ordered partial metric spaces. We give an application to
integral equations as well as homotopy theory. Also we furnish an example which
supports our theorem.
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1 Introduction
The notion of a partial metric space (PMS) was introduced by Matthews [] as a part of
the study of denotational semantics of data flow networks. In fact, it is widely recognized
that PMSs play an important role in constructing models in the theory of computation
and domain theory in computer science (see e.g. [–]).

Matthews [, ], Oltra and Valero [] and Altun et al. [] proved some fixed point
theorems in PMSs for a single map. For more work on fixed, common fixed point theorems
in PMSs, we refer to [, –].

The notion of a coupled fixed point was introduced by Bhaskar and Lakshmikantham
[] and they studied some fixed point theorems in partially ordered metric spaces. Later
some authors proved coupled fixed and coupled common fixed point theorems (see [,
–]).

The aim of this paper is to study unique common coupled fixed point theorems of Jungck
type maps by using a (ψ ,α,β)-contraction condition over partially ordered PMSs.

2 Preliminaries
First we recall some basic definitions and lemmas which play a crucial role in the theory
of PMSs.

Definition . (See [, ]) A partial metric on a non-empty set X is a function p : X ×X →
R+ such that, for all x, y, z ∈ X,

(p) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p) p(x, x) ≤ p(x, y), p(y, y) ≤ p(x, y),
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(p) p(x, y) = p(y, x),
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

The pair (X, p) is called a PMS.

If p is a partial metric on X, then the function dp : X × X →R
+, given by

dp(x, y) = p(x, y) – p(x, x) – p(y, y), ()

is a metric on X.

Example . (See e.g. [, , ]) Consider X = [,∞) with p(x, y) = max{x, y}. Then
(X, p) is a PMS. It is clear that p is not a (usual) metric. Note that in this case dp(x, y) = |x–y|.

Example . (See []) Let X = {[a, b] : a, b ∈ R, a ≤ b} and define p([a, b], [c, d]) =
max{b, d} – min{a, c}. Then (X, p) is a PMS.

Each partial metric p on X generates a T topology τp on X which has as a base the
family of open p-balls {Bp(x, ε), x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}
for all x ∈ X and ε > .

We now state some basic topological notions (such as convergence, completeness, con-
tinuity) on PMSs (see e.g. [, , , , , ]).

Definition .
. A sequence {xn} in the PMS (X, p) converges to the limit x if and only if

p(x, x) = lim
n→∞ p(x, xn).

. A sequence {xn} in the PMS (X, p) is called a Cauchy sequence if lim
n,m→∞ p(xn, xm)

exists and is finite.
. A PMS (X, p) is called complete if every Cauchy sequence {xn} in X converges with

respect to τp, to a point x ∈ X such that p(x, x) = lim
n,m→∞ p(xn, xm).

. A mapping F : X → X is said to be continuous at x ∈ X if, for every ε > , there
exists δ >  such that F(Bp(x, δ)) ⊆ Bp(Fx, ε).

The following lemma is one of the basic results as regards PMS [, , , , , ].

Lemma .
. A sequence {xn} is a Cauchy sequence in the PMS (X, p) if and only if it is a Cauchy

sequence in the metric space (X, dp).
. A PMS (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover,

lim
n→∞ dp(x, xn) =  ⇔ p(x, x) = lim

n→∞ p(x, xn) = lim
n,m→∞ p(xn, xm). ()

Next, we give two simple lemmas which will be used in the proofs of our main results.
For the proofs we refer [].

Lemma . Assume xn → z as n → ∞ in a PMS (X, p) such that p(z, z) = . Then
lim

n→∞ p(xn, y) = p(z, y) for every y ∈ X.
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Lemma . Let (X, p) be a PMS. Then
(A) if p(x, y) = , then x = y,
(B) if x �= y, then p(x, y) > .

Remark . If x = y, p(x, y) may not be .

Definition . ([]) Let (X,	) be a partially ordered set and F : X × X → X. Then the
map F is said to have mixed monotone property if F(x, y) is monotone non-decreasing in
x and monotone non-increasing in y; that is, for any x, y ∈ X,

x 	 x implies F(x, y) 	 F(x, y) for all y ∈ X

and

y 	 y implies F(x, y) 	 F(x, y) for all x ∈ X.

Definition . ([]) An element (x, y) ∈ X × X is called a coupled fixed point of a map-
ping F : X × X → X if F(x, y) = x and F(y, x) = y.

Definition . ([]) An element (x, y) ∈ X × X is called

(g) a coupled coincident point of mappings F : X × X → X and f : X → X if fx = F(x, y)
and fy = F(y, x),

(g) a common coupled fixed point of mappings F : X × X → X and f : X → X if x = fx =
F(x, y) and y = fy = F(y, x).

Definition . ([]) The mappings F : X × X → X and f : X → X are called w-
compatible if f (F(x, y)) = F(fx, fy) and f (F(y, x)) = F(fy, fx) whenever fx = F(x, y) and fy =
F(y, x).

Inspired by Definition ., Lakshmikantham and Ćirić in [] introduced the concept of
a g-mixed monotone mapping.

Definition . ([]) Let (X,	) be a partially ordered set, F : X × X → X and g : X → X
be mappings. Then the map F is said to have a mixed g-monotone property if F(x, y) is
monotone g-non-decreasing in x as well as monotone g-non-increasing in y; that is, for
any x, y ∈ X,

gx 	 gx implies F(x, y) 	 F(x, y) for all y ∈ X

and

gy 	 gy implies F(x, y) 	 F(x, y) for all x ∈ X.

