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Abstract This research investigates the dynamical behavior of the transmission of nerve
impulses of a nervous system (the neuron) by studying the computational solutions of the
FitzHugh–Nagumo equation that is used as a model of the transmission of nerve impulses.
For achieving our goal, we employ two recent computational schemes (the extended simplest
equation method and Sinh–Cosh expansion method) to evaluate some novel computational
solutions of these models. Moreover, we study the stability property of the obtained solutions
to show the applicability of them in life. For more explanation of this transmission, some
sketches are given for the analytical obtained solutions. A comparison between our results
and that obtained in previous work is also represented and discussed in detail to show the
novelty for our solutions. The performance of the two used methods shows power, practical
and their ability to apply to other nonlinear partial differential equations.

1 Introduction

Recently, the focus of many researchers is on biomathematics sciences. This branch of science
represents many distinct data about the biological phenomena such as DNA, bacteria cell
and its distribution, viruses, nerve system and the transmission of its impulses and so on.
These vital issues have been formulated in mathematical structure based on collecting data
from biological experiments or statistics to allow mathematical studying and investigations
that are usually used in the construction of these biological phenomena in isolation by using
modern experimental biology. The properties of these biological and impact factor of them are
represented in the mathematical formula as functions and parameters. Solving these formulas
gives accurate solutions that are used to improve the point of view for these models and also
to control them by controlling the parameters.

According to the arising in the number of the mathematical and biological models and
increasing of the attention for these models, many accurate schemes have been being for-
mulated to study the computational and numerical solutions of them. These computational
methods investigate the traveling wave solutions of these models that are considered as one
of the most important motivations for development and derive new numerical schemes that
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are employed to evaluate the approximate solutions of these models. The examples of these
schemes are the complex hyperbolic method, the generalized method of Riccati equation, Fan-
expansion method, extended Fan-expansion method, the Jacobi elliptic-expansion method,
Exp-expansion method, tanh-expansion method, Sinh–Cosh expansion method, tanh–sech
expansion method, variational iteration method, the tanh-function method, homotopy dis-
order, Adomian analysis, Khater method, modified Khater method, the exp (−ϕ(�))—
expansion method, the modified simplest equation method, B-spline schemes and so on
[1,3–5,10–13,18,19,21,23–29,32,33,35–37,39–44,46–48,52,54].

In this paper, we study one of the biological mathematical models that discusses a prototype
of an excitable system. We study the transmission of the nerve impulses (neuron) in its
mathematical formulate by employing the extended simplest equation method and Sinh–
Cosh expansion method. This mathematical model is known with the FitzHugh–Nagumo
(FN) equation. This model is also considered as an other version of the Hodgkin–Huxley
model that is given by [20,45]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Hi = �i (Lm − Li ),

H = Mm
d Lm
d t + �K (Lm − LK ) + �Na

×(Lm − LNa ) + �i (Lm − LNi ),

Hc = Mm
d Lm
d t ,

(1)

where [�i , LNa , LK , Li , Lm, �l , n, �n, Mm], respectively, represent the leak conductance
per unit area, sodium reversal potentials, the potassium, membrane potential, ion pumps, leak
channels, the specific ion channel, voltage-gated ion channels and the lipid bilayer. This
system is used to describe the deactivation and activation dynamics of a neuron. This model
is named with this name according to Richard FitzHugh (1922–2007). He created this system
in 1961 with the help of J. Nagumo et al. who proved the equivalent circuit. This system
is used to describe a prototype of an excitable system, and it is considered as a model of a
relaxation oscillator. The original form of the model is given by [15–17]

⎧
⎨

⎩

R′ = R − R3

3 − H + �EXT ,

�H′ = R + � − ϒ H,

(2)

where �EXT ,H, �, �, ϒ are arbitrary constants, while H, R receptively, represent the
right and left branch of the cubic nullcline. It is also called as Bonhoeffer–van der Pol
oscillator when � = ϒ = 0.

