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a b s t r a c t

In this paper we propose a new method for solving systems of linear and nonlinear frac-
tional partial differential equations. This method is a combination of the Laplace transform
method and the Iterative method and here after called the Iterative Laplace transform
method. This method gives solutions without any discretization and restrictive assump-
tions. The method is free from round-off errors and as a result the numerical compu-
tations are reduced. The fractional derivative is described in the Caputo sense. Finally,
numerical examples are presented to illustrate the preciseness and effectiveness of the
new technique.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems of mathematical physics and engineering such as polymer physics, viscoelastic materials, viscous
damping and seismic analysis [1–4] have been successfully modeled in recent years by fractional differential equations
(FDEs). So it is very important to find efficient methods for solving FDEs. Various researchers have introduced newmethods
in the literature. These methods include the Adomian decomposition method (ADM) [5,6], homotopy analysis method
(HAM) [7,8], homotopy perturbationmethod (HPM) [9,10], the variational iteration method (VIM) [6,11,12] and the Laplace
decomposition method [13–15].

Recently, a new iterative method was presented by Daftardar-Gejji and Jafari [16,17]. This technique solves many types
of nonlinear equations such as ordinary and partial differential equations of integer and fractional order. Jafari et al. [18]
applied this method to obtain the solution of linear/nonlinear diffusion and wave fractional equations. Daftardar-Gejji and
Bhalekar used it for solving fractional boundary value problem and evolution equations [19,20].

In this paper, we introduce a new method, which we call the Iterative Laplace transform method (ILTM). The suggested
ILTM provides the solution in a rapid convergent series which may lead us to the solution in a closed form. This method
combines the two powerful methods, namely, the Laplace transform method and the Iterative method, for obtaining the
exact solution for the system of fractional partial differential equations. It is worth mentioning that the ILTM is applied
without anydiscretization or restrictive assumptions or transformations and it is free from round-off errors. Also thismethod
provides an analytical solution by using the initial conditions only, unlike the variables separation method, which requires
initial and boundary conditions. The boundary conditions can be used to justify the obtained results. The proposed method
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works efficiently and the results so far are very encouraging and reliable. In this paperwe employ the ILTM in solving systems
of nonlinear fractional partial differential equations. Several examples are given to verify the reliability and efficiency of the
ILTM. The results are then compared with those obtained by other existing methods.

2. Basic definition

In this section, we recall some basic definitions and results dealing with the fractional calculus [2–4] and Laplace
transform which are later used in this paper.

Definition 1. A real function f (t), t > 0 is said to be in the space Cα, α ∈ ℜ if there exists a real number p(> α), such that
f (t) = tpf1(t) where f1 ∈ C[0, ∞]. Clearly Cα ⊂ Cβ if β ≤ α.

Definition 2. A function f (t), t > 0 is said to be in the space Cm
α ,m ∈ N


{0}, if f (m)

∈ Cα .

Definition 3 ([2]). The left sided Riemann–Liouville fractional integral of order µ ≥ 0, of a function f ∈ Cα, α ≥ −1 is
defined as

Iµf (t) =


1

Γ (µ)

 t

0

f (τ )

(t − τ)1−µ
dτ , µ > 0, t > 0,

f (t), µ = 0.
(1)

Definition 4 ([2]). The left sided Caputo fractional derivative of f , f ∈ Cm
−1, m ∈ N ∪ {0}, is defined as

Dµf (t) =
∂µf (t)
∂tµ

=


Im−µ


∂mf (t)
∂tm


, m − 1 < µ < m,m ∈ N,

∂mf (t)
∂tm

, µ = m.

(2)

Note that
(i) Iµt f (x, t) =

1
Γ (µ)

 t
0

f (x,t)
(t−s)1−µ , µ > 0, t > 0,

(ii) Dµ
t f (x, t) = Im−µ

t
∂mf (x,t)

∂tm , m − 1 < µ ≤ m.

Definition 5. The Mittag-Leffler function Eα(z) with α > 0 is defined by the following series representation, valid in the
whole complex plane:

Eµ(z) =

∞
n=0

zn

Γ (µ n + 1)
, α > 0, z ∈ C.