Now we prove our main results.
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3 Results and discussions
Definition . Let (X, p) be a PMS, let F : X × X → X and g : X → X be mappings. We
say that F satisfies a (ψ ,α,β)-contraction with respect to g if there exist ψ ,α,β : [,∞) →
[,∞) satisfying the following:

(..) ψ is continuous and monotonically non-decreasing, α is continuous and β is lower
semi continuous,

(..) ψ(t) =  if and only if t = ,α() = β() = ,
(..) ψ(t) – α(t) + β(t) >  for t > ,
(..) ψ(p(F(x, y), F(u, v))) ≤ α(M(x, y, u, v)) – β(M(x, y, u, v)), ∀x, y, u, v ∈ X , gx 	 gu, gy �

gv and

M(x, y, u, v)

= max

{
p(gx, gu), p(gy, gv), p(gx, F(x, y)), p(gy, F(y, x)), p(gu, F(u, v)), p(gv, F(v, u)),

p(gx,F(x,y))p(gy,F(y,x))
+p(gx,gu)+p(gy,gv)+p(F(x,y),F(u,v)) , p(gu,F(u,v))p(gv,F(v,u))

+p(gx,gu)+p(gy,gv)+p(F(x,y),F(u,v))

}
.

Theorem . Let (X,	) be a partially ordered set and p be a partial metric such that (X, p)
is a PMS. Let F : X × X → X and g : X → X be such that

(..) F satisfies a (ψ ,α,β)-contraction with respect to g ,
(..) F(X × X) ⊆ g(X) and g(X) is a complete subspace of X ,
(..) F has a mixed g-monotone property,
(..) (a) if a non-decreasing sequence {xn} → x, then xn 	 x for all n,

(b) if a non-increasing sequence {yn} → y, then y 	 yn for all n.

If there exist x, y ∈ X such that gx 	 F(x, y) and gy � F(y, x), then F and g have a
coupled coincidence point in X × X.

Proof Let x, y ∈ X be such that gx 	 F(x, y) and gy � F(y, x). Since F(X × X) ⊆
g(X), we choose x, y ∈ X such that

gx 	 F(x, y) = gx and gy � F(y, x) = gy

and choose x, y ∈ X such that

gx = F(x, y) and gy = F(y, x).

Since F has the mixed g-monotone property, we obtain

gx 	 gx 	 gx and gy � gy � gy.

Continuing this process, we construct the sequences {xn} and {yn} in X such that

gxn+ = F(xn, yn) and gyn+ = F(yn, xn), n = , , , . . .

with

gx 	 gx 	 gx 	 · · · and
gy � gy � gy � · · · .

}
(I)
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Case (a): If gxm = gxm+ and gym = gym+ for some m, then (xm, ym) is a coupled coinci-
dence point in X × X.

Case (b): Assume gxn �= gxn+ or gyn �= gyn+ for all n.
Since gxn 	 gxn+ and gyn � gyn+, from (..), we obtain

ψ
(
p(gxn, gxn+)

)
= ψ

(
p
(
F(xn–, yn–), F(xn, yn)

))
≤ α

(
M(xn–, yn–, xn, yn)

)
– β

(
M(xn–, yn–, xn, yn)

)
,

M(xn–, yn–, xn, yn) = max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(gxn–, gxn), p(gyn–, gyn), p(gxn–, gxn),

p(gyn–, gyn), p(gxn, gxn+), p(gyn, gyn+),
p(gxn–,gxn)p(gyn–,gyn)

+p(gxn–,gxn)+p(gyn–,gyn)+p(gxn ,gxn+) ,
p(gxn ,gxn+)p(gyn ,gyn+)

+p(gxn–,gxn)+p(gyn–,gyn)+p(gxn ,gxn+)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

But

p(gxn–, gxn)p(gyn–, gyn)
 + p(gxn–, gxn) + p(gyn–, gyn) + p(gxn, gxn+)

≤ max
{

p(gxn–, gxn), p(gxn, gxn+)
}

and

p(gxn, gxn+)p(gyn, gyn+)
 + p(gxn–, gxn) + p(gyn–, gyn) + p(gxn, gxn+)

≤ p(gyn, gyn+).

Therefore

M(xn–, yn–, xn, yn) = max

{
p(gxn–, gxn), p(gyn–, gyn),
p(gxn, gxn+), p(gyn, gyn+)

}
.

Hence

ψ
(
p(gxn, gxn+)

) ≤ α

(
max

{
p(gxn–, gxn), p(gyn–, gyn),
p(gxn, gxn+), p(gyn, gyn+)

})

– β

(
max

{
p(gxn–, gxn), p(gyn–, gyn),
p(gxn, gxn+), p(gyn, gyn+)

})
.

Similarly

ψ
(
p(gyn, gyn+)

) ≤ α

(
max

{
p(gxn–, gxn), p(gyn–, gyn),
p(gxn, gxn+), p(gyn, gyn+)

})

– β

(
max

{
p(gxn–, gxn), p(gyn–, gyn),
p(gxn, gxn+), p(gyn, gyn+)

})
.