The mathematical formula of FN equation that will be investigated in our paper is given
by [14,34,38,50]

Fx x − F (1 − F) (β − F) − Ft = 0, (3)

where β is arbitrary constant and F = F(x, t) is function of x, t that describe the displace-
ment and time. Equation (3) can be reduced to Newell–Whitehead (NW) equation when
β = 0.

The rest of the sections of this paper are ordered as follows. Section 2.1 applies the extended
simplest equation method and Sinh–Cosh expansion method [6–9,22,30,31,49,51,53] to
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FN equation to calculate the exact and solitary wave solutions. Moreover, some plots are
represented to show more physical properties of the transmission of the nerve impulses.
Section 3 studies the stability property of the obtained solutions and their applicability in
different studies. Section 4 shows the novelty of our obtained solutions by representing a
comparison between them and that obtained in previous research papers. Section 5 explains
the conclusion of the whole paper.

2 Application

This section employs the extended simplest equation method and Sinh–Cosh expansion
method to evaluate the solitary wave solutions of the FN equation. Using the next trans-
formation [F = F(x, t) = F(℘), ℘ = k x + ω t] on Eq. (3), leads to transform it to the
following ordinary differential equation

k2 F ′′ − F (1 − F) (ρ − F) − ωF ′ = 0. (4)

Calculating the balance value in Eq. (4) according to the nonlinear term and highest order
derivative term, yields N = 1.

2.1 Extended simplest equation method

According to the balance value and the general solution that is suggested by the extended
simplest equation method, the solution of Eq. (4) is given in the following formula:

F(℘) =
n∑

i=−n

ai f (℘)i = a−1

f (℘)
+ a0 + a1 f (℘), (5)

where [ai , (i = −1, 0, 1)]. Additionally, f (℘) follows the following ODE:

f ′(℘) = δ f (℘)2 + ρ f (℘) + χ,

where δ, ρ, χ are arbitrary constants. Substituting Eq. (5) along its derivatives into Eq. (4),
collecting all coefficients of the same power of [ f (℘)i , (i = −3, −2, −1, 0, 1, 2, 3)] and
equating them to zero, lead to a system of algebraic equations. Solving this system yields:

Family I:
[

a0 → ρ2

2
√

ρ4 − 4δρ2χ
+ 1

2
, a−1 → ρχ

√
ρ4 − 4δρ2χ

, a1 → 0, k →

− 1√
2
√

ρ2 − 4δχ
, ω → ρ − 2βρ

2
√

ρ4 − 4δρ2χ
,

where
(
ρ2 > 4δχ, ρ �= 0, χ �= 0, ρ �= 2βρ

)
]

.

Thus, the soliton solutions of the nonlinear FN equation are evaluated in the following
formulas:

For [4 δ χ < ρ2]
F1(x, t) = − 2δρχ

√
ρ4 − 4δρ2χ

(

ρ + √
ρ2 − 4δχ tanh

(
1
2

√
ρ2 − 4δχ

(
(1−2β)ρt

2
√

ρ4−4δρ2χ
− x√

2
√

ρ2−4δχ
+ ϑ

)))
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+ ρ2

2
√

ρ4 − 4δρ2χ
+ 1

2
, (6)

F2(x, t) = − 2δρχ

√
ρ4 − 4δρ2χ

(

ρ + √
ρ2 − 4δχ coth

(
1
2

√
ρ2 − 4δχ

(
(1−2β)ρt

2
√

ρ4−4δρ2χ
− x√

2
√

ρ2−4δχ
+ ϑ

)))

+ ρ2

2
√

ρ4 − 4δρ2χ
+ 1

2
. (7)

Family II:
[

a0 → ρ2

2
√

ρ4 − 4δρ2χ
+ 1

2
, a−1 → 0, a1 → δρ

√
ρ4 − 4δρ2χ

, k →

− 1√
2
√

ρ2 − 4δχ
, ω → (2β − 1)ρ

2
√

ρ4 − 4δρ2χ
,

where
(
ρ2 > 4δχ, ρ �= 0, ρ �= 2βρ

)
]

.