Definition 6. The Laplace transform of f (t) is defined by

F(s) = L[f (t)] =


∞

0
e−st f (t)dt. (3)

Definition 7. The Laplace transform L[f (t)] of the Riemann–Liouville fractional integral is defined as

L {Iµf (t)} = s−µF(s). (4)

Definition 8. The Laplace transform L[f (t)], of the Caputo fractional derivative is defined as

L {Dµf (t)} = sµF(s) −

n−1
k=0

s(µ−k−1)f (k)(0), n − 1 < µ ≤ n. (5)

3. Iterative Laplace transformmethod and system of fractional partial differential equations

To illustrate the basic idea of this method, we consider the following system of fractional partial differential equations
(FPDEs) with the initial conditions of the form:

Dαi
t ui(x̄, t) = Ai(u1(x̄, t), . . . , un(x̄, t)), mi − 1 < αi ≤ mi, i = 1, 2, . . . , n, (6)

∂ (ki)ui(x̄, 0)
∂tki

= hiki(x̄), ki = 0, 1, . . . ,mi − 1, mi ∈ N, (7)
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where Ai are nonlinear operators and ui(x̄, t) are unknown functions. Taking the Laplace transform (denoted in this paper
by L) on both sides of Eq. (6) we obtain

L

Dαi
t ui(x̄, t)


= L[Ai (u1(x̄, t), . . . , un(x̄, t))], i = 1, 2, . . . , n.

In view of Definition 8 and the initial conditions (7) we have

sαiL[ui(x̄, t)] −

mi−1
k=0

sαi−k−1u(k)
i (x̄, 0) = L[Ai(u1(x̄, t), . . . , un(x̄, t))], i = 1, 2, . . . , n. (8)

Operating with the Laplace inverse on both sides of Eq. (8) we get

ui(x̄, t) = L−1


mi−1
k=0

s−k−1u(k)
i (x̄, 0)


+ L−1

[s−αiL[Ai(u1(x̄, t), . . . , un(x̄, t))]]

= fi + Ni(u1(x̄, t), . . . , un(x̄, t)), i = 1, 2, . . . , n, (9)
which can be rewritten in the form

ui(x̄, t) = fi + Ni(u1(x̄, t), . . . , un(x̄, t)), i = 1, 2, . . . , n, (10)
where

fi = L−1


mi−1
k=0

s−k−1u(k)
i (x̄, 0)


, i = 1, 2, . . . , n,

Ni(u1(x̄, t), . . . , un(x̄, t)) = L−1
[s−αiL[Ai(u1(x̄, t), . . . , un(x̄, t))]].

We now look for a solution u of Eq. (10) having the series form

ui(x̄, t) =

∞
j=0

uij(x̄, t), i = 1, 2, . . . , n. (11)

The nonlinear operators Ni can be decomposed as

Ni


∞
j=0

u1j(x̄, t), . . . ,
∞
j=0

unj(x̄, t)


= Ni(u10(x̄, t), . . . , un0(x̄, t))

+

∞
j=1


Ni


j

k=0

u1k(x̄, t), . . . ,
j

k=0

unk(x̄, t)



−Ni


j−1
k=0

u1k(x̄, t), . . . ,
j−1
k=0

unk(x̄, t)


. (12)

In view of Eqs. (11) and (12), Eq. (10) is equivalent to
∞
j=0

uij(x̄) = fi + Ni(u10(x̄, t), . . . , un0(x̄, t))

+

∞
j=1


Ni


j

k=0

u1k(x̄, t), . . . ,
j

k=0

unk(x̄, t)


− Ni


j−1
k=0

u1k(x̄, t), . . . ,
j−1
k=0

unk(x̄, t)


. (13)

We define the recurrence relation
ui0(x̄, t) = L−1


mi−1
k=0

s−k−1u(k)
i (x̄, 0)


,

ui1(x̄, t) = L−1
[s−αiL[Ai(u10(x̄, t), . . . , un0(x̄, t))]],

ui(m+1)(x̄, t) = L−1
[s−αiL[Ai((u10(x̄, t) + · · · + u1m(x̄, t)), . . . , (un0(x̄, t) + · · · + unm(x̄, t)))]]

− L−1
[s−αiL[Ai((u10(x̄, t) + · · · + u1(m−1)(x̄, t)), . . . , (un0(x̄, t) + · · · + un(m−1)(x̄, t)))]].

(14)

Then
ui1(x̄, t) + · · · + uim+1(x̄, t) = L−1

[s−αiL[Ai((u10(x̄, t) + · · · + u1m(x̄, t)), . . . , (un0(x̄, t) + · · · + unm(x̄, t)))]].
The n-term approximate solution of (6)–(7) is given by

ui(x̄, t) ∼= ui1(x̄, t) + · · · + ui,n(x̄, t), i = 1, 2, . . . , n.
The above series solutions generally converge very rapidly. A classical approach of convergence of this type of series is
already presented by Jafari and Daftardar-Gejji [16,17].
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4. Test examples

In this section, we illustrate the applicability of iterative Laplace transform method for solving systems of linear and
nonlinear fractional partial differential equations.

Example 1. Consider the following system of linear FPDEs [7]:

Dα
t u − vx + v + u = 0, (15)

Dβ
t v − ux + v + u = 0, (0 < α, β ≤ 1),

with initial conditions

u(x, 0) = sinh(x), v(x, 0) = cosh(x).