Put Rn = max{p(gxn, gxn+), p(gyn, gyn+)}. Let us suppose that

Rn �=  for all n ≥ . ()

Let, if possible, for some n, Rn– < Rn.
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Now

ψ(Rn) = ψ
(
max

{
p(gxn, gxn+), p(gyn, gyn+)

})
= max

{
ψ
(
p(gxn, gxn+)

)
,ψ

(
p(gyn, gyn+)

)}
≤ α

(
max

{
p(gxn–, gxn), p(gyn–, gyn),
p(gxn, gxn+), p(gyn, gyn+)

})

– β

(
max

{
p(gxn–, gxn), p(gyn–, gyn),
p(gxn, gxn+), p(gyn, gyn+)

})

= α
(
max{Rn–, Rn}

)
– β

(
max{Rn–, Rn}

)
= α(Rn) – β(Rn).

From (..) and (..), it follows that Rn = , a contradiction.
Hence

Rn ≤ Rn–. ()

Thus {Rn} is a non-increasing sequence of non-negative real numbers and must converge
to a real number r ≥ .

Also

ψ(Rn) ≤ α(Rn–) – β(Rn–).

Letting n → ∞, we get

ψ(r) ≤ α(r) – β(r).

From (..) and (..), we get r = . Thus

lim
n→∞ max

{
p(gxn, gxn+), p(gyn, gyn+)

}
= ,

lim
n→∞ p(gxn, gxn+) =  = lim

n→∞ p(gyn, gyn+). ()

Hence from (p), we have

lim
n→∞ p(gxn, gxn) =  = lim

n→∞ p(gyn, gyn). ()

From () and () and by the definition of dp, we get

lim
n→∞ dp(gxn, gxn+) =  = lim

n→∞ dp(gyn, gyn+). ()

Now we prove that {gxn} and {gyn} are Cauchy sequences.
To the contrary, suppose that {gxn} or {gyn} is not Cauchy.
This implies that dp(gxm, gxn) �→  or dp(gym, gyn) �→  as n, m → ∞.
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Consequently

max
{

dp(gxm, gxn), dp(gym, gyn)
} �→  as n, m → ∞.

Then there exist an ε >  and monotone increasing sequences of natural numbers {mk}
and {nk} such that nk > mk > k. We have

max
{

dp(gxmk , gxnk ), dp(gymk , gynk )
} ≥ ε ()

and

max
{

dp(gxmk , gxnk –), dp(gym, gynk –)
}

< ε. ()

From () and (), we have

ε ≤ max
{

dp(gxmk , gxnk ), dp(gymk , gynk )
}

≤ max
{

dp(gxmk , gxnk –), dp(gymk , gynk –)
}

+ max
{

dp(gxnk–, gxnk ), dp(gynk –, gynk )
}

< ε + max
{

dp(gxnk –, gxnk ), dp(gynk –, gynk )
}

.

Letting k → ∞ and using (), we get

lim
k→∞

max
{

dp(gxmk , gxnk ), dp(gymk , gynk )
}

= ε. ()

By the definition of dp and using () we get

lim
k→∞

max
{

p(gxmk , gxnk ), p(gymk , gynk )
}

=
ε


. ()

From (), we have

ε ≤ max
{

dp(gxmk , gxnk ), dp(gymk , gynk )
}

≤ max
{

dp(gxmk , gxmk –), dp(gymk , gymk –)
}

+ max
{

dp(gxmk–, gxnk ), dp(gymk –, gynk )
}

≤  max
{

dp(gxmk , gxmk –), dp(gymk , gymk –)
}

+ max
{

dp(gxmk , gxnk ), dp(gymk , gynk )
}

. ()

Letting k → ∞, using (), () and (), we get

lim
k→∞

max
{

dp(gxmk –, gxnk ), dp(gymk –, gynk )
}

= ε. ()

Hence, we get

lim
k→∞

max
{

p(gxmk –, gxnk ), p(gymk –, gynk )
}

=
ε


. ()
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From (), we have

ε ≤ max
{

dp(gxmk , gxnk ), dp(gymk , gynk )
}

≤ max
{

dp(gxmk , gxmk –), dp(gymk , gymk –)
}

+ max
{

dp(gxmk –, gxnk +), dp(gymk –, gynk +)
}

+ max
{

dp(gxnk +, gxnk ), dp(gynk +, gynk )
}

≤  max
{

dp(gxmk , gxmk –), dp(gymk , gymk –)
}

+ max
{

dp(gxmk , gxnk ), dp(gymk , gynk )
}

+ max
{

dp(gxnk , gxnk +), dp(gynk , gynk +)
}

. ()

Letting k → ∞, using (), () and (), we get

lim
k→∞

max
{

dp(gxmk –, gxnk +), dp(gymk –, gynk +)
}

= ε. ()

Hence, we have

lim
k→∞

max
{

p(gxmk –, gxnk +), p(gymk –, gynk +)
}

=
ε


. ()

Now from (), we have

ε ≤ max
{

dp(gxmk , gxnk ), dp(gymk , gynk )
}

≤ max
{

dp(gxmk , gxnk +), dp(gymk , gynk +)
}

+ max
{

dp(gxnk+, gxnk ), dp(gynk +, gynk )
}

.

