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Abstract
By using the fractional Caputo–Fabrizio derivative, we investigate a new version for
the mathematical model of HIV. In this way, we review the existence and uniqueness
of the solution for the model by using fixed point theory. We solve the equation by a
combination of the Laplace transform and homotopy analysis method. Finally, we
provide some numerical analytics and comparisons of the results.
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1 Introduction
The HIV infection target is CD4+ T cells which are the largest white blood cells of the
immune system [1, 2]. HIV infection infects most cells but has the most destructive ef-
fect on CD4+ T cells and weakens the immune system by destroying them [3]. When the
number of CD4+ T-cell drops below a certain number, the cell-mediated immune system
disappears, the immune system becomes weaker, and the body becomes susceptible to any
infection [3].

A simple mathematical model for HIV infection was presented by Pearson [4]. This
model has been an inspiration for many mathematicians in the modeling of HIV (see,
for example, [4–6]). The mathematical models presented for HIV are very useful in un-
derstanding the dynamics of HIV infection [7–10]. Many mathematicians and scientists
have shown that using fractional order instead of the correct order in modeling natural
phenomena yields better results [10–13]. In recent years, Caputo and Fabrizio proposed
a new definition of fractional derivative having exponential kernel [14]. Losada and Ni-
eto investigated the properties of the new fractional derivative [15]. The Caputo and Rie-
mann fractional derivatives cannot adequately describe physical phenomena because of
their singularity. Recently, many works related to the fractional Caputo–Fabrizio deriva-
tive have been published (see, for example, [16–39]). In this paper, we use the Caputo and
Fabrizio fractional derivative [14] to express the model of HIV and solve the equations by
a method that combines the homotopy and Laplace transforms [14, 40–42].
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Now, we recall some fundamental notions. The Caputo fractional derivative of order ν

for a function f via integrable differentiations is defined by

CDν f (t) =
1

Γ (n – ν)

∫ t

0

f (n)(s)
(t – s)ν–n+1 ds, n = [ν] + 1.

Our second notion is a fractional derivative without singular kernel introduced by Caputo
and Fabrizio [14]. Let b > a, f ∈ H1(a, b), and ν ∈ (0, 1), the Caputo–Fabrizio derivative of
order ν for a function f is defined by

CFDν f (t) =
M(ν)

(1 – ν)

∫ t

a
exp

(
–ν

1 – ν
(t – s)

)
f ′(s) ds (t ≥ 0),

where M(ν) is a normalization function that depends on ν and M(0) = M(1) = 1. If f /∈
H1(a, b), this derivative can be presented for f ∈ L1(–∞, b) as follows:

CFDν f (t) =
νM(ν)
(1 – ν)

∫ b

–∞

(
f (t) – f (s)

)
exp

(
–ν

1 – ν
(t – s)

)
ds (0 < ν < 1).

Also, for n ≥ 1 and ν ∈ (0, 1), the fractional derivative CFDν+n of order ν + n is defined by
CFDν+nf (t) := CFDν(Dnf (t)) [43].

The Laplace transform of the Caputo–Fabrizio derivative is defined by [15]

L
[CFD(ν+n)f (t)

]
(s) =

sn+1L[f (t)] – snf (0) – sn–1f ′(0) – · · · – f (n)(0)
s + ν(1 – s)

,

where 0 < ν ≤ 1 and M(ν) = 1. The Riemann–Liouville fractional integral of order ν ,
Re(ν) > 0 is defined by Iν f (t) = 1

Γ (ν)
∫ t

0 (t – s)ν–1f (s) ds. The fractional integral of Caputo–
Fabrizio is defined by [15]

CFIν f (t) =
2(1 – ν)

(2 – ν)M(ν)
f (t) +

2ν

(2 – ν)M(ν)

∫ t

0
f (s) ds (0 < ν < 1).

Also, the left and right fractional integrals of (CF
a Dν) are defined respectively by [44]:

(CF
a Iν f

)
(t) =

1 – ν

B(ν)
f (t) +

ν

B(ν)

∫ t

a
f (s) ds,

(CFIν
b f

)
(t) =

1 – ν

B(ν)
f (t) +

ν

B(ν)

∫ b

t
f (s) ds.

The Sumudu transform is derived from the classical Fourier integral [45–47]. Consider
the set A = {F : ∃λ, k1, k2 ≥ 0, |F(t)| < λ exp( t

kj
), t ∈ (–1)j × [0,∞)}. The Sumudu transform

of a function f (t) ∈ A denoted by ST[f (t); u] = F(u) is defined by

F(u) = ST
[
f (t); u

]
=

1
u

∫ ∞

0
exp(–t/u)f (t) dt, u ∈ (–k1, k2),
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for all t ≥ 0, and the inverse Sumudu transform of F(u) is denoted by f (t) = ST–1[F(u)]
[46]. The Sumudu transform of the Caputo derivative is given by

ST
[cDν

t f (t); u
]

= u–ν

[
F(u) –

m∑
i=0

uν–i[cDν–if (t)
]

t=0

]
,

where (m – 1 < ν ≤ m) [45]. Let F be a function such that its Caputo–Fabrizio fractional
derivation exists. The Sumudu transform of F with Caputo–Fabrizio fractional derivative
is defined by [48]

ST
(CF

0 Dν
t
)(

F(t)
)

=
M(ν)

1 – ν + νu
[
ST

(
F(t)

)
– F(0)

]
.