Thus, the soliton solutions of the nonlinear FN equation are evaluated in the following
formulas:

Case I

(

χ = 0

)

For

[

ρ > 0

]

:

F3(x, t) = 1

2

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝− 2

δ exp

(

ρ

(
(2β−1)ρt

2
√

ρ4
− x√

2
√

ρ2
+ ϑ

))

− 1
− 1

⎞

⎟
⎟
⎠ + 1

⎞

⎟
⎟
⎠ , (8)

F4(x, t) = 1

2

⎛

⎜
⎜
⎝

1

ρ

⎛

⎜
⎜
⎝2δ

⎛

⎜
⎜
⎝

1

δ exp

(

ρ

(
(2β−1)ρt

2
√

ρ4
− x√

2
√

ρ2
+ ϑ

))

+ 1
− 1

⎞

⎟
⎟
⎠ + ρ

⎞

⎟
⎟
⎠ + 1

⎞

⎟
⎟
⎠

(9)

Case II
For [4δχ < ρ2]

F5(x, t) = 1

2
−

√
ρ4 − 4δρ2χ tanh

(
1
2

√
ρ2 − 4δχ

(
(2β−1)ρt

2
√

ρ4−4δρ2χ
− x√

2
√

ρ2−4δχ
+ ϑ

))

2ρ
√

ρ2 − 4δχ
,

(10)

F6(x, t) = 1

2
−

√
ρ4 − 4δρ2χ coth

(
1
2

√
ρ2 − 4δχ

(
(2β−1)ρt

2
√

ρ4−4δρ2χ
− x√

2
√

ρ2−4δχ
+ ϑ

))

2ρ
√

ρ2 − 4δχ
.

(11)

Family III:
[

a0 → ρ − √
ρ2 − 4δχ

2ρ
, a−1 → −χ

ρ
, a1 → 0, k → − 1√

2ρ
,

ω →
√

ρ2 − 4δχ − 2ρ

2ρ2 , β → 1 −
√

ρ2 − 4δχ

ρ
,
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where

(

ρ2 > 4δχ, ρ �= 0, χ �= 0, ρ �=
√

ρ2 − 4δχ

)]

.

Thus, the soliton solutions of the nonlinear FN equation are evaluated in the following
formulas:

For [4δχ < ρ2]

F7(x, t) = −
√

ρ2 − 4δχ

2ρ
+ 2δχ

ρ2 + ρ
√

ρ2 − 4δχ tanh

⎛

⎜
⎝

√

ρ2−4δχ

(

t

(√

ρ2−4δχ−2ρ

)

+ρ
(

2ρϑ−√
2x

))

4ρ2

⎞

⎟
⎠

+ 1

2
, (12)

F8(x, t) = −
√

ρ2 − 4δχ

2ρ
+ 2δχ

ρ2 + ρ
√

ρ2 − 4δχ coth

⎛

⎜
⎝

√

ρ2−4δχ

(

t

(√

ρ2−4δχ−2ρ

)

+ρ
(

2ρϑ−√
2x

))

4ρ2

⎞

⎟
⎠

+ 1

2
. (13)

Family IV:

[

a0 → ρ − √
ρ2 − 4δχ

2ρ
, a−1 → 0, a1 → δ

ρ
, k → − 1√

2ρ
,

ω →
√

ρ2 − 4δχ + 2ρ

2ρ2 , β → −
√

ρ2 − 4δχ

ρ
,

where

(

ρ2 > 4δχ, ρ �= 0, ρ �=
√

ρ2 − 4δχ

)]

.