Letting k → ∞ and using (), we obtain

ε ≤ lim
k→∞

max
{

dp(gxmk , gxnk +), dp(gymk , gynk +)
}

+ 

≤ lim
k→∞

max

{
p(gxmk , gxnk +) – p(gxmk , gxmk ) – p(gxnk +, gxnk +),
p(gymk , gynk +) – p(gymk , gymk ) – p(gynk +, gynk +)

}

=  lim
k→∞

max
{

p(gxmk , gxnk +), p(gymk , gynk +)
}

, from ().

Thus,

ε


≤ lim

k→∞
max

{
p(gxmk , gxnk +), p(gymk , gynk +)

}
.

By the properties of ψ ,

ψ

(
ε



)
≤ lim

k→∞
ψ
(
max

{
p(gxmk , gxnk +), p(gymk , gynk +)

})
= lim

k→∞
max

{
ψ
(
p(gxmk , gxnk +)

)
,ψ

(
p(gymk , gynk +)

)}
. ()
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Now

ψ
(
p(gxmk , gxnk +)

)
= ψ

(
p
(
F(xmk –, ymk –), F(xnk , ynk )

))
≤ α

(
M(xmk –, ymk –, xnk , ynk )

)
– β

(
M(xmk –, ymk –, xnk , ynk )

)

= α

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

max

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p(gxmk –, gxnk ), p(gymk –, gynk ), p(gxmk –, gxmk ),

p(gymk –, gymk ), p(gxnk , gxnk +), p(gynk , gynk +),
p(gxmk –,gxmk )p(gymk –,gymk )

+p(gxmk –,gxnk ),p(gymk –,gynk )+p(gxmk ,gxnk +) ,
p(gxnk ,gxnk +)p(gynk ,gynk +)

+p(gxmk –,gxnk ),p(gymk –,gynk )+p(gxmk ,gxnk +)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

– β

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

max

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p(gxmk –, gxnk ), p(gymk –, gynk ), p(gxmk –, gxmk ),

p(gymk –, gymk ), p(gxnk , gxnk +), p(gynk , gynk +),
p(gxmk –,gxmk )p(gymk –,gymk )

+p(gxmk –,gxnk ),p(gymk –,gynk )+p(gxmk ,gxnk +) ,
p(gxnk ,gxnk +)p(gynk ,gynk +)

+p(gxmk –,gxnk ),p(gymk –,gynk )+p(gxmk ,gxnk +)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Letting k → ∞, we have

lim
k→∞

ψ
(
p(gxmk , gxnk +)

) ≤ α

(
ε



)
– β

(
ε



)
.

Similarly, we obtain

lim
k→∞

ψ
(
p(gymk , gynk +)

) ≤ α

(
ε



)
– β

(
ε



)
.

Hence from (), we have

ψ

(
ε



)
≤ α

(
ε



)
– β

(
ε



)
.

From (..) and (..), we get ε
 = , a contradiction.

Hence {gxn} and {gyn} are Cauchy sequences in the metric space (X, dp).
Hence we have lim

n,m→∞ dp(gxn, gxm) =  = lim
n,m→∞ dp(gyn, gym).

Now from the definition of dp and from (), we have

lim
n→∞ p(gxn, gxm) =  = lim

n→∞ p(gyn, gym). ()

Suppose g(X) is a complete subspace of X.
Since {gxn} and {gyn} are Cauchy sequences in a complete metric space (g(X), dp). Then

{gxn} and {gyn} converges to some u and v in g(X) respectively. Thus

lim
n→∞ dp(gxn, u) = 

and

lim
n→∞ dp(gyn, v) = 

for some u and v in g(X).
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Since u, v ∈ g(X), there exist x, y ∈ X such that u = gx and v = gy.
Since {gxn} and {gyn} are Cauchy sequences, gxn → u, gyn → v, gxn+ → u and gyn+ → v.
From Lemma .() and (), we obtain

p(u, u) = lim
n→∞ p(gxn, u) = p(v, v) = lim

n→∞ p(gyn, v) = . ()

Now we prove that lim
n→∞ p(F(x, y), gxn) = p(F(x, y), u).

By definition of dp,

dp
(
F(x, y), gxn

)
= p

(
F(x, y), gxn

)
– p

(
F(x, y), F(x, y)

)
– p(gxn, gxn).

Letting n → ∞, we have

dp
(
F(x, y), u

)
=  lim

n→∞ p
(
F(x, y), gxn

)
– p

(
F(x, y), F(x, y)

)
– , from ().

By definition of dp and (), we have

lim
n→∞ p

(
F(x, y), gxn

)
= p

(
F(x, y), u

)
.

Similarly, lim
n→∞ p(F(y, x), gyn) = p(F(y, x), v).

From (p), we have

p
(
u, F(x, y)

) ≤ p(u, gxn+) + p
(
gxn+, F(x, y)

)
– p(gxn+, gxn+)

= p(u, gxn+) + p
(
gxn+, F(x, y)

)
.

Letting n → ∞, we have

p
(
u, F(x, y)

) ≤  + lim
n→∞ p

(
F(xn, yn), F(x, y)

)
.

