
Cent. Eur. J. Phys. • 12(7) • 2014 • 480-489
DOI: 10.2478/s11534-014-0475-6

Central European Journal of Physics

Travelling wave solutions: A new approach to the
analysis of nonlinear physical phenomena

Research Article

Khosro Sayevand1,Dumitru Baleanu2,3,4,∗,Mojtaba Fardi5

1 Department of Mathematics, Faculty of Basic Sciences,
University of Malayer, Malayer, Iran

2 Department of Chemical and Materials Engineering, Faculty of Engineering,
King Abdulaziz University, P.O. Box 80204, Jeddah, 21589, Saudi Arabia

3 Çankaya University, Faculty of Art and Sciences,
Department of Mathematics and Computer Sciences, Ankara, Turkey

4 Institute of Space Sciences, MG-23, R 76900,
Magurele-Bucharest, Romania

5 Department of Mathematics, Islamic Azad University,
Najafabad Branch, Najafabad, Iran

Received 14 November 2013; accepted 14 April 2014

Abstract: In this manuscript, a reliable scheme based on a general functional transformation is applied to construct
the exact travelling wave solution for nonlinear differential equations. Our methodology is investigated by
means of the modified homotopy analysis method which contains two convergence-control parameters.
The obtained results reveal that the proposed approach is a very effective. Several illustrative examples
are investigated in detail.

PACS (2008): 65N80, 35A09,41 A29,41A21

Keywords: biparametric• homotopy• series solution• convergence• nonlinear differential equation
© Versita sp. z o.o.

1. Introduction

Finding exact or approximate solutions of differentialequations is an important part of calculus. Except fora limited number of these equations, we have difficultyin finding their solutions. Therefore, there have been at-tempts to develop new approaches for obtaining analytical
∗E-mail: dumitru@cankaya.edu.tr

or numerical solutions which reasonably approximate theexact solutions. For more details see [1–6]. Recently,a promising analytical approach called homotopy analy-sis method (HAM), has successfully been applied to solvemany types of linear and nonlinear functional equations[7–12]. HAM was known before the time indicated in [7]and this new scheme can be applied to explore a sectorof exact solutions of a given partial differential equationby reducing it to an ordinary differential equation exactlywithout any approximation, only by assuming an ansatz
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for the solutions [9, 10].There are many papers that deal with HAM. Abbasbandyet al. [13] applied the Newton-homotopy analysis methodto solve nonlinear algebraic equations, Allan [14] con-structed the analytical solutions to Lorenz system by theHAM, Bataineh et al. [15, 16] proposed a new reliablemodification of the HAM, M. Ganjiani et al [17] constructedthe analytical solutions to coupled nonlinear diffusion re-action equations by the HAM, Alomari et al. [18] appliedthe HAM to study delay differential equations, Chen andLiu. [19] applied the HAM to increase the convergent re-gion of the harmonic balance method. For more details,the reader is advised to consult the results of the researchworks presented in[21–32].The investigation of exact traveling wave solutions to non-linear differential equations plays an important role in thestudy of nonlinear physical phenomena. This manuscriptis concerned with the following nonlinear wave equation:
F (u, ut , ux , utt , utx , ...) = 0. (1)

Using a transformation
u(x, t) = Ξψ(η), η = λ(x − ωt), (2)

where λ and ω are constants and Ξ is amplitude which willbe determined later, we can convert (1) to the followingnonlinear ordinary differential equation
N [ψ(η),Ξ] =
F (Ξψ,−λωΞψ ′ , λΞψ ′ , λ2ω2Ξψ ′′ , −λ2ωΞψ ′ , . . .) = 0, (3)

where the prime denotes differentiation with respect to η.In this manuscript, after a short background on a bipara-metric homotopy [7], we extended the application of thismethodology to nonlinear differential equations. More-over, we proved the convergence of the solution for non-linear differential equations.
2. Summary of biparametric homo-
topy and its applications
2.1. The nonlinear beam equation
To illustrate the procedure, we consider the nonlinearbeam equation [33] in the form

u2t + u4x + αu2x + βu+ u2 = 0, (4)

where, u(x, t) is the deflection of beam and α and β areparameters.To solve the beam equation (4), within the following com-plex transformation
η = λ(x − ωt),

define
u(x, t) = Ξψ(η),

where Ξ is amplitude which will determined later, and
λ > 0, ω is arbitrary given constant.Substituting u(x, t) into equation (4) yields