Thus, the soliton solutions of the nonlinear FN equation are evaluated in the following
formulas:

Case I (χ = 0)

For [ρ > 0]:

F9(x, t) = − ρ

2
√

ρ2
+ δ

e
− ρt

2
√

ρ2
−t+ x√

2
−ρϑ − δ

+ 1

2
, (14)

F10(x, t) = 1

2
− 1

2ρ

[√
ρ2 + 2δ2

δ + e
− ρt

2
√

ρ2
−t+ x√

2
−ρϑ

]

. (15)

Case II
For [4δχ < ρ2]

F11(x, t) = −
√

ρ2 − 4δχ

2ρ

⎛

⎝tanh

⎛

⎝

√
ρ2 − 4δχ

(
t
(√

ρ2 − 4δχ + 2ρ
)

+ ρ
(

2ρϑ − √
2x

))

4ρ2

⎞

⎠ + 1

⎞

⎠ ,

(16)

123



251 Page 6 of 12 Eur. Phys. J. Plus (2020) 135:251

F12(x, t) = −
√

ρ2 − 4δχ

2ρ

⎛

⎝coth

⎛

⎝

√
ρ2 − 4δχ

(
t
(√

ρ2 − 4δχ + 2ρ
)

+ ρ
(

2ρϑ − √
2x

))

4ρ2

⎞

⎠ + 1

⎞

⎠ .

(17)

where ϑ is arbitrary constant.

2.2 Solitary wave solutions via Sinh–Cosh expansion method

According to the balance value and the general solution that is suggested by the extended
simplest equation method, the solution of Eq. (4) is given in the following formula:

F(℘)=
n∑

i=1

sinhi−1(℘) (ai sinh(℘) + bi cosh(℘)) + a0 = a1 sinh(℘) + a0 + b1 cosh(℘),

(18)

where [a0, a1, b1] are arbitrary constants. Substituting Eq. (18) along its derivatives
into Eq. (4), collecting all coefficients of the same power of [sinh(℘), sinh2(℘), sinh3

(℘), cosh(℘), sinh(℘) cosh(℘), sinh2(℘) cosh(℘)], and equating them to zero, lead to a
system of algebraic equations. Solving this system yields:

Family I:
⎡

⎣a0 → 0, a1 → ib1√
3
, k →

√

3b2
1 − 2

√
2

, ω → −1

2
i
√

3b2
1, β → −1, where

(

b1 <

√
4

6
, b1 �= 0

)⎤

⎦ .

Thus, the soliton solutions of the nonlinear FN equation are evaluated in the following
formulas:

F13(x, t) = 1

3

(√
3b1 sin

(
1

2

√
3b2

1 t + 1

2
i
√

6b2
1 − 4x

)

+ 3b1 cos

(
1

2

√
3b2

1 t + 1

2
i
√

6b2
1 − 4x

))

.

(19)

Family II:
[

a0 → 1

2
, a1 → ib1√

3
, k → 1

2

√

6b2
1 − 1, ω → −1

2
i
√

3b2
1, β → 1

2
, where

(

b1 <

√
1

6
, b1 �= 0

)]

.

Thus, the soliton solutions of the nonlinear FN equation are evaluated in the following
formulas:

F14(x, t) = 1

6

(

2
√

3b1 sin

(
1

2

√
3b2

1t + 1

2
i
√

6b2
1 − 1x

)

+6b1 cos

(
1

2

√
3b2

1t + 1

2
i
√

6b2
1 − 1x

)

+ 3

)

. (20)

Family III:
⎡

⎣a0 → 1, a1 → ib1√
3
, k →

√

3b2
1 − 2

√
2

, ω → −1

2
i
√

3b2
1, β → 2, where

(

b1 <

√
4

6
, b1 �= 0

)⎤

⎦ .
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Fig. 1 Breath-soliton wave in three different forms of Eq. (14) for [δ = 1, ρ = 4, ϑ = −1]

Fig. 2 Dark-soliton wave in three different forms of Eq. (15) for [δ = 1, ρ = −4, ϑ = −1]

Thus, the soliton solutions of the nonlinear FN equation are evaluated in the following
formulas (Fig. 1):

F15(x, t) = 1

3

(√
3b1 sin

(
1

2

√
3b2

1t + 1

2
i
√

6b2
1 − 4x

)

+3b1 cos

(
1

2

√
3b2

1t + 1

2
i
√

6b2
1 − 4x

)

+ 3

)

. (21)

3 Stability property

The stability property of some results is investigated in this section depending on the proper-
ties of the Hamiltonian system that gives the momentum Ξ in the following formula (Figs. 2
and 3).