Also from (..), we get gxn 	 gx and gyn � gy. Since ψ is a continuous and non-
decreasing function, we get

ψ
(
p
(
u, F(x, y)

) ≤ lim
n→∞ψ

(
p
(
F(xn, yn), F(x, y)

))
≤ lim

n→∞
[
α
(
M(xn, yn, x, y)

)
– β

(
M(xn, yn, x, y)

)]
,

M(xn, yn, x, y) = max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(gxn, u), p(gyn, v), p(gxn, gxn+),

p(gyn, gyn+), p(u, F(x, y)), p(v, F(y, x)),
p(gxn ,gxn+)p(gyn ,gyn+)

+p(gxn ,u)+p(gyn ,v)+p(gxn+,F(x,y)) ,
p(u,F(x,y))p(v,F(y,x))

+p(gxn ,u)+p(gyn ,v)+p(gxn+,F(x,y))

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

→ max
{

p
(
u, F(x, y)

)
, p
(
v, F(y, x)

)}
as n → ∞.

Therefore

ψ
(
p
(
u, F(x, y)

)) ≤ α

(
max

{
p(u, F(x, y)),
p(v, F(y, x))

})
– β

(
max

{
p(u, F(x, y)),
p(v, F(y, x))

})
.
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Similarly,

ψ
(
p
(
v, F(y, x)

)) ≤ α

(
max

{
p(u, F(x, y)),
p(v, F(y, x))

})
– β

(
max

{
p(u, F(x, y)),
p(v, F(y, x))

})
.

Hence

ψ
(
max

{
p
(
u, F(x, y)

)
, p
(
v, F(y, x)

)})
= max

{
ψ
(
p
(
u, F(x, y)

))
,ψ

(
p
(
v, F(y, x)

))}
≤ α

(
max

{
p(u, F(x, y)),
p(v, F(y, x))

})
– β

(
max

{
p(u, F(x, y)),
p(v, F(y, x))

})
.

It follows that max{p(u, F(x, y)), p(v, F(y, x))} = . So F(x, y) = u and F(y, x) = v.
Hence F(x, y) = gx = u and F(y, x) = gy = v.
Hence F and g have a coincidence point in X × X. �

Theorem . In addition to the hypothesis of Theorem ., we suppose that for every
(x, y), (x, y) ∈ X × X there exists (u, v) ∈ X × X such that (F(u, v), F(v, u)) is comparable to
(F(x, y), F(y, x)) and (F(x, y), F(y, x)). If (x, y) and (x, y) are coupled coincidence points
of F and g , then

F(x, y) = gx = gx = F
(
x, y) and

T(y, x) = gy = gy = F
(
y, x).

Moreover, if (F , g) is w-compatible, then F and g have a unique common coupled fixed
point in X × X.

Proof The proof follows from Theorem . and the definition of comparability. �

Theorem . Let (X,	) be a partially ordered set and p be a partial metric such that
(X, p) is a complete PMS. Let F : X × X → X be such that

(..) ψ
(
p
(
F(x, y), F(u, v)

)) ≤ α
(
max

{
p(x, u), p(y, v)

})
– β

(
max

{
p(x, u), p(y, v)

})
,

∀x, y, u, v ∈ X , x 	 u and y � v, where ψ ,α and β are defined in Definition . and
(..) (a) If a non-decreasing sequence {xn} → x, then xn 	 x for all n, and

(b) if a non-increasing sequence {yn} → y, then y 	 yn for all n.

If there exist x, y ∈ X such that x 	 F(x, y) and y � F(y, x), then F has a unique
coupled fixed point in X × X.

Example . Let X = [, ], let 	 be partially ordered on X by

x 	 y ⇔ x ≥ y.

The mapping F : X ×X → X defined by F(x, y) = x+y

(x+y+) and p : X ×X → [,∞) by p(x, y) =
max{x, y} is a complete partial metric on X. Define ψ ,α,β : [,∞) → [,∞) by ψ(t) = t,
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α(t) = t
 and β(t) = t

 . We have

p
(
F(x, y), F(u, v)

)
= max

{
x + y

(x + y + )
,

u + v

(u + v + )

}

=



[
max

{
x

x + y + 
,

u

u + v + 

}
+ max

{
y

x + y + 
,

v

u + v + 

}]

≤ 


[
max

{
x

x + 
,

u

u + 

}
+ max

{
y

y + 
,

v

v + 

}]

≤ 


[
max

{
x

x + 
,

u
u + 

}
+ max

{
y

y + 
,

v
v + 

}]

≤ 

[
max{x, u} + max{y, v}]

=


[
p(x, u) + p(y, v)

]
≤ 


max

{
p(x, u), p(y, v)

}
= α

(
max

{
p(x, u), p(y, v)

})
– β

(
max

{
p(x, u), p(y, v)

})
.

Hence all conditions of Theorem . hold. From Theorem ., (, ) is a unique coupled
fixed point of F in X × X.

3.1 Application to integral equations
In this section, we study the existence of a unique solution to an initial value problem, as
an application to Theorem ..

Consider the initial value problem

x(t) = f
(
t, x(t), x(t)

)
, t ∈ I = [, ],

x() = x, ()

where f : I × [ x
 ,∞) × [ x

 ,∞) → [ x
 ,∞) and x ∈ R.

Theorem . Consider the initial value problem () with f ∈ C(I × [ x
 ,∞) × [ x

 ,∞))
and

∫ t


f
(
s, x(s), y(s)

)
ds ≤ max

{


∫ t

 f (s, x(s), x(s)) ds – x
 ,



∫ t

 f (s, y(s), y(s)) ds – x


}
.

Then there exists a unique solution in C(I, [ x
 ,∞)) for the initial value problem ().