λ4ψ (4) + λ2(ω2 + α)ψ ′′ + βψ + Ξψ2 = 0, (5)
Assume now that ψ → di exp(−η), as η → ∞ where di arearbitrary constants. Now, we assume that the dimension-less solution ψ(η) arrives its maximum at the origin. Obvi-ously, ψ(η) and its derivatives tend to zero when η → ∞ .Besides, due to the continuity, the first derivative of ψ(η)at crest is zero [8]. Thus, the boundary conditions of oursolutions are

ψ(0) = 1, ψ ′ (0) = 0, ψ(∞) = 0, ψ ′ (∞) = 0. (6)
substituting exp(−η) into (5) we have

λ4exp(−η) + λ2(ω2 + α)exp(−η) + βexp(−η)+ Ξexp(−2η) = 0. (7)
The parameter λ > 0 can be determined by equating thecoefficient of exp(−η) to be zero

λ4 + λ2(ω2 + α) + β = 0.
According to the boundary conditions (6), it is natu-ral to express its solution by a set of base functions,namely

{exp(−mη)|m ≥ 1}, (8)
in the form

ψ(η) = ∞∑
m=1 cm exp(−mη). (9)

We choose the auxiliary linear operator as
Ł[ψ(η)] = [λ4ψ (4)(η) + λ2(ω2 + α)ψ ′′ (η) + β],
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with the property
Ł[C1 exp(−η)+C2 exp(+η)+C3 exp(x1η)+C4 exp(x2η)] = 0,
such that Ci, i = 1, 2, ..., are constants and

x1,2 = ±√βλ2 .
For more details about the adopting Ł[.] and its applica-tions, the reader is advised to consult the results of theresearch work presented in [8].Now, the next step is to define a nonlinear operator as
N [φ(η;q),Ξ(q)] =λ4 dφ4(η;q)

dη4 + λ2(ω2 + α)dφ2(η;q)
dη2+ βφ(η;q) + Ξ(q)φ2(η;q).

The homotopy analysis method can be further generalizedby means of the zero-order deformation equation in theform
(1− q)Ł[φ(η;q)− ψ0(η)] = h1qN [φ(η;q),Ξ(q)]+ h2q(1− q)[N [φ(η;q),Ξ(q)]−N [ψ0,Ξ0]], q ∈ [0, 1],(10)

such that
φ(0;q) = 1, ∂φ(η;q)

∂η |η=0 = 0, φ(∞;q) = 1. (11)
Using Taylor’s series expansion with respect to the em-bedding parameter q, we have
φ(η;q) = ∞∑

m=1ψm(η)qm, ψm(η) = ∂mφ(η;q)
m!∂qm |q=0, (12)

Ξ(q) = ∞∑
m=1 Ξmqm, Ξm = ∂mΞ(q)

m!∂qm |q=0, (13)
where Ξm and ψm(η) are functions which should be deter-mined.By differentiating (10) and (11) m times with respect to q,then dividing the equation by m! and setting q = 0, themth-order deformation equation is formulated as follows

Ł[ψm(η)− χmψm−1(η)] = h̄1∆m(ψ0,Ξ0, . . . , ψm−1,Ξm−1)+h̄2Πm(ψ0,Ξ0, . . . , ψm−1,Ξm−1),
ψm(0) = 0, ψ ′m(0) = 0, , ψm(∞) = 0, m ≥ 1, (14)

in which
∆m(ψ0,Ξ0, . . . , ψm−1,Ξm−1) = λ4 dψ4

m−1
dη4 + λ2(ω2 + α)dψ2

m−1
dη2

+ βψm−1 + m−1∑
j=0 Ξm−1−j

j∑
i=0 ψiψj−i,

Πm(ψ0,Ξ0, ..., ψm−1,Ξm−1) =
− Υm∆m−1(ψ0,Ξ0, ..., ψm−2,Ξm−2)+ χm∆m(ψ0,Ξ0, ..., ψm−1,Ξm−1), m ≥ 1,