Ξ = 1

2

∫ ν

−ν

F2(℘) d℘, (22)

where F(℘) is the solution of the FN equation. Thus, the necessary condition to make this
solution stable one is derived in the next form:

∂Ξ

∂ω
> 0, (23)
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Fig. 3 Periodic-solitary wave in three different forms of Eq. (16) for [δ = 1, ρ = 5, χ = 6, ϑ = −1]

Fig. 4 Cone-soliton wave in three different forms of Eq. (17) for [δ = 1, ρ = 5, χ = 6, ϑ = −1]

where ω is the wave velocity, so that the studying of the stability property of the FN equation
takes the following steps (Figs. 4 and 5)

Ξ = 1

10
√

2ω

[

2 Li2

(

−e
5ω+ 1√

2

)

− 2 Li2

(

−e
5ω− 1√

2

)

− 2 Li2

(

−e
1√
2
−5ω

)

+ 2 Li2

(

−e
−5 ω− 1√

2

)

+
(

10ω + √
2

)

log

(

e
5ω+ 1√

2 + 1

)

− 10 ω log

(

e
5ω− 1√

2 + 1

)

−
(√

2 − 10ω
)

log

(

e
1√
2
−5ω + 1

)

−
(

10 ω + √
2
)

× log

(

e
−5 ω− 1√

2 + 1

)

+ √
2 log

(

e5ω + e
1√
2

)

− 4 log

(

cosh

(
1

4

(
10ω + √

2
)))

+ 4 log

(

cosh

(
1

4

(√
2 − 10ω

)))

− 1

]

(24)

and thus

∂Ξ

∂ω
|ω= 11

50
= 0.3212360331 > 0.

Consequently, this solution is stable. Thus, using the same steps on the other obtained solu-
tions yields a good investigation of the stability property of each of them.

123



Eur. Phys. J. Plus (2020) 135:251 Page 9 of 12 251

Fig. 5 Bright and dark-soliton wave in three different forms of Eq. (19) for [b1 = 1
2 ]

4 Results and discussion

This section gives a comparison between our two used method and that used in previous paper.
Also, it gives a comparison between our results and that obtained by using these different
methods.

1. Comparison between the methods
In this part, we show the comparison between our two used methods and that employed
in [2]

• The extended simplest equation method Vs the exp −ϕ(ξ)—expansion method:
Both methods are equal when [eϕ(ξ) = f (℘), χ = 1, ρ = λ, δ = μ].

• Sinh–Cosh expansion method Vs the exp −ϕ(ξ)—expansion method: Both methods
are different.

2. Comparison between the results

• Equation (12) is equal to Eq. (20) in [2] for [ρ2−4 δ χ =
(

λ ρ χ δ
μ

)2
, λ = −ρ2, C1 =

0].
• Equation (14) is equal to Eq. (21) in [2] when [a1 λ = −1, δ = −1, λ = 1, C1 = 0].
• All our other obtained solutions are new and different from that obtained in [2].

5 Conclusion

Two analytical methods were successfully employed to find exact and solitary wave solutions
of the FN equation. These methods were the extended simplest equation method and Sinh–
Cosh expansion method. Many solutions were obtained in different types such as dark, dark
and bright, periodic, cone and breath solutions. These solutions were tested to investigate the
stability property of them by using the characteristics of the Hamiltonian system. Moreover,
a comparison between our solutions and that obtained in a previous research paper was
investigated in detail. The performance of the used methods shows the effective power of
them and their ability to apply other nonlinear evolution equations.
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