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1. Introduction

One of the most recently popular branch of mathematics is the

fractional calculus that is concerned with derivatives and inte-
grals of real or complex orders. As a matter of fact, this type of
calculus, although as old as the classic calculus, it has attracted
the attention of researchers working on different disciplines
because of the astounding results obtained when some of these
researchers exploited fractional operators in modeling some
real world problems [1–15] not only to enrich this calculus

by discovering new kinds of fractional operators, but to under-
stand better the complex systems they face in modeling. It can
be realized that starting from the turn of this century research-

ers have proposed a variety of fractional operators [16–22] and
added variety of fractional operators with different approaches
to the field of fractional calculus.

Till 2014, all the known fractional operators encapsuled
singular kernels. In 2015, Caputo et al. [23] proposed a frac-
tional derivative without singular kernel. This can be consid-
ered as a revolution in the theory of fractional calculus. This

was the first step of the birth of the most popular fractional
derivative, Atangana-Baleanu fractional derivative [24]. After
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this derivative had been proposed, most of the works treated
by the traditional fractional derivative were reconsidered by
the new approach [25,26]. Afterwords, Abdeljawad in [27,28],

proposed a new nonsingular fractional derivative in
Atanagana-Baleanu settings containing a multi-parametered
Mittag-Leffler function and its discrete version in [29]. The

entity of many parameters redounded new properties to this
derivative and enabled to overcome some obstacles.

Many researchers have discussed the logistic equation in the

framework of differenet fractional derivatives (see [30–35]. In
this work, we consider two models of logistic equations in
the frame of the recently proposed fractional derivative in
[27,28]. We consider primarily the fractional quadratic and

cubic logistic models presented, respectively as

ABC
t0

Da;l;cx
� �

tð Þ ¼ rx tð Þ 1� x tð Þð Þ; t > t0; x t0ð Þ ¼ x0; ð1Þ

and

ABC
t0

Da;l;cx
� �

tð Þ¼ rx tð Þ 1�x tð Þ
k

� �
x tð Þ�mð Þ; t> t0;x t0ð Þ¼ x0;

ð2Þ
a 2 0; 1ð �; l; c > 0, and r;m; k > 0. Here, ABC

t0
Da;l;c represents

the generalized left ABC – fractional derivative introduced in
[27] and studied in [28].

This article is organized as follows: In Section 2, some

essential concepts are presented. The existence and uniqueness
of the equations under consideration are discussed in Section 3.
In Section 4, the stability of the considered logistic models are

discussed. In Section 5, numerical discussion is presented. The
last section devoted to the conclusion.

2. Preliminary results and essential concepts

Motivated by the time scale notation we shall use the following
modified versions of generalized Mittag-Leffler functions as

was used previously, for example, in [27–29].

Definition 1. For k 2 R, and a; b; c; z 2 C with Re að Þ > 0, the
generalized Mittag-Leffler functions are defined by

Ec
a;b k; zð Þ ¼

X1
k¼0

kk
zkaþb�1 cð Þk
C akþ bð Þk! : ð3Þ

For b ¼ c ¼ 1, it is written that

Ea k; zð Þ , E1
a;1 k; zð Þ ¼

X1
k¼0

kk
zka

C akþ 1ð Þ ; ð4Þ

where cð Þk ¼ c cþ 1ð Þ . . . cþ k� 1ð Þ. Notice that since

1ð Þk ¼ k!, then we write E1
a;b k; zð Þ ¼ Ea;b k; zð Þ.

Definition 2. [27,28] The generalized left ABC and ABR frac-

tional derivative of a function g starting at t0 and with kernel
Ec

a;l k; tð Þ, where 0 < a < 1; Re lð Þ > 0; c 2 R and where

k ¼ �a
1�a, are defined repspectively by

ABC
t0

Da;l;cg
� �

tð Þ ¼ B að Þ
1� a

Z t

t0

Ec
a;l k; t� sð Þg0 sð Þds; t P t0 ð5Þ
and

ABR
t0

Da;l;cg
� �

tð Þ ¼ B að Þ
1� a

d

dt

Z t

t0

Ec
a;l k; t� sð Þg sð Þds; t P t0; ð6Þ

where B að Þ > 0 is a normalizing function with
B 0ð Þ ¼ B 1ð Þ ¼ 1.