Υm = { 0, m ≤ 2,1, m > 2, (15)
and

χm = { 0, m ≤ 1,1, m > 1. (16)
The general solution equation (14) is
ψm(η) =ψ∗m(η) + C1 exp(−η) + C2 exp(+η) + C3 exp(x1η)+ C4 exp(x2η),

such that C1, C2, C3 and C4 are constants and ψ∗m(η) isa special solution of (14). Using the rule of solution ex-pression denoted by (9), we have C2 = 0, C3 = 0 and
C4 = 0. The above presented solution automatically ful-fills the boundary conditions, therefore the unknown C1and Ξm−1 can be found by solving the following linearalgebraic equations

C1 + ψ∗m(0) = 0, C1 − ψ∗′m (0) = 0.
2.2. The KdV equation
In the following we are dealing with the fifth order KdVequation, governed by the nonlinear partial differentialequation as

ut + αu2ux + βuxuxx + u5x = 0, (17)
with α being a constant [34].To look for the travelling wave solution of (17), we supposethat the solutions of (17) are the form

u(x, t) = Ξψ(η), η = λ(x − ωt), (18)
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where λ > 0 and ω is arbitrary given constants. From(18) one can derive that
− ωψ + αΞ2ψ3 + βλ2Ξψ ′2 + λ4ψ (4) = 0, (19)

where Ξ depicts amplitude which will be determined laterand the prime is differentiation with respect to η.Writing ψ → di exp(−η) as η → ∞, ( di are arbitraryconstants) and substituting it into (19) and balancing themain term, we obtain λ4−ω = 0, we consider the positivereal value for λ.We can define η = 0 so that
ψ(0) = 1, ψ ′ (0) = 0, ψ(∞) = 0. (20)

Assuming that the solutions in (19) can be expressed bya set of base functions
{exp(−mη)|m ≥ 1}, (21)

such as
ψ(η) = ∞∑

m=1 cm exp(−mη). (22)
Furthermore, under the rule of solution expression denotedby (22) and by using (19), we choose an auxiliary linearoperator

Ł[ψ(η)] = [ψ (4) + 2ψ ′′′ − ψ ′′ − 2ψ ′ ],
with the property

Ł[C1 exp(−η) + exp(−2η) + C3 exp(η) + C4)] = 0,
where C1, C2, C3 and C4 are constants.Now, from (19), we define the nonlinear operator as
N [φ(η;q),Ξ(q)] = −ωφ(η;q) + αΞ2(q)φ3(η;q)

+ βλ2Ξ(q)φ(η;q)d2φ(η;q)
dη2 + λ4 d4φ(η;q)

dη4 .

By means of the homotopy properties mentioned in Sub-section 2.1, we construct the so-called zero-order defor-mation equation
(1− q)Ł[φ(η;q)− ψ0(η)] = h1qN [φ(η;q),Ξ(q)]+ h2q(1− q)[N [φ(η;q),Ξ(q)]−N [ψ0,Ξ0]], q ∈ [0, 1],(23)

such that
φ(0;q) = 1, ∂φ(η;q)

∂η |η=0 = 0, φ(∞;q) = 1. (24)
After that, we can differentiate the zeroth-order deforma-tion (23) m times with respect to parameter q, then dividethe resulting equation by m! and set q = 0, we have thefollowing result


Ł[ψm(η)− χmψm−1(η)] = h̄1∆m(ψ0,Ξ0, . . . , ψm−1,Ξm−1)+h̄2Πm(ψ0,Ξ0, . . . , ψm−1,Ξm−1),
ψm(0) = 0, ψ ′m(0) = 0, , ψm(∞) = 0, m ≥ 1, (25)

Here we have
∆m(ψ0,Ξ0, . . . , ψm−1,Ξm−1) = ∂m−1N [φ(η;q),Ξ(q)](m− 1)!∂qm−1 ,

and
Πm(ψ0,Ξ0, ..., ψm−1,Ξm−1) =
− Υm∆m−1(ψ0,Ξ0, ..., ψm−2,Ξm−2)+ χm∆m(ψ0,Ξ0, ..., ψm−1,Ξm−1), m ≥ 1.