Proof The integral equation corresponding to initial value problem () is

x(t) = x +
∫ t


f
(
s, x(s), x(s)

)
ds. ()
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Let X = C(I, [ x
 ,∞)) and p(x, y) = max{x – x

 , y – x
 } for x, y ∈ X. Define ψ ,α,β : [,∞) →

[,∞) by ψ(t) = t, α(t) = 
 t and β(t) = 

 t. Define F : X × X → X by

F(x, y)(t) = x +
∫ t


f
(
s, x(s), y(s)

)
ds.

Now

p
(
F(x, y)(t), F(u, v)(t)

)
= max

{
F(x, y) –

x


, F(u, v) –

x



}

= max

{
x


+
∫ t


f
(
s, x(s), y(s)

)
ds,

x


+
∫ t


f
(
s, u(s), v(s)

)
ds
}

≤ max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x
 + max

{ 

∫ t

 f (s, x(s), x(s)) ds – x
 ,



∫ t

 f (s, y(s), y(s)) ds – x


}
,

x
 + max

{ 

∫ t

 f (s, u(s), u(s)) ds – x
 ,



∫ t

 f (s, v(s), v(s)) ds – x


}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= max

⎧⎨
⎩

max
{

x(t)
 – x

 , y(t)
 – x



}
,

max
{

u(t)
 – x

 , v(t)
 – x



}
⎫⎬
⎭

=



max

{
max

{
x(t) –

x


, u(t) –

x



}
, max

{
y(t) –

x


, v(t) –

x



}}

=



max
{

p(x, u), p(y, v)
}

= α
(
max

{
p(x, u), p(y, v)

})
– β

(
max

{
p(x, u), p(y, v)

})
.

Thus F satisfies the condition (..) of Theorem .. From Theorem ., we conclude
that F has a unique coupled fixed point (x, y) with x = y. In particular x(t) is the unique
solution of the integral equation (). �

3.2 Application to homotopy
In this section, we study the existence of a unique solution to homotopy theory.

Theorem . Let (X, p) be a complete PMS, U be an open subset of X and U be a closed
subset of X such that U ⊆ U . Suppose H : U × U × [, ] → X is an operator such that the
following conditions are satisfied:

(i) x �= H(x, y,λ) and y �= H(y, x,λ) for each x, y ∈ ∂U and λ ∈ [, ] (here ∂U denotes the
boundary of U in X),

(ii) ψ(p(H(x, y,λ), H(u, v,λ))) ≤ α(max{p(x, y), p(u, v)}) – β(max{p(x, y), p(u, v)}) ∀x, y ∈
U and λ ∈ [, ], where ψ ,α : [,∞) → [,∞) is continuous and non-decreasing
and β : [,∞) → [,∞) is lower semi continuous with ψ(t) – α(t) + β(t) >  for
t > ,

(iii) there exists M ≥  such that

p
(
H(x, y,λ), H(x, y,μ)

) ≤ M|λ – μ|
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for every x ∈ U and λ,μ ∈ [, ].
Then H(·, ) has a coupled fixed point if and only if H(·, ) has a coupled fixed

point.

Proof Consider the set

A =
{
λ ∈ [, ] : (x, y) = H(x, y,λ) for some x, y ∈ U

}
.

Since H(·, ) has a coupled fixed point in U , we have  ∈ A, so that A is a non-empty set.
We will show that A is both open and closed in [, ] so by the connectedness we have

A = [, ].
As a result, H(·, ) has a fixed point in U . First we show that A is closed in [, ].
To see this let {λn}∞n= ⊆ A with λn → λ ∈ [, ] as n → ∞.
We must show that λ ∈ A.
Since λn ∈ A for n = , , , . . . , there exist xn, yn ∈ U with un = (xn, yn) = H(xn, ynλn). Con-

sider

p(xn, xn+) = p
(
H(xn, yn,λn), H(xn+, yn+,λn+)

)
≤ p

(
H(xn, yn,λn), H(xn+, yn+λn)

)
+ p

(
H(xn+, yn+,λn), H(xn+, yn+,λn+)

)
– p

(
H(xn+, yn+,λn), H(xn+, yn+,λn)

)
≤ p

(
H(xn, yn,λn), H(xn+, yn+,λn)

)
+ M|λn – λn+|.

Letting n → ∞, we get

lim
n→∞ p(xn, xn+) ≤ lim

n→∞ p
(
H(xn, yn,λn), H(xn+, yn+,λn)

)
+ .

Since ψ is continuous and non-decreasing we obtain

lim
n→∞ψ

(
p(xn, xn+)

)
≤ lim

n→∞ψ
(
p
(
H(xn, yn,λn), H(xn+, yn+,λn)

))
≤ lim

n→∞
[
α
(
max

{
p(xn, xn+), p(yn, yn+)

})
– β

(
max

{
p(xn, xn+), p(yn, yn+)

})]
.

Similarly

lim
n→∞ψ

(
p(yn, yn+)

)
≤ lim

n→∞
[
α
(
max

{
p(xn, xn+), p(yn, yn+)

})
– β

(
max

{
p(xn, xn+), p(yn, yn+)

})]
.

It follows that

lim
n→∞ p(xn, xn+) =  = lim

n→∞ p(yn, yn+). ()
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From (p),

lim
n→∞ p(xn, xn) =  = lim

n→∞ p(yn, yn). ()

By the definition of dp, we obtain

lim
n→∞ dp(xn, xn+) =  = lim

n→∞ dp(yn, yn+). ()

Now we prove that {xn} and {yn} are Cauchy sequences in (X, dp). Contrary to this hypoth-
esis, suppose that {xn} or {sn} is not Cauchy.