The exact solution, when α = β = 1, is

u(x, t) = sinh(x − t), v(x, t) = cosh(x − t).

The system of linear FPDEs (15) corresponds to the following Laplace equations:

u(x, t) = L−1
[s−1u(x, 0)] + L−1

[s−αL[vx(x, t) − v(x, t) − u(x, t)]],
v(x, t) = L−1

[s−1v(x, 0)] + L−1
[s−βL[ux(x, t) − v(x, t) − u(x, t)]].

Following the algorithm given in (14) first few terms of u(x, t) and v(x, t) are


u0(x, t) = sinh(x), v0(x, t) = cosh(x),


u1(x, t) = −

cosh(x)tα

Γ [α + 1]
,

v1(x, t) = −
sinh(x)tβ

Γ [β + 1]
,

u2(x, t) = −
cosh(x)tα+β

Γ (α + β + 1)
+

sinh(x)tα+β

Γ (α + β + 1)
+

cosh(x)t2α

Γ (2α + 1)

v2(x, t) = −
sinh(x)tα+β

Γ (α + β + 1)
+

cosh(x)tα+β

Γ (α + β + 1)
+

sinh(x)t2β

Γ (2β + 1)
.

The solution in series form is then given by

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · · sinh(x)

1 +

tα+β

Γ (α + β + 1)
+ · · ·


− cosh(x)


tα

Γ (α + 1)
+

tα+β

Γ (α + β + 1)
−

t2α

Γ (2α + 1)
+ · · ·


, (16)

v(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + · · · = cosh(x)

1 +

tα+β

Γ (α + β + 1)
+ · · ·


− sinh(x)


tβ

Γ [β + 1]
+

tα+β

Γ (α + β + 1)
−

t2β

Γ (2β + 1)
+ · · ·


. (17)

Setting α = β in Eqs. (16) and (17), we reproduce the solution of [7] as follows:

u(x, t) = sinh(x)

1 +

t2α

Γ (2α + 1)
+ · · ·


− cosh(x)


tα

Γ (α + 1)
+

t3α

Γ (3α + 1)
+ · · ·


, (18)

v(x, t) = cosh(x)

1 +

t2α

Γ (2α + 1)
+ · · ·


− sinh(x)


tα

Γ [α + 1]
+

t3α

Γ (3α + 1)
+ · · ·


. (19)

Now setting α = 1 in Eqs. (18) and (19), we obtain

u(x, t) = sinh(x)

1 +

t2

2!
+

t4

4!
+ · · ·


− cosh(x)


t +

t3

3!
+

t5

5!
+ · · ·


= sinh(x − t),

v(x, t) = cosh(x)

1 +

t2

2!
+

t4

4!
· · ·


− sinh(x)


t +

t3

3!
+

t5

5!
+ · · ·


= cosh(x − t),

which gives us the exact solutions of (15) for α = β = 1.
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Example 2. Consider the system of nonlinear FPDEs [7]:

Dα
t u + vxwy − vywx = −u,

Dβ
t v + uxwy + uywx = v, (20)

Dγ
t w + uxvy + uyvx = w, (0 < α, β, γ ≤ 1),

with initial conditions

u(x, y, 0) = ex+y, v(x, y, 0) = ex−y, w(x, y, 0) = e−x+y. (21)

The exact solution, when α = β = γ = 1, is

u(x, y, t) = ex+y−t , v(x, y, t) = ex−y+t , w(x, y, t) = e−x+y+t .

As in Example 1 above, we construct the following:

u(x, y, t) = L−1
[s−1u(x, y, 0)] + L−1

[s−αL[−u(x, y, t) − vx(x, y, t)wy(x, y, t) + vy(x, y, t)wx(x, y, t)]],

v(x, y, t) = L−1
[s−1v(x, y, 0)] + L−1

[s−βL[v(x, y, t) − ux(x, y, t)wy(x, y, t) − uy(x, y, t)wx(x, y, t)]],

w(x, y, t) = L−1
[s−1w(x, y, 0)] + L−1

[s−γ L[w(x, y, t) − ux(x, y, t)vy(x, y, t) − uy(x, y, t)vx(x, y, t)]].