We note that ψm, Ξm−1 are all unknown, but we have only(25) for ψm, thus an additional algebraic equation is re-quired for determining Ξm−1. According to the property ofthe auxiliary linear operator L, the solution of the defor-mation equation contains the so-called term η exp(−2η), ifthe right-hand side of (25) involves the term exp(−2η). Asa result, we force the coefficient of the term exp(−2η) tobe zero. Therefore we have additional algebraic equationfor determining Ξm−1.The general solution equation (25) is
ψm(η) = ψ∗m(η)+C1 exp(−η)+C2 exp(−2η)+C3 exp(η)+C4,

where C1, C2, C3 and C4 are constants and ψ∗m(η) isa special solution of (25). According to the boundaryconditions (25) and the rule of solution expression (22),we have C3 = 0 and C4 = 0. The unknown C1 and C2 areobtained by solving the linear algebraic equations
C1 = −2ψ∗m(0)− ψ∗′m (0), C2 = ψ∗m(0) + ψ∗

′

m (0).
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3. Convergence
Lemma 3.1.

Write
φ(η;q) = ∞∑

m=1ψm(η)qm, Ξ(q) = ∞∑
m=1 Ξmqm, (26)

where q is the homotopy-parameter. Let N [ψ(η),Ξ], de-note nonlinear operators defined in previous sections. Itholds that:
Πm(ψ0,Ξ0, ..., ψm−1,Ξm−1) =
− Υm∆m−1(ψ0,Ξ0, ..., ψm−2,Ξm−2) (27)+ χm∆m(ψ0,Ξ0, ..., ψm−1,Ξm−1), m ≥ 1,

Proof. When m = 1, 2 , it obviously holds that:

Π1(ψ0,Ξ0) = 0,

Π2(ψ0,Ξ0, ψ1,Ξ1) = ∆2(ψ0,Ξ0).

According to Leibnitz’s rule for derivatives of product, for
m ≥ 3 it holds

Πm(ψ0,Ξ0, ..., ψm−1,Ξm−1) = ∂m
[
q(1− q)[N [φ(η;q),Ξ(q)]−N [ψ0,Ξ0]]]

∂qm |q=0 =
1
m! m∑

j=0
m!

j!(m− j)! ∂j
[
q(1− q)]
∂qj |q=0 ∂m−j

[
N [φ(η;q),Ξ(q)]−N [ψ0,Ξ0]]

∂qm−j |q=0 =
−2m(m−1)2! ∂m−2N [φ(η;q)]

∂qm−2 ∣∣
q=0 +m(1− 2q) ∂m−1N [φ(η;q)]

∂qm−1 ∣∣
q=0 + q(1− q) ∂mN [φ(η;q)

∂qm
∣∣
q=0

m! =
− ∆m−1(ψ0,Ξ0, ..., ψm−2,Ξm−2) + ∆m(ψ0,Ξ0, ..., ψm−1,Ξm−1).

Lemma 3.2.

Assume that the operator N [ψ(η),Ξ] be contraction andthe solution series
ψ0(η) + ∞∑

m=1ψm(η), (28)
and

Ξ0 + ∞∑
j=1 Ξm, (29)

converge to ψ(η) and Ξ, respectively, then
∞∑
m=0 Πm(ψ0,Ξ0, ..., ψm−1,Ξm−1) = 0. (30)