Definition 3. [28] Assume g tð Þ is defined on t0;T½ �. Then, the
left generalized AB fractional integral of a function g of order
0 < a � 1; l > 0; c > 0 is given by

AB
t0
Ia;l;cg

� �
tð Þ ¼

X1
i¼0

c

i

� �
ai

B að Þ 1� að Þi�1 t0I
aiþ1�lg

� �
tð Þ: ð7Þ

For a continuous function g tð Þ at t0 whose ABR-derivative
exists we know from [27] that

AB
t0
Ia;l;cABRt0

Da;l;cg
� �

tð Þ ¼ g tð Þ;and ABR
t0

Da;l;cAB
t0
Ia;l;cg

� �
tð Þ ¼ g tð Þ:

ð8Þ
The following lemma is (35) of Theorem 3 in [28]. It shows the

action of the generalized AB-integral operator on the general-
ized ABC-operator.

Lemma 1. For 0 < a < 1; l > 0; c 2 C, and k ¼ �a
1�a,

we have

AB
t0
Ia;l;cABCt0D

a;l;cg
� �

tð Þ ¼ g tð Þ � g t0ð Þ: ð9Þ

Lemma 2. [27,28] For any 0 < a; l > 0; c 2 R, and g defined

for t P t0, we have

ABC
t0

Da;l;cg
� �

tð Þ ¼ ABR
t0

Da;l;cg
� �

tð Þ � B að Þ
1� a

g að ÞEc
a;l k; t� t0ð Þ:

ð10Þ
Above k ¼ �a

1�a.

The following lemma, which is Remark 8 in [29] is essential
to proceed,.

Lemma 3. The continuous system

ABC
t0

Da;l;cg
� �

tð Þ ¼ qg tð Þ þ g tð Þ; g t0ð Þ ¼ a0; 0 < a

6 1; l; c 2 C; t P t0; ð11Þ
has the explicit solution

g tð Þ ¼ g t0ð Þ
X1
j¼0

qj 1� a
B að Þ

� �j

E�cj
a;j 1�lð Þþ1 k; t� t0ð Þ þ g tð Þ

�
X1
j¼0

qj 1� a
B að Þ

� �jþ1

E
�c jþ1ð Þ
a; jþ1ð Þ 1�lð Þ k; t� t0ð Þ

¼ g t0ð Þ þ g t0ð Þ
X1
j¼1

qj 1� a
B að Þ

� �j

E�cj
a;j 1�lð Þþ1 k; t� t0ð Þ

þ g tð Þ �
X1
j¼0

qj 1� a
B að Þ

� �jþ1

E
�c jþ1ð Þ
a; jþ1ð Þ 1�lð Þ k; t� t0ð Þ: ð12Þ
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3. Existence and uniqueness theorems

Consider the system

ABC
t0

Da;l;cx tð Þ ¼ f t; x tð Þð Þ; x t0ð Þ ¼ x0; t 2 t0;Tð �; ð13Þ
where a 2 0; 1ð Þ; f : t0; b½ Þ � G;G#R orCð Þ is open and

h tð Þ ¼ f t; x tð Þð Þ 2 C t0; b½ �
¼ y : t0; b½ � ! R : y tð Þiscontinuousf g:

The space C t0; b½ � is a Banach space when it is endowed by the
supremum norm

kyk1 ¼ sup
t2 t0 ;T½ �

jy tð Þj; ð14Þ

Definition 4. A function x tð Þ is said to be a solution of the

initial value problem (13) if

1. t; x tð Þð Þ 2 D; D ¼ t0; T½ � � B; B ¼ x 2 R : jxj 6 Lf g � G;
L > 0

2. x tð Þ satisfies (13).