There exists an ε >  and a monotone increasing sequence of natural numbers {mk} and
{nk} such that nk > mk ,

max
{

dp(xmk , xnk ), dp(ymk , ynk )
} ≥ ε ()

and

max
{

dp(xmk , xnk –), dp(ymk , ynk –)
}

< ε. ()

From () and (), we obtain

ε ≤ max
{

dp(xmk , xnk ), dp(ymk , ynk )
}

≤ max
{

dp(xmk , xnk –), dp(ymk , ynk –)
}

+ max
{

dp(xnk –, xnk ), dp(ynk –, ynk )
}

< ε + max
{

dp(xnk –, xnk ), dp(ynk –, ynk )
}

.

Letting k → ∞ and then using (), we get

lim
k→∞

max
{

dp(xmk , xnk ), dp(ymk , ynk )
}

= ε. ()

Hence from the definition of dp and from (), we get

lim
k→∞

max
{

p(xmk , xnk ), p(ymk , ynk )
}

=
ε


. ()

Letting k → ∞ and then using () and () in

∣∣dp(xmk , xnk +) – dp(xmk , xnk )
∣∣ ≤ dp(xnk +, xnk ),

we get

lim
k→∞

dp(xnk +, xmk ) = ε. ()

Hence, we have

lim
k→∞

p(xnk +, xmk ) =
ε


. ()
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Similarly

lim
k→∞

p(ynk +, ymk ) =
ε


. ()

Consider

p(xmk , xnk +) = p
(
H(xmk , ymk ,λmk ), H(xnk +, ynk +,λnk +)

)
≤ p

(
H(xmk , ymk ,λmk ), H(xmk , ymk ,λnk +)

)
+ p

(
H(xmk , ymk ,λnk +), H(xnk +, ynk +,λnk +)

)
– p

(
H(xmk , ymk ,λnk +), H(xmk , ymk ,λnk +)

)
≤ M|λmk – λnk +| + p

(
H(xmk , ymk ,λnk +), H(xnk +, ynk +,λnk +)

)
.

Since {λn} is Cauchy, letting k → ∞ in the above, we get

ε


≤ lim

k→∞
p
(
H(xmk , ymk ,λnk +), H(xnk +, ynk +,λnk +)

)
.

Since ψ is continuous and non-decreasing we obtain

ψ

(
ε



)
≤ lim

k→∞
ψ
(
p
(
H(xmk , ymk ,λnk +), H(xnk +, ynk +,λnk +)

))
≤ lim

k→∞
[
α
(
max

{
p(xmk , xnk +), p(ymk , ynk +)

})
– β

(
max

{
p(xmk , xnk +), p(ymk , ynk +)

})]
= α

(
ε



)
– β

(
ε



)
.

It follows that ε ≤ , which is a contradiction.
Hence {xn} and {yn} are Cauchy sequences in (X, dp) and

lim
n,m→∞ dp(xn, xm) =  = lim

n,m→∞ dp(yn, ym).

By the definition of dp and (), we get lim
n,m→∞ p(xn, xm) =  = lim

n,m→∞ p(yn, ym).
From Lemma ., we conclude (a) {xn} and {yn} are Cauchy sequences in (X, p).
Since (X, p) is complete, from Lemma .(b), we conclude there exist u, v ∈ U with

p(u, u) = lim
n→∞ p(xn, u) = lim

n→∞ p(xn+, u) = lim
n,m→∞ p(xn, xm) = , ()

p(v, v) = lim
n→∞ p(xn, v) = lim

n→∞ p(xn+, v) = lim
n,m→∞ p(yn, ym) = . ()

From Lemma ., we get lim
n→∞ p(xn, H(u, v,λ)) = p(u, H(u, v,λ)).

Now,

p
(
xn, H(u, v,λ)

)
= p

(
H(xn, yn,λn), H(u, v,λ)

)
≤ p

(
H(xn, yn,λn), H(xn, yn,λ)

)
+ p

(
H(xn, yn,λ), H(u, v,λ)

)
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– p
(
H(xn, yn,λ), H(xn, yn,λ)

)
≤ M|λn – λ| + p

(
H(xn, yn,λ), H(u, v,λ)

)
.

Letting n → ∞, we obtain

p
(
u, H(u, v,λ)

) ≤ lim
n→∞ p

(
H(xn, yn,λ), H(u, v,λ)

)
.

Since ψ is continuous and non-decreasing, we obtain

ψ
(
p
(
u, H(u, v,λ)

)) ≤ lim
n→∞ψ

(
p
(
H(xn, yn,λ), H(u, v,λ)

))
≤ lim

n→∞
[
α
(
max

{
p(xn, u), p(yn, v)

})
– β

(
max

{
p(xn, u), p(yn, v)

})]
= .