Proof. If the solution series
ψ0(η) + ∞∑

m=1ψm(η), (31)
and

Ξ0 + ∞∑
j=1 Ξm, (32)

converge to ψ(η) and Ξ, respectively, then the series
∞∑
m=0 ∆m(ψ0,Ξ0, ..., ψm−1,Ξm−1), (33)
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will converge to N [ψ(η),Ξ] (see [35]).Now, by using Lemma 3.1 we have
∞∑
m=0 Πm(ψ0,Ξ0, ..., ψm−1,Ξm−1) =
−

∞∑
m=3 ∆m−1(ψ0,Ξ0, ..., ψm−2,Ξm−2)

+ ∞∑
m=2 ∆m(ψ0,Ξ0, ..., ψm−1,Ξm−1) =

N [ψ(η),Ξ]−N [ψ(η),Ξ] = 0. (34)

Theorem 3.1.

Let that the operator N [ψ(η),Ξ] be contraction. If thesolution series ψ0(η)+∑∞
m=1 ψm(η) and Ξ0 +∑∞

j=1 Ξm areconvergent, then they must be the exact solution of Eq.(23).
Proof. Since the solution series

ψ0(η) + ∞∑
m=1ψm(η), (35)

is convergent, we have
lim
m→∞

ψm(η) = 0. (36)
Using the left-hand side of high-order deformation equa-tions, we have

∞∑
m=1
[
ψm(η)− χmψm−1(η)] = 0. (37)

Then, by using Lemma 3.2 we have
h̄1

∞∑
m=1 ∆m(ψ0,Ξ0, . . . , ψm−1,Ξm−1)

+h̄2
∞∑
m=1 Πm(ψ0,Ξ0, ..., ψm−1,Ξm−1) =

h̄1
∞∑
m=1Rm(ψ0,Ξ0, . . . , ψm−1,Ξm−1) = 0. (38)

Since h1 6= 0 then the above equation gives
∞∑
m=1 ∆m(ψ0,Ξ0, . . . , ψm−1,Ξm−1) = N [ψ(η),Ξ] = 0. (39)

4. Estimation of errors and residu-
als
The Mth-order approximation of the solutions ψ(η) andΞ can be expressed as

ψ(η) ≈ ψ0(η) + M∑
j=1 ψm(η), Ξ ≈ Ξ0 + M∑

j=1 Ξm, (40)
which are dependent upon the convergence-controlparameters h̄1 and h̄2.Let

En
M (h̄1, h̄2) = 1

n

n∑
j=0 (N( M∑

k=0 ψk ( 10j
n ), M∑

k=0 Ξk ))2, (41)
denote the so-called averaged residual error (ARE) at the
Mth order of approximation. At the Mth-order of approx-imation, the ARE En

M is a function of both of h̄1 and h̄2.We can gain the "optimal" values of h̄1 and h̄2 by solvingnonlinear algebraic equations
∂En

M
∂h̄i

= 0, i = 1, 2. (42)

4.1. Minimum value ofEn
M for nonlinear beam

equation
Suppose β = −5, α = −5 and ω = 1 hence from λ4 +
λ2(ω2 + α) + β = 0, we have λ = √5. Now for h̄1 6= 0and h̄2 = 0, E2010 has the minimum 1.001E − 12 at the"optimal" values h̄1 = −1 and h̄2 = 0. The correspondingARE E2010 has the minimum 1.133E − 15 at the optimalvalues h̄1 = −1.068 and h̄2 = −0.011. The correspondingapproximations converges much faster than those given incase of h̄1 = −1 and h̄2 = 0, as shown in Tables 1.
4.2. Minimum value of En

M for KdV equation
Suppose α = 2, β = 4 and ω = 1, hence from λ2−ω = 0,we have λ = 1. In following, we give minimum value of
EM with different procedures.The corresponding ARE E2010 has the minimum 5.361E − 7at the "optimal" values h̄1 = −0.451 and h̄2 = 0. Also,for h̄1 6= 0 and h̄2 6= 0, the corresponding ARE E2010 isnow a function of both h̄1 and h̄2, which has the minimum3.032E − 8 at the "optimal" values h̄1 = −0.487 and
h̄2 = −0.029. In this case, the corresponding homotopy-approximations converges faster than those given in caseof h̄1 = −0.451 and h̄2 = 0, as shown in Table 1.
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Table 1. Comparison of the ARE given by different procedures for beam and KdV equations.