Theorem 1. The generalized ABC-fractional initial value prob-
lem (13) has a unique solution in the space

Ca;l;c t0;T½ � ¼ x tð Þ 2 C t0; b½ �:ABCt0
Da;l;cx tð Þ 2 C t0;T½ �

n o
;

with 0 6 a < 1; l; c > 0, provided that

C1 T;Að Þ ¼ A

B að Þ
X1
i¼0

c

i

� �
ai T� t0ð Þia�lþ1

1� að Þi�1C iaþ 2� lð Þ < 1;ifl– 1;

ð15Þ
and

C2 T;Að Þ¼ A

B að Þ 1�að Þþ
X1
i¼1

c

i

� �
ai T� t0ð Þia

1�að Þi�1C iaþ1ð Þ

2
664

3
775< 1;ifl¼ 1;

ð16Þ
and that f satisfies the Lipschitz condition

jf t; x1ð Þ � f t; x2ð Þj 6 Ajx1 � x2j; A > 0: ð17Þ
Moreover, the case l ¼ 1 requires that f t0; x t0ð Þð Þ ¼ 0.

Proof 1. Define the operator ! : C t0;T½ � ! C t0;T½ � by

!xð Þ tð Þ ¼ x0þAB
t0
Ia;l;cf t; x tð Þð Þ; ð18Þ

where the space C t0;T½ � having the norm k:k1. For any

x1; x2 2 B, by the help of the Lipschitzian condition (17) and
by straight forward calculations, for any t 2 t0;T½ �, we have

j !x1 tð Þ � !x2 tð Þð Þj 6 C1 T;Að Þkx1 � x2k1; ifl – 1; ð19Þ
and
j !x1 tð Þ � !x2 tð Þð Þj 6 C2 T;Að Þkx1 � x2k1; ifl ¼ 1: ð20Þ
Then, taking the supremum over all t 2 t0;T½ � and using the

assumptions (15) and (16) we conclude that ! a contraction
on the Banach space C t0;T½ �. Therefore, there exists a unique
fixed point x 2 C t0;T½ � due to Banach fixed point theorem.

In addition,

lim
m!1

k!mx0 � xk1 ¼ 0: ð21Þ

Because of the definition of !; x possesses the form

x tð Þ ¼ x0þAB
t0
Ia;l:cf t; x tð Þð Þ: ð22Þ

By Lemmas 1 and 2, the identity

ABR
t0

Da;l;cAB
t0
Ia;l;cg tð Þ ¼ g tð Þ;

and taking into account that f a; y að Þð Þ ¼ 0 in the case l ¼ 1 , it
can be shown that y tð Þ satisfies the system (13) if and only if it
satisfies (18). Finally, we have the estimate

kABCt0
Da;l;c!mx0 �ABC

t0
Da;l;cxk1 6 Ak!mx0 � xk1

From (21), we conclude that limm!1
kABCt0

Da;l;c!mx0 �ABC
t0

Da;l;cxk1 ¼ 0. That is ABC
t0

Da;l;cx 2
C t0;T½ � and hence x 2 Ca;l;c t0;T½ �.

The condition f t0; x t0ð Þð Þ ¼ 0 in case l ¼ 1 is needed in
order to guarantee that solution given by (22) will satisfy
x t0ð Þ ¼ x0. However, one may note that when l – 1 then

x t0ð Þ ¼ x0 without any restrictions.

Remark 1. The successive approximation generated in the
proof of Theorem 1 above were used in [28] to produce explicit

solutions for the linear system (11) above, by benefiting from
the semigroup properties proved for the generalized AB-
integral operators there. The Laplace transforms also were
used there in [28] and completed in [29] for both the continu-

ous and discrete cases to obtain an explicit solution as stated
above in Lemma 3.