Let (X, d) be a metric space, a map g : X → X is called a Picard operator whenever there
exists x∗ ∈ X such that Fix(g) = {x∗} and the sequence (gn(x0))n∈N converges to x∗ for all
x0 ∈ X [49].

2 Mathematical model of the HIV-1 infection of CD4+ T-cell
The classical order model of HIV-1 infection of CD4+ T-cell is given by

⎧⎪⎪⎨
⎪⎪⎩

dT
dt = β – kVT – dT + bU ,
dU
dt = kVT – (b + δ)U ,
dV
dt = NδU – cV ,

(1)

with initial conditions T(0) = T0, U(0) = U0, V (0) = V0 [1]. Model (1) does not include the
internal memory effects of the HIV biological system. To improve the model, we change
the first-order time derivative to the Caputo–Fabrizio fractional derivative of order ν as
follows:

⎧⎪⎪⎨
⎪⎪⎩

CF
0 Dν

t T = β – kVT – dT + bU ,
CF
0 Dν

t U = kVT – (b + δ)U ,
CF
0 Dν

t V = NδU – cV ,

(2)

where 0 < νi ≤ 1 and the initial conditions T(0) = T0, U(0) = U0, and V (0) = V0. In this
model, T represents the concentration of uninfected CD4+ T cells, U represents the con-
centration of infected CD4+ T cells, and V represents the free HIV infection particles in
the blood. The parameters β , d, k, δ, b, c, and N denote the new T-cells supply rate, the
rate of natural death, the rate of infection T-cells, the death rate of infected T-cells, the
rate of return of infected cells to uninfected class, the death rate of virus, and the average
number of particles infected by an infected cell, respectively.

In system (2), the right-hand sides of the equations have dimension (time)–1. When
we change the order of the equations to ν , the dimension of the left-hand side would be
(time)(–ν). To have the dimensions match, we should change the dimensions of the param-
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eters d, k, δ, b, c and the system we obtain eventually is

⎧⎪⎪⎨
⎪⎪⎩

CF
0 Dν

t T = β – kνVT – dνT + bνU ,
CF
0 Dν

t U = kνVT – (bν + δν)U ,
CF
0 Dν

t V = NδνU – cνV .

(3)

Numerical solutions of model (3) are presented by using the homotopy analysis trans-
form method (HATM). We transform the fractional differential equation into the alge-
braic equation by using Laplace transform and solve the resulting algebraic equation by
the homotopy analysis method.

3 Existence of solution
Consider the following model employing the Caputo–Fabrizio fractional derivative:

⎧⎪⎪⎨
⎪⎪⎩

CF
0 Dν

t T = β – kνVT – dνT + bνU ,
CF
0 Dν

t U = kνVT – (bν + δν)U ,
CF
0 Dν

t V = NδνU – cνV .

(4)

We get the Losada and Nieto integral operator [15] on both sides of equations (4), so

T(t) – g1(t) =
2(1 – ν)

(2 – ν)M(ν)
{
β – kνV (t)T(t) – dνT(t) + bνU(t

}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
β – kνV (s)T(s) – dνT(s) + bνU(s)

]
ds,

U(t) – g2(t) =
2(1 – ν)

(2 – ν)M(ν)
{

kνV (t)T(t) –
(
bν + δν

)
U(t)

}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
kνV (s)T(s) –

(
bν + δν

)
U(s)

]
ds,

V (t) – g3(t) =
2(1 – ν)

(2 – ν)M(ν)
{

NδνU(t) – cνV (t)
}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
NδνU(s) – cνV (s)

]
ds.

(5)

We present the differential equations (5) as follows:

T0(t) = g1(t), U0(t) = g2(t), V0(t) = g3(t),

Tn+1(t) =
2(1 – ν)

(2 – ν)M(ν)
{
β – kνV (t)T(t) – dνT(t) + bνU(t

}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
β – kνV (s)T(s) – dνT(s) + bνU(s)

]
ds,

Un+1(t) =
2(1 – ν)

(2 – ν)M(ν)
{

kνV (t)T(t) –
(
bν + δν

)
U(t)

}
(6)

+
2ν

(2 – ν)M(ν)

∫ t

0

[
kνV (s)T(s) –

(
bν + δν

)
U(s)

]
ds,



Baleanu et al. Advances in Difference Equations         (2020) 2020:71 Page 5 of 17

Vn+1(t) =
2(1 – ν)

(2 – ν)M(ν)
{

NδνU(t) – cνV (t)
}

+
2ν

(2 – ν)M(ν)

∫ t

0

[
NδνU(s) – cνV (s)

]
ds.