beam
β = −5, α = −5, ω = 1, λ = √5

M h̄1 = −1, h̄2 = 0 h̄1 = −1.068, h̄2 = −0.0114 3.707E-5 1.345E-46 6.323E-8 5.998E-88 3.921E-10 6.255E-1110 1.001E-12 1.133E-15

KdV
α = 2, β = 4, ω = 1, λ = 1

M h̄1 = −0.451, h̄2 = 0 h̄1 = −0.487, h̄2 = −0.0294 4.337E-3 1.270E-36 5.872E-4 1.923E-48 7.551E-5 1.683E-510 5.361E-7 3.032E-8
Table 2. The Padé approximations of ψ ′′ (0) given by different procedures for the beam and KdV equation.

beam
β = −5, α = −5, ω = 1, λ = √5

πm,n h̄1 = −1, h̄2 = 0 h̄1 = −1.068, h̄2 = −0.011
π5,5 -1.548178597 -1.548119666
π6,6 -1.548147819 -1.548120406
π7,7 -1.548137657 -1.548149002
π8,8 -1.548135882 -1.548180386
π9,9 -1.548135856 -1.548128382

KdV

α = 2, β = 4, ω = 1, λ = 1
πm,n h̄1 = −0.451, h̄2 = 0 h̄1 = −0.487, h̄2 = −0.029
π2,2 -1.287559772 -1.330695064
π3,3 -1.318975383 -1.312329898
π4,4 -1.318338968 -1.318338968
π5,5 -1.313135052 -1.310289334
π6,6 -1.310114082 -1.309617891
π7,7 -1.309136177 -1.309384890

Table 3. The Padé approximations of Ξ given by different procedures for the beam and KdV equation.

beam
β = −5, α = −5, ω = 1, λ = √5Ξm,n h̄1 = −1, h̄2 = 0 h̄1 = −1.151, h̄2 = −1.423E − 2Ξ5,5 97.00540850 96.96725308Ξ6,6 97.34805918 97.42577367Ξ7,7 97.38923412 97.38502313Ξ8,8 97.38330429 97.38608215Ξ9,9 97.37863258 97.37975212

KdV

α = 2, β = 4, ω = 1, λ = 1Ξm,n h̄1 = −0.451, h̄2 = 0 h̄1 = −0.487, h̄2 = −0.029Ξ2,2 1.240626839 1.240626839Ξ3,3 1.271576322 1.236721215Ξ4,4 1.263398561 1.261675520Ξ5,5 1.260525504 1.255296180Ξ6,6 1.256956468 1.256063425Ξ7,7 1.256081490 1.256591897
486
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5. Padé approximation
Let φ(η;q) = ψ0(η) + ∑∞

j=1 ψm(η)qj denote the homo-topic solution of the nonlinear differential equations inthe framework of biparametric homotopy. The Padé ap-proximant πm,n(η;q) of the function φ(η;q) is a rationalfunction of the form
πm,n(η;q) = Pm(η;q)

Qn(η;q) = a0(η) + a1(η)q+ ...+ am(η)qm
b0(η) + b1(η)q+ ...+ bn(η)qn ,

so that the coefficients of qi , i 6= 1, 2, ..., m + n of thepower series (φQn − Pm)(η;q) vanish. Now the Padé ap-proximant πm,n can fit the power series through orders1, q, q2, ..., qm+n with an error of O(qm+n+1). Substituting
Pm(η;q) = a0(η) + a1(η)q+ ...+ am(η)qm and Qn(η;q) =
b0(η) + b1(η)q + ... + bn(η)qn in (φQn − Pm)(η;q) =
ψ0(η) +∑m+n

j=1 ψm(η)qj and setting b0(η) = 1, we have

ψj (η) +∑min{n,j}

i=1 ψj−i(η)bi(η) = aj (η),
j = 0, 1, 2, ..., m,

ψj (η) +∑min{j,n}
i=1 ψj−i(η)bi(η) = 0,

j = m+ 1, m+ 2, ..., m+ n.

(43)
Solution of the above system gives the unknowns ai, i =1, 2, ..., m and bj , j = 1, 2, · · · , n, and hence by setting
q = 1 Padé approximant πm,n is obtained. In many cases,the Padé approximant πm,n does not depend upon the aux-iliary parameter h1 in case of h2 = 0, as pointed out byLiao [7]. Note that the Padé approximant πm,n in case of
h1 6= 0 and h2 6= 0 depend upon the auxiliary parame-ters h1 and h2. But, we cannot give a mathematical proofabout it.The value of ψ′′ (0) is shown in Table 2. It is obvious thatresults given by the optimal values h1 6= 0 and h2 6= 0are a little better than those given by the optimal value
h1 6= 0 in case of h2 = 0.We can apply the padé technique to accelerate the con-vergence rate of Mth-order approximations of amplitudeΞ. The Ξm,n homotopy-Padé approximation of amplitudeΞ is formulated by

Ξm,n = ∑m
j=0 Ξj1 +∑n
i=1 Ξm+1+i . (44)

The value of the amplitude is shown in Table 3.
6. Results and discussion
In this section, the comparison of numerical and analyticalapproximations of our proposed approach for the extended

Figure 1. Point: Numerical solution at t = 300, b = 0, mesh points
10001,20001,40001 [36]; Solid: Numerical solution with
our method (h̄1 = −1.2, h̄2 = −0.1) at t = 300, b = 0.

Figure 2. Point: Numerical solution at t = 90, b = 0, mesh points
40001 [36]; Solid: Numerical solution with our method
(h̄1 = −0.9, h̄2 = −0.3) at t = 90, b = 0.

fifth-order Korteweg–de Vries equation [36] and nonlinearbeam equation [33] is presented. As shown in Figs. 1–6,the obtained results are in excellent agreement with thereferences.
Extended fifth-order Korteweg–de Vries equation.Sauceza et al. [36] considered the numerical solution of anextended fifth-order KdV model describing (water) waves
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Figure 3. Point: Numerical solution at t = 180, b = 0, mesh points
40001 [36]; Solid: Numerical solution with our method
(h̄1 = −1.3, h̄2 = −0.13) at t = 180, b = 0.

Figure 4. Point: Numerical solution at t = 20, b = 0, mesh points
1001 [36]; Solid: Numerical solution with our method
(h̄1 = −.85, h̄2 = −0.09) at t = 20, b = 0.

and solitons in the presence of surface tension by usingthe finite difference method. Their model is described by
ut + 512u5x + (x − b)u3x + (3u+ 2µuxx )ux = 0. (45)

Nonlinear beam equation. As mentioned before, in [33]

Figure 5. Describe the solution of Eq. (46) where x, t ∈ [−10, 10]
and h̄1 = h̄2 = −1, α = 2, β = −0.66.

Figure 6. Describe the solution of Eq. (47) where x ∈ [0, 1] and
h̄1 = h̄2 = −1, α = −9, β = −4.

Zahra et al. considered the analytical solution of nonlin-ear beam equation by using the Exp-function method.Theirmodels are described by
utt + u4x + αuxx + βu+ u2 = 0, (46)
u4x + αuxx + +βu+ u3 = 0. (47)

Remark 1: In Figs. 1–6 the numerical convergence of oursolution (for Eq. (45) ) and the solution obtained in [36]is presented.
Remark 2: In Figs. 6–6 analytical solution of our approachfor Eqs. (46, 47) is presented. The obtained results areexactly same with the results obtained in [33].
7. Conclusion
In this manuscript, we studied the application of a bi-parametric homotopy for solving the nonlinear differential
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equations and its application in physical phenomena. Thepresent homotopy adds a new parameter to the conver-gence region that increases the convergence region of theseries solutions and generalizes the homotopy analysismethod for a wider range of nonlinear problems. All givenexamples reveal that the present homotopy yields a veryeffective and convenient technique to the approximate so-lutions of nonlinear differential equations.
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