Theorem 2. (1) owns a unique solution in the space Ca;l;c t0;T½ � ,
provided that

C1 T;Að Þ < 1; if l– 1 and C2 T;Að Þ < 1; if l ¼ 1; ð23Þ
where A ¼ r 1þ 2Lð Þ. The case l ¼ 1 requires that either

x t0ð Þ ¼ 0 or x t0ð Þ ¼ 1.

Proof 2. The proof follows from considering Theorem 1 with
f t; x tð Þð Þ ¼ rx tð Þ 1� x tð Þð Þ and by noting that f satisfies the
Lipschitz constant A ¼ r 1þ 2Lð Þ due to the fact that

jf t; x1ð Þ � f t; x2ð Þj ¼ rj x1 � x2ð Þ 1þ x1 þ x2ð Þj
6 r 1þ 2Lð Þjx1 � x2j:

h

Theorem 3. (2) acquires a unique solution in the
spaceCa;l;c t0;T½ �, provided that

C1 T;Að Þ < 1; if l– 1 and C2 T;Að Þ < 1; if l ¼ 1; ð24Þ
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where A ¼ r �mþ 1þ m
k

� �
2Lþ L2

k

� �
. The case l ¼ 1 requires

that either x t0ð Þ ¼ 0 or x t0ð Þ ¼ m or x t0ð Þ ¼ k.

Proof 3. The proof can be carried out by applying Theorem 1

with f t; x tð Þð Þ ¼ rx tð Þ 1� x tð Þ
k

� �
x tð Þ �mð Þ and then tracing the

same steps as in the proof of Theorem 4 in [33].
:

4. Stability analysis for the ABC – logistic models

In this section we dispute the stability of the quadratic and
cubic logistic models by the help of perturbation of the equilib-

rium points. Assume a 2 0; 1ð �; l > 0; c > 0 and consider the
ABC – fractional initial value problem

ABC
t0

Da;l;cx tð Þ ¼ f xð Þ; x t0ð Þ ¼ x0; t > t0: ð25Þ
Let y0 be an equilibrium point of the system (25), that is
f yð Þ ¼ 0, and assume that x tð Þ ¼ y0 þ g tð Þ. Since the ABC frac-
tional derivative of the constant function is zero, following the

same as in Section 4 in [33], we deduce that the system (25) has
the following corresponding perturbed system:

ABC
t0

Da;l;cg tð Þ ¼ f0 y0ð Þg tð Þ; t > t0; g t0ð Þ ¼ x0 � y0: ð26Þ
In what follow, we use the perturbed system (26) to study the
stability of the logistic models by making use of Lemma 3 with

q ¼ f0 y0ð Þ and g tð Þ ¼ 0, where f is the right hand side of the

investigated logistic model.

4.1. Analysis of the quadratic logistic model

We see that the quadratic logistic model has the equilibrium
points y ¼ 0; 1. The corresponding right hand side function

of model (1) is f xð Þ ¼ rx 1� xð Þ and hence f0 xð Þ ¼ r 1� 2xð Þ
and f0 0ð Þ ¼ r; f0 1ð Þ ¼ �r.

The perturbed system associated to the equilibrium point

z ¼ 0 is the fractional linear system

ABC
t0

Da;l;cg tð Þ ¼ rg tð Þ; g t0ð Þ ¼ x0: ð27Þ
Applying Lemma 3 with g tð Þ ¼ 0 and q ¼ r, the solution of

system (27) is given by

g tð Þ ¼ x0 þ x0

X1
j¼1

rj
1� a
B að Þ

� �j

E�cj
a;j 1�lð Þþ1 k; t� t0ð Þ;

and hence the equilibrium point y ¼ 0 is unstable.
In addition, the perturbed system associated to the equilib-

rium point z ¼ 1 is the fractional linear system

ABC
t0

Da;l;cg tð Þ ¼