It follows that p(u, H(u, v,λ)) = . Thus u = H(u, v,λ). Similarly v = H(v, u,λ).
Thus λ ∈ A. Hence A is closed in [, ].
Let λ ∈ A. Then there exist x, y ∈ U with x = H(x, y,λ).
Since U is open, there exists r >  such that Bp(x, r) ⊆ U .
Choose λ ∈ (λ – ε,λ + ε) such that |λ – λ| ≤ 

Mn < ε.
Then x ∈ Bp(x, r) = {x ∈ X/p(x, x) ≤ r + p(x, x)}. We have

p
(
H(x, y,λ), x

)
= p

(
H(x, y,λ), H(x, x,λ)

)
≤ p

(
H(x, y,λ), H(x, y,λ)

)
+ p

(
H(x, y,λ), H(x, y,λ)

)
– p

(
H(x, y,λ), H(x, y,λ)

)
≤ M|λ – λ| + p

(
H(x, y,λ), H(x, y,λ)

)
≤ 

Mn– + p
(
H(x, y,λ), H(x, y,λ)

)
.

Letting n → ∞, we obtain

p
(
H(x, y,λ), x

) ≤ p
(
H(x, y,λ), H(x, y,λ)

)
.

Since ψ is continuous and non-decreasing, we have

ψ
(
p
(
H(x, y,λ), x

)) ≤ ψ
(
p
(
H(x, y,λ), H(x, y,λ)

))
≤ α

(
max

{
p(x, x), p(y, y)

})
– φ

(
max

{
p(x, x), p(y, y)

})
.

Similarly

ψ
(
p
(
H(y, x,λ), y

))
≤ α

(
max

{
p(x, x), p(y, y)

})
– φ

(
max

{
p(x, x), p(y, y)

})
.
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Thus

ψ
(
max

{
p
(
H(x, y,λ), x

)
, p
(
H(y, x,λ), y

)})
≤ α

(
max

{
p(x, x), p(y, y)

})
– φ

(
max

{
p(x, x), p(y, y)

})
≤ ψ

(
max

{
p(x, x), p(y, y)

})
.

Since ψ is non-decreasing, we have

max
{

p
(
H(x, y,λ), x

)
, p
(
H(y, x,λ), y

)} ≤ max
{

p(x, x), p(y, y)
}

≤ max
{

r + p(x, x), r + p(y, y)
}

.

Thus for each fixed λ ∈ (λ – ε,λ + ε), H(·,λ) : Bp(x, r) → Bp(x, r).
Since also (ii) holds and ψ and α are continuous and non-decreasing and β is continuous

with ψ(t) – α(t) + β(t) >  for t > , all conditions of Theorem . are satisfied.
Thus we deduce that H(·,λ) has a coupled fixed point in U . But this coupled fixed point

must be in U since (i) holds.
Thus λ ∈ A for any λ ∈ (λ – ε,λ + ε).
Hence (λ – ε,λ + ε) ⊆ A and therefore A is open in [, ].
For the reverse implication, we use the same strategy. �

Corollary . Let (X, p) be a complete PMS, U be an open subset of X and H : U × U ×
[, ] → X with the following properties:

() x �= H(x, y, t) and y �= H(y, x, t) for each x, y ∈ ∂U and each λ ∈ [, ] (here ∂U denotes
the boundary of U in X),

() there exist x, y ∈ U and λ ∈ [, ], L ∈ [, ), such that

p
(
H(x, y,λ), H(u, v,μ)

) ≤ L max
{

p(x, u), p(y, v)
}

,

() there exists M ≥ , such that

p
(
H(x,λ), H(x,μ)

) ≤ M · |λ – μ|

for all x ∈ U and λ,μ ∈ [, ].
If H(·, ) has a fixed point in U , then H(·, ) has a fixed point in U .

Proof The proof follows by taking ψ(x) = x,φ(x) = x – Lx with L ∈ [, ) in Theorem .. �

4 Conclusions
In this paper we conclude some applications on homotopy theory and integral equations
by using coupled fixed point theorems in ordered PMSs.
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19. Ilić, D, Pavlović, V, Rakočević, V: Some new extensions of Banach’s contraction principle to partial metric spaces. Appl.

Math. Lett. 24(8), 1326-1330 (2011). doi:10.1016/j.aml.2011.02.025
20. Karapınar, E, Erhan, IM: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24(11),

1900-1904 (2011)
21. Karapınar, E: Weak φ-contraction on partial contraction and existence of fixed points in partially ordered sets. Math.

Æterna 1(4), 237-244 (2011)
22. Karapınar, E: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011, 4 (2011)
23. Rao, KPR, Kishore, GNV: A unique common fixed point theorem for four maps under ψ -φ contractive condition in

partial metric spaces. Bull. Math. Anal. Appl. 3(3), 56-63 (2011)
24. Radenovíc, S: Classical fixed point results in 0-complete partial metric spaces via cyclic-type extension. Bull.

Allahabad Math. Soc. 31(Part 1), 39-55 (2016)
25. Shukla, S, Radenovíc, S: Some common fixed point theorems for F-contraction type mappings in 0-complete partial

metric spaces. J. Math. 2013, Article ID 878730 (2013)
26. Valero, O: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 6(2), 229-240 (2005)
27. Vetro, F, Radenovíc, S: Nonlinear quasi-contractions of Ciric type in partial metric spaces. Appl. Math. Comput. 219,

1594-1600 (2012)
28. Bhaskar, TG, Lakshmikantham, V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear

Anal. 65, 1379-1393 (2006)
29. Abdeljawad, T: Coupled fixed point theorems for partially contractive type mappings. Fixed Point Theory Appl. 2012,

148 (2012)
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