As before the first few terms of u(x, y, t), v(x, y, t) and w(x, y, t) in this case areu0(x, y, t) = ex+y,

v0(x, y, t) = ex−y,

w0(x, y, t) = e−x+y,

u1(x, y, t) = −
ex+ytα

Γ [α + 1]
−

ex−ye−x+ytα

Γ [α + 1]
+

ex−ye−x+ytα

Γ [α + 1]
= −

ex+ytα

Γ [α + 1]
,

v1(x, y, t) =
ex−ytβ

Γ [β + 1]
−

ex+ye−x+ytβ

Γ [β + 1]
+

ex+ye−x+ytβ

Γ [β + 1]
=

ex−ytβ

Γ [β + 1]
,

w1(x, y, t) =
e−x+ytγ

Γ [γ + 1]
+

ex+yex−ytγ

Γ [γ + 1]
−

ex+yex−ytγ

Γ [γ + 1]
=

e−x+ytγ

Γ [γ + 1]
,

u2(x, y, t) =
ex+yt2α

Γ [2α + 1]
−

ex−ye−x+ytα+γ

Γ (α + γ + 1)
−

ex−ye−x+ytα+β

Γ (α + β + 1)

−
Γ (γ + β + 1)ex−ye−x+ytα+β+γ

Γ (β + 1)Γ (γ + 1)Γ (α + β + γ + 1)
+

ex−ye−x+ytα+γ

Γ (α + γ + 1)

+
ex−ye−x+ytα+β

Γ (α + β + 1)
+

Γ (γ + β + 1)ex−ye−x+ytα+β+γ

Γ (β + 1)Γ (γ + 1)Γ (α + β + γ + 1)

=
ex+yt2α

Γ [2α + 1]
,

v2(x, y, t) =
ex−yt2β

Γ (2β + 1)
−

ex+ye−x+ytγ+β

Γ (γ + β + 1)
+

ex+ye−x+ytα+β

Γ (α + β + 1)

+
Γ (γ + α + 1)ex+ye−x+ytα+β+γ

Γ (α + 1)Γ (γ + 1)Γ (α + β + γ + 1)
+

ex+ye−x+ytγ+β

Γ (γ + β + 1)

−
ex+ye−x+ytα+β

Γ (α + β + 1)
−

Γ (γ + α + 1)ex+ye−x+ytα+β+γ

Γ (α + 1)Γ (γ + 1)Γ (α + β + γ + 1)

=
ex−yt2β

Γ (2β + 1)
,

w2(x, y, t) =
e−x+yt2γ

Γ (2γ + 1)
+

ex+yex−ytγ+β

Γ (γ + β + 1)
−

ex+yex−ytα+γ

Γ (α + γ + 1)

−
Γ (α + β + 1)ex+yex−ytα+β+γ

Γ (α + 1)Γ (β + 1)Γ (α + β + γ + 1)
−

ex+yex−ytγ+β

Γ (γ + β + 1)

+
ex+yex−ytα+γ

Γ (α + γ + 1)
+

Γ (α + β + 1)ex+yex−ytα+β+γ

Γ (α + 1)Γ (β + 1)Γ (α + β + γ + 1)

=
e−x+yt2γ

Γ (2γ + 1)
.
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Therefore, the series solutions can be written in this form

u(x, y, t) = ex+y
−

ex+ytα

Γ (α + 1)
+

ex+yt2α

Γ (2α + 1)
+ · · · = ex+y


1 +

∞
k=1

(−tα )k

Γ (kα + 1)


= ex+yEα(−tα),

v(x, y, t) = ex−y
+

ex−ytβ

Γ (β + 1)
+

ex−yt2β

Γ (2β + 1)
+ · · · = ex−y


1 +

∞
k=1

(tβ )k

Γ (kβ + 1)


= ex−yEβ(tβ),

w(x, y, t) = ey−x
+

ey−xtγ

Γ (γ + 1)
+

ey−xt2γ

Γ (2γ + 1)
+ · · · = e−x+y


1 +

∞
k=1

(tγ )k

Γ (kγ + 1)


= ey−xEγ (tγ ).

Substituting α = β = γ = 1 we obtain

u(x, y, t) = ex+y

1 − t +

t2

2!
−

t3

3!
+ · · ·


= ex+y−t ,

v(x, y, t) = ex−y

1 +

t2

2!
+

t3

3!
+ · · ·


= ex−y+t ,

w(x, y, t) = e−x+y

1 +

t2

2!
+

t3

3!
+ · · ·


= e−x+y+t ,

which gives us the exact solutions of (20) when α = β = γ = 1. Also we note that the results obtained here are similar to
the solutions obtained by VIM and HAM [7,21].

5. Conclusion

In this paperwe have presented a newmethod called the Iterative Laplace transformmethod and have applied it to derive
exact and approximate analytical solutions of fractional partial differential equations. We have shown that this method is
capable of reducing the volume of the computational work as compared to the classical methods while still maintaining
the high level of accuracy of the numerical results. Also it can be seen that ILTM has a clear advantage over the Adomian
decomposition and homotopy analysis methods when solving nonlinear problems as the ILTM does not need to compute
Adomian polynomials first. Thus, we conclude that the Iterative Laplace transform method can be considered as a nice
refinement in existing numerical techniques and might have wide applications. Finally, two examples were presented and
their results, in the special cases, agreed well with the exact solutions.
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