Now if we take limit from Picard’s repetitive series (6) when n is infinite, the solution of
the equation is obtained as follows:

⎧⎪⎪⎨
⎪⎪⎩

limn→∞ Tn(t) = T(t),

limn→∞ Un(t) = U(t),

limn→∞ Vn(t) = V (t).

(7)

3.1 Existence of solution by the Picard–Lindelof approach
We use the Picard–Lindelof approach and the Banach fixed point theorem to prove the
existence of the solution. At first, we define the following operators:

⎧⎪⎪⎨
⎪⎪⎩

g1(t, T) = β – kνV (t)T(t) – dνT(t) + bνU(t),

g2(t, U) = kνV (t)T(t) – (bν + δν)U(t),

g3(t, V ) = NδνU(t) – cνV (t).

(8)

Let

L1 = sup
C[a,c1]

∥∥g1(t, T)
∥∥, L2 = sup

C[a,c2]

∥∥g2(t, U)
∥∥, L3 = sup

C[a,c3]

∥∥g3(t, V )
∥∥, (9)

where

⎧⎪⎪⎨
⎪⎪⎩

C[a, c1] = |t – a, t + a| × |T – c1, T + c1| = A × C1,

C[a, c2] = |t – a, t + a| × |U – c2, U + c2| = A × C2,

C[a, c3] = |t – a, t + a| × |V – c3, V + c3| = A × C3.

(10)

Assume a uniform norm on C[a, ci] (i = 1, 2, 3) as follows:

∥∥Y (t)
∥∥∞ = sup

t∈[t–a,t+a]

∣∣Y (t)
∣∣. (11)

Consider the Picard operator

O : C(A, C1, C2, C3) → C(A, C1, C2, C3) (12)

given as follows:

O
(
Y (t)

)
= Y0(t) +

2(1 – ν)
2 – ν)M(ν)

G
(
t, Y (t)

)
+

2ν

(2 – ν)M(ν)

∫ t

0
G

(
s, Y (s)

)
ds. (13)

So that Y (t) = {T(t), U(t), V (t)}, Y0(t) = {T(0), U(0), V (0)} and

G
(
t, Y (t)

)
=

{
g1(t, T), g2(t, U), g3(t, V )

}
. (14)
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Let us assume that the solutions to the problem under investigation are bounded within a
time period,

∥∥Y (t)
∥∥∞ ≤ max{c1, c2, c3} = C. (15)

Let L = max{L1, L2, L3} and there exists t0 so that t0 ≥ t, then

∥∥OY (t) – Y0(t)
∥∥ =

∥∥∥∥ 2(1 – ν)
(2 – ν)M(ν)

G
(
t, Y (t)

)
+

2ν

(2 – ν)M(ν)

∫ t

0
G

(
s, Y (s)

)
ds

∥∥∥∥

≤ 2(1 – ν)
(2 – ν)M(ν)

∥∥G(t, Y )
∥∥ +

2ν

(2 – ν)M(ν)

∫ t

0

∥∥G(s, Y ) ds
∥∥ds

≤
(

2(1 – ν)
(2 – ν)M(ν)

+
2νt

(2 – ν)M(ν)

)
L (16)

≤
(

2(1 – ν)
(2 – ν)M(ν)

+
2νt0

(2 – ν)M(ν)

)
L ≤ μL ≤ C, (17)

where we demand that

μ <
C
L

. (18)

Also we evaluate the following equality:

‖OY1 – OY2‖ = sup
t∈A

∣∣Y1(t) – Y2(t)
∣∣. (19)

Using the definition of our Picard operator, we have

‖OY1 – OY2‖ =
∥∥∥∥ 2(1 – ν)

(2 – ν)M(ν)
{

G(t, Y1(t) – G(t, Y2(t)
}

+
2ν

(2 – ν)M(ν)

∫ t

0

{
G(s, Y1(s) – G(s, Y2(s)

}
ds

∥∥∥∥
≤ 2(1 – ν)

(2 – ν)M(ν)
∥∥G(t, Y1(t) – G(t, Y2(t)

∥∥

+
2ν

(2 – ν)M(ν)

∫ t

0

∥∥G(s, Y1(s) – G(s, Y2(s)
∥∥ds

≤ 2(1 – ν)
(2 – ν)M(ν)

λ
∥∥Y1(t) – Y2(t)

∥∥

+
2νλ

(2 – ν)M(ν)

∫ t

0

∥∥Y1(s) – Y2(s)
∥∥ds

≤
(

2(1 – ν)λ
(2 – ν)M(ν)

+
2νλt0

(2 – ν)M(ν)

)∥∥Y1(t) – Y2(t)
∥∥

≤ μλ
∥∥Y1(t) – Y2(t)

∥∥ (20)

with λ < 1. Since G is a contraction, then μλ < 1, so O is a contraction. The proof is com-
plete.
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4 Special solutions via iteration approach
Here, we provide a special solution to the model of HIV-1 infection. Applying the Sumudu
transform to system (3), we get

⎧⎪⎪⎨
⎪⎪⎩

ST(CF
0 Dν

t T(t)) = ST[β – kνV (t)T(t) – dνT(t) + bνU(t)],

ST(CF
0 Dν

t U(t)) = ST[kνV (t)T(t) – (bν + δν)U(t)],

ST(CF
0 Dν

t V (t)) = ST[NδνU(t) – cνV (t)].

(21)

By using the definition of the Sumudu transform of CF-derivative, we obtain

M(ν)
1 – ν + νu

(
ST

(
T(t)

)
– T(0)

)
= ST

[
β0 – kνV (t)T(t) – dνT(t) + bνU(t)

]
,

M(ν)
1 – ν + νu

(
ST

(
U(t)

)
– U(0)

)
= ST

[
kνV (t)T(t) –

(
bν + δν

)
U(t)

]
, (22)

M(ν)
1 – ν + νu

(
ST

(
V (t)

)
– V (0)

)
= ST

[
NδνU(t) – cνV (t)

]
.

Rearranging, we obtain the following inequalities:

ST
(
T(t)

)
= T(0) +

1 – ν + νu
M(ν)

ST
[
β – kνV (t)T(t) – dνT(t) + bνU(t)

]
,

ST
(
U(t)

)
= U(0) +

1 – ν + ν1u
M(ν)

ST
[
kνV (t)T(t) –

(
bν + δν

)
U(t)

]
, (23)

ST
(
V (t)

)
= V (0) +

1 – ν + νu
M(ν)

ST
[
NδνU(t) – cνV (t)

]
.

The following recursive formula is obtained:

Tn+1(t) = Tn(0) + ST–1
{

1 – ν + νu
M(ν)

ST
[
β – kνVn(t)Tn(t) – dνTn(t) + bνUn(t)

]}
,

Un+1(t) = U0(t) + ST–1
{

1 – ν + νu
M(ν)

ST
[
kνV (t)T(t) –

(
bν + δν

)
U(t)

]}
, (24)

Vn+1(t) = V0(t) + ST–1
{

1 – ν + νu
M(ν)

ST
[
NδνU(t) – cνV (t)

]}
.

Finally, the solution of equation (24) approximates to the following:

T(t) = lim
n→∞ Tn(t), U(t) = lim

n→∞ Un(t), V (t) = lim
n→∞ Vn(t). (25)

4.1 Application of fixed point theorem for stability analysis of iteration method
Consider the Banach space (Y ,‖ · ‖), a self-map F on Y , and recursive method Pn+1 =
φ(F , Pn). Assume that Ω(F) is the fixed point set of F which Ω(F) �= ∅ and limn→∞ Pn =
p ∈ Ω(F). Suppose that {fn} ⊂ Ω and en = ‖fn++1 – φ(F , fn)‖, if limn→∞ en = 0 implies that
limn→∞ fn = p, then the recursive procedure Pn+1 = φ(F , Pn) is F-stable. Suppose that our
sequence {fn} has an upper boundary. If Picard’s iteration Pn+1 = FPn is satisfied in all these
conditions, then Pn+1 = FPn is F-stable.
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Theorem 1 ([49]) Let (Y ,‖ · ‖) be a Banach space and F be a self-map of Y satisfying

‖Fx – Fy‖ ≤ R‖x – Fx‖ + r‖x – y‖

for all x, y ∈ Y , where R ≥ 0 and 0 ≤ r < 1. Then F is Picard F-stable.

Suppose that the fractional model of HIV-1 infection of CD4+ T-cell (3) is connected
with the subsequent iterative formula in (24). Consider the following theorem.

Theorem 2 Suppose that F is a self-map defined as follows:

F
(
Tn(t)

)
= Tn+1(t)

= Tn(t) + ST–1
{

1 – ν + νu
M(ν)

ST
[
β – kνVn(t)Tn(t) – dνTn(t) + bνUn(t)

]}
,

F
(
Un(t)

)
= Un+1(t)

= Ut(t) + ST–1
{

1 – ν + νu
M(ν)

ST
[
kνV (t)T(t) –

(
bν + δν

)
U(t)

]}
,

F
(
Vn(t)

)
= Vn+1(t)

= Vn(t) + ST–1
{

1 – ν + νu
M(ν)

ST
[
NδνU(t) – cνV (t)

]}
.

(26)

Then (26) is F-stable in L1(a, b) if the following conditions are achieved:

⎧⎪⎪⎨
⎪⎪⎩

(1 – dν f1(η) – kνM3f2(η) – kνM1f3(η) + bν f4(η)) < 1,

(1 + (bν + δν)f5(η) + kνM3f6(η) + kνM1f7(η)) < 1,

(1 + Nδν f8(η) – cν f9(η)) < 1.

(27)

Proof At first, we compute the following inequalities for (n, m) ∈ N × N to prove that F
has a fixed point:

F(Tn(t) – F
(
Tm(t)

)

= Tn(t) – Tm(t) + ST–1
{

1 – ν + νu
M(ν)

ST
[
β – kνVn(t)Tn(t) – dνTn(t) + bνUn(t)

]}

– ST–1
{

1 – ν + νu
M(ν)

ST
[
β – kνVm(t)Tm(t) – dνTm(t) + bνUm(t)

]}
. (28)

Now, we apply norm on both sides of equation (28)

∥∥F(Tn – F(Tm)
∥∥

=
∥∥∥∥Tn – Tm + ST–1

{
1 – ν + νu

M(ν)
ST

[
–kν(VnTn – VmTm)

– dν(Tn – Tm) + bν(Un – Um)
]}∥∥∥∥
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≤ ‖Tn – Tm‖ + ST–1
{

1 – ν + νu
M(ν)

ST
[∥∥–kνVn(Tn – Tm)

∥∥

+
∥∥–kνTm(Vn – Vm)

∥∥ +
∥∥–dν(Tn – Tm)

∥∥ +
∥∥bν(Un – Um)

∥∥]}
. (29)

Because of the same role of both solutions, we shall consider
∥∥Tn(t) – Tm(t)

∥∥ ∼= ∥∥Un(t) – Um(t)
∥∥ ∼= ∥∥Vn(t) – Vm(t)

∥∥. (30)

From equations (29) and (30), we obtain
∥∥F(Tn(t) – F

(
Tm(t)

)∥∥ ≤ ∥∥Tn(t) – Tm(t)
∥∥

+ ST–1
{

1 – ν + νu
M(ν)

ST
[∥∥–kνVn(t)

(
Tn(t) – Tm(t)

)∥∥

+
∥∥–kνTm(t)

(
Tn(t) – Tm(t)

)∥∥
+

∥∥–dν
(
Tn(t) – Tm(t)

)∥∥ +
∥∥bν

(
Tn(t) – Tm(t)

)∥∥]}
. (31)

Since Vn, Tm, Un are convergent sequences, then they are bounded, so there exist M1, M2,
M3 for all t such that

‖Vn‖ < M3, ‖Tm‖ < M1, ‖Un‖ < M2, (m, n) ∈ N × N . (32)

From equations (31) and (32), we obtain the following:
∥∥F(Tn(t) – F

(
Tm(t)

)∥∥ ≤ {
1 – dν f1(η) – kνM3f2(η) – kνM1f3(η) + bν f4(η)

}
× ∥∥Tn(t) – Tm(t)

∥∥, (33)

where fi are functions from ST–1[ 1–ν+νu
M(ν) ST[∗]]. In the same way, we get

∥∥F(Un(t) – F
(
Um(t)

)∥∥ ≤ {
1 +

(
bν + δν

)
f5(η) + kνM3f6(η) + kνM1f7(η)

}
× ∥∥Un(t) – Um(t)

∥∥, (34)
∥∥F(Vn(t) – F

(
Vm(t)

)∥∥ ≤ {
1 + Nδν f8(η) – cν f9(η)

}∥∥Vn(t) – Vm(t)
∥∥, (35)

where
⎧⎪⎪⎨
⎪⎪⎩

{1 – dν f1(η) – kνM3f2(η) – kνM1f3(η) + bν f4(η)} < 1,
{1 + (bν + δν)f5(η) + kνM3f6(η) + kνM1f7(η)} < 1,
{1 + Nδν f8(η) – cν f9(η)} < 1.

(36)

Then the F self-mapping has a fixed point. In addition, we show that F satisfies the con-
ditions in Theorem 1. Let (33), (34), and (35) hold, so we assume

R = (0, 0, 0), r =

⎧⎪⎪⎨
⎪⎪⎩

(1 – dν f1(η) – kνM3f2(η) – kνM1f3(η) + bν f4(η)),
(1 + (bν + δν)f5(η) + kνM3f6(η) + kνM1f7(η)),
(1 + Nδν f8(η) – cν f9(η)).

(37)

Then all conditions of Theorem 1 are fulfilled and the proof is complete. �
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5 Solution of equations by HATM method
To solve equations (3), we apply the Laplace transform on the both sides of equations:

⎧⎪⎪⎨
⎪⎪⎩

L[CF
0 Dν

t T(t)](S) = L[β – kνV (t)T(t) – dνT(t) + bνU(t)],

L[CF
0 Dν

t U(t)](s) = L[kνV (t)T(t) – (bν + δν)U(t)],

L[CF
0 Dν

t V (t)](s) = L[NδνU(t) – cνV (t)].

(38)

So

⎧⎪⎪⎨
⎪⎪⎩

sL(T)–T(0)
s+ν(1–s) = L(β – kνVT – dνT + bνU),

sL(U)–U(0)
s+ν(1–s) = L(kνVT – (bν + δν)U),

sL(V )–V (0)
s+ν(1–s) = L(NδνU – cνV ).

(39)

We get

⎧⎪⎪⎨
⎪⎪⎩

L(T) – T0
s – s+ν(1–s)

s L(β – kνVT – dνT + bνU) = 0,

L(U) – U0
s – s+ν(1–s)

s L(kνVT – (bν + δν)U) = 0,

L(V ) – V0
s – s+ν(1–s)

s L(NδνU – cνV ) = 0.

(40)

Using the homotopy method, the nonlinear operator is defined as follows:

N1
(
ϕ1(t; p),ϕ2(t; p),ϕ3(t; p)

)

= L
(
ϕ1(t; p)

)
–

T0

s
–

s + ν(1 – s)
s

× L
[
β – kνϕ3(t; p)ϕ1(t; p) – dνϕ1(t; p) + bνϕ2(t; p)

]
,

N2
(
ϕ1(t; p),ϕ2(t; p),ϕ3(t; p)

)

= L
(
ϕ2(t; p)

)
–

U0

s
–

s + ν(1 – s)
s

× L
[
kνϕ3(t; p)ϕ1(t; p) –

(
bν + δν

)
ϕ2(t; p)

]
,

N3
(
ϕ1(t; p),ϕ2(t; p),ϕ3(t; p)

)

= L
(
ϕ3(t; p)

)
–

V0

s
–

s + ν(1 – s)
s

× L
[
Nδνϕ2(t; p) – cνϕ3(t; p)

]
.

(41)

The so-called zero-order deformation equations of the Laplace transform equation (41)
have been shown by Liao [41] to have the form

(1 – p)L
[
ϕ1(t; p) – T0(t)

]
= phH(t)N1

(
ϕ1(t; p),ϕ2(t; p),ϕ3(t; p)

)
,

(1 – p)L
[
ϕ2(t; p) – U0(t)

]
= phH(t)N2

(
ϕ1(t; p),ϕ2(t; p),ϕ3(t; p)

)
,

(1 – p)L
[
ϕ3(t; p) – V0(t)

]
= phH(t)N3

(
ϕ1(t; p),ϕ2(t; p),ϕ3(t; p)

)
,

(42)

where p ∈ [0, 1] is the embedding parameter, h �= 0 is a nonzero auxiliary parameter, H(t) �=
0 is an auxiliary function, L is an auxiliary linear operator, T0(t), U0(t), and V0(t) are initial
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guesses of T(t), U(t), and V (t), and ϕi(t; p), i = 1, 2, 3, are unknown functions respectively.
It is important that one has great freedom to choose auxiliary things in HAM. Obviously,
when p = 0 and p = 1,

⎧⎪⎪⎨
⎪⎪⎩

ϕ1(t; 0) = T0(t), ϕ1(t; 1) = T(t),

ϕ2(t; 0) = U0(t), ϕ2(t; 1) = U(t),

ϕ3(t; 0) = V0(t), ϕ3(t; 1) = V (t).

(43)

Then as p increases from 0 to 1, the solution (ϕ1(t; p),ϕ2(t; p),ϕ3(t; p)) varies from the initial
guess (T0(t), U0(t), V0(t)) to the solution (T(t), U(t), V (t)). Expanding ϕ1(t; p), ϕ2(t; p), and
ϕ3(t; p) in Taylor series with respect to p, we have

ϕ1(t; p) = T0 +
∞∑

m=1

Tm(t)pm,

ϕ2(t; p) = U0 +
∞∑

m=1

Um(t)pm,

ϕ3(t; p) = V0 +
∞∑

m=1

Vm(t)pm,

(44)

where Tm(t) = 1
m!

∂mϕ1(t;p)
∂pm |p=0 and Um(t) = 1

m!
∂mϕ2(t;p)

∂pm |p=0 and Vm(t) = 1
m!

∂mϕ3(t;p)
∂pm |p=0. If the

auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary func-
tion H(t) are properly chosen, then series (44) converges at p = 1 as proved by Liao [41]
(and see [4, 5]), we have

X(t) = X0 +
∞∑

m=1

Xm(t),

Y (t) = Y0 +
∞∑

m=1

ym(t).

(45)

The mth-order deformation equation is presented by

⎧⎪⎪⎨
⎪⎪⎩

L[Tm(t) – χmTm–1(t)] = hHR1,m(Tm–1),

L[Um(t) – χmUm–1(t)] = hHR2,m(Um–1),

L[Vm(t) – χmVm–1(t)] = hHR3,m(Vm–1).

(46)

So that

R1,m
( �Tm–1(t), �Um–1(t), �Vm–1(t)

)

= L
[
Tm–1(t)

]
–

T0

s
(1 – χm)

–
s + ν(1 – s)

s
× L

[
β – kνVm–1Tm–1 – dνTm–1 + bνUm–1

]
,
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R2,m
( �Tm–1(t), �Um–1(t), �Vm–1(t)

)

= L
[
Um–1(t)

]
–

U0

s
(1 – χm)

–
s + ν(1 – s)

s
× L

[
kνVm–1Tm–1 –

(
bν + δν

)
Um–1

]
,

and

R3,m
( �Tm–1(t), �Um–1(t), �Vm–1(t)

)

= L
[
Vm–1(t)

]
–

V0

s
(1 – χm) –

s + ν(1 – s)
s

× L
[
NδνUm–1 – cνVm–1

]
. (47)

Using the inverse Laplace transform, we obtain

⎧⎪⎪⎨
⎪⎪⎩

Tm(t) = χmTm–1(t) + hHL–1[R1,m(Tm–1)],

Um(t) = χmUm–1(t) + hHL–1[R2,m(Um–1)],

Vm(t) = χmVm–1(t) + hHL–1[R3,m(Vm–1)].

(48)

On solving the above equations for m = 1, 2, 3, . . . , we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1(t) = –hH(1 + ν(t – 1))(β – kνV0T0 – dνT0 + bνU0)

= –hH(1 + ν(t – 1))M1,

U1(t) = –hH(1 + ν(t – 1))(kνV0T0 – (bν + δν)U0)

= –hH(1 + ν(t – 1))M2,

V1(t) = –hH(1 + ν(t – 1))(NδνU0 – cνV0)

= –hH(1 + ν(t – 1))M3,

(49)

where M1 = β – kνV0T0 – dνT0 + bνU0, M2 = kνV0T0 – (bν +δν)U0, and M3 = NδνU0 – cνV0.
Consequently, the solutions of equations (3) are given as follows:

T(t) = T0 + T1 + T2 + · · · = T0 – hH
(
1 + ν(t – 1)

)
M1 + · · · ,

U(t) = U0 + U1 + U2 + · · · = U0 – hH
(
1 + ν(t – 1)

)
M2 + · · · , (50)

V (t) = V0 + V1 + V2 + · · · = V0 – hH
(
1 + ν(t – 1)

)
M3 + · · · ,

where M1 = β – kνV0T0 – dνT0 + bνU0 and M2 = kνV0T0 – (bν + δν)U0 and M3 = NδνU0 –
cνV0.

5.1 Convergency of HATM for FDEs
We prove the convergence of the HATM method for equation (40) as our next result.

Theorem 3 Let the series
∑∞

m=0 Tm(t) and
∑∞

m=0 Um(t) and
∑∞

m=0 Vm(t) converge uni-
formly to T(t), U(t), and V (t) respectively, where Tm(t), Um(t), Vm(t) ∈ L(R+) are produced
by the mth-order deformation (46), and besides

∑∞
m=0 DνTm(t) and

∑∞
m=0 DνUm(t) and∑∞

m=0 DνVm(t) also converge. Then T(t), U(t), V (t) is the solution of (40).
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Proof Suppose that
∑∞

m=0 Tm(t) converges uniformly to T(t), then clearly limm→∞ Tm(t) =
0 for all t ∈ R+. Since Laplace is a linear operator, we have

n∑
m=1

L
[
Tm(t) – χmTm–1(t)

]

=
n∑

m=1

[
LTm(t) – χmLTm–1(t)

]

= LT1(t) +
(
LT2(t) – LT1(t)

)
+ · · · +

(
LTn(t) – LTn–1(t)

)
= LTn(t). (51)

Thus, from (51) we derive

∞∑
m=1

L
[
Tm(t) – χmTm–1(t)

]
= lim

n→∞ LTn(t) = L
(

lim
n→∞ Tn(t)

)
= 0. (52)

Hence hH
∑∞

m=1 R1,m( �Tm–1(t) =
∑∞

m=1 L[Tm(t) – χmTm–1(t)] = 0.
Since h �= 0, H �= 0, this yields

∑∞
m=1 R1,m( �Tm–1(t) = 0. Similarly, we can prove

∞∑
m=1

R2,m( �Um–1(t) = 0,
∞∑

m=1

R3,m( �Vm–1(t) = 0. (53)

Now from (47) we have

0 =
∞∑

m=1

{
L
[
Tm–1(t)

]
–

T0

s
(1 – χm) –

s + ν(1 – s)
s

× L
[
β – kνVm–1Tm–1 – dνTm–1 + bνUm–1

]}

= L

[ ∞∑
m=1

Tm–1(t)

]
–

T0

s

∞∑
m=1

(1 – χm) –
s + ν(1 – s)

s

× L

[
β – kν

∞∑
m=1

Vm–1(t)Tm–1(t) – dν

∞∑
m=1

Tm–1(t) + bν

∞∑
m=1

Um–1(t)

]

= L
[
T(t)

]
–

T0

s
–

s + ν(1 – s)
s

L
[
β – kνV (t)T(t) – dνT(t) + bνU(t)

]
. (54)

Similarly,

0 =
∞∑

m=1

{
L
[
Um–1(t)

]
–

U0

s
(1 – χm) –

s + ν(1 – s)
s

L
[
Um–1(t)

]
–

U0

s
(1 – χm)

–
s + ν(1 – s)

s
L
[
kνVm–1Tm–1 –

(
bν + δν

)
Um–1

]}

= L

[ ∞∑
m=1

Um–1(t)

]
–

U0

s

∞∑
m=1

(1 – χm)
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–
s + ν(1 – s)

s
L

[
kν

∞∑
m=1

Vm–1Tm–1 –
(
bν + δν

) ∞∑
m=1

Um–1

]

= L
[
U(t)

]
–

U0

s
–

s + ν(1 – s)
s

L
[
kνV (t)T(t) –

(
bν + δν

)
U(t)

]
, (55)

and

0 =
∞∑

m=1

{
L
[
Vm–1(t)

]
–

V0

s
(1 – χm) –

s + ν(1 – s)
s

L
[
Vm–1(t)

]

–
V0

s
(1 – χm) –

s + ν(1 – s)
s

L
[
NδνUm–1, –cνVm–1

]}

= L

[ ∞∑
m=1

Vm–1(t)

]
–

V0

s

∞∑
m=1

(1 – χm)

–
s + ν(1 – s)

s
L

[
Nδν

∞∑
m=1

Um–1 – cν

∞∑
m=1

Vm–1

]

= L
[
V (t)

]
–

V0

s
–

s + ν(1 – s)
s

L
[
NδνU(t) – cνV (t)

]
. (56)

Therefore T(t), U(t), and V (t) are the solutions of equation (40) and the proof is com-
plete. �

6 Numerical results
In this section, we present a numerical simulation of the results of the HIV-1 infection T-
cells system (3). The values of the parameters are also selected as N = 1000, δ = 0.16, k =
0.000024, b = 0.2, c = 3.4, β = 10, d = 0.01 and the initial conditions are given by V0 = 0.001,
U0 = 0, T0 = 1000 (see [9]). Next, we compute the HATM solutions for different values
of ν = 0.95, 0.96, 0.97, 0.98, 0.99, 1, h = –1, and H = 1. Figures 1, 2 show the results and
indicate that as ν → 1, the approximate solutions tend to the classic integer solution with
ν = 1. A comparison between the noninteger order model with ν = 0.95 and the integer
order ν = 1 is also given in Tables 1–3. The results verify the efficacy and accuracy of the
new fractional model.

Figure 1 Dynamics of uninfected and infected CD4+ T-cells, respectively T and U for various values of ν
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Figure 2 Dynamics of free HIV virus particles in the blood for various values of ν

Table 1 Results of three types of derivative: ordinary derivative Dν , Caputo fractional derivative cDν ,
and Caputo–Fabrizio fractional derivative CFDν for T (t)

t 0 1 2 3 4 5

Dν (ν = 1) 1000 1010 1020 1030 1040 1050
cDν (ν = 0.95) 1000 1007.6 1014.5 1021.4 1028 1034.5
CFDν (ν = 0.95) 1000.49999 1009.9999 1019.4998 1028.9996 1038.49909 1047.9983

Table 2 Results of three types of derivative: ordinary derivative Dν , Caputo fractional derivative cDν ,
and Caputo–Fabrizio fractional derivative CFDν for U(t)

t 0 1 2 3 4 5

Dν (ν = 1) 0 0.00001934 0.0000281 0.00002802 0.00001968 0.0000034
cDν (ν = 0.95) 0 0.00004318 0.0001218 0.0002826 0.0005667 0.0010129
CFDν (ν = 0.95) 0.000002 0.0000322 0.0000486 0.0000517 0.0000421 0.0000205

Table 3 Results of three types of derivative: ordinary derivative Dν , Caputo fractional derivative cDν ,
and Caputo–Fabrizio fractional derivative CFDν for V(t)

t 0 1 2 3 4 5

Dν (ν = 1) 0.001 0.003572 0.018088 0.04455 0.08295 0.1333
cDν (ν = 0.95) 0.001 0.0037256 0.017048 0.040028 0.072244 0.11341
CFDν (ν = 0.95) 0.0008677 0.0058764 0.0244969 0.0567293 0.1026 0.1620

7 Conclusion
In this work, we extend the model of HIV-1 infection of CD4+ T-cell to the concept of
Caputo–Fabrizio fractional derivative. We solve the related fractional differential equa-
tions by using the HATM method. The existence and uniqueness of the solutions are
studied with a fixed point theorem. We present the special solution by using the Sumudu
transform of the Caputo–Fabrizio derivation. Also, some numerical results are presented
for different values of ν to show the effect of the fractional order. Finally, we compare the
results of the ordinary, Caputo, and Caputo–Fabrizio derivatives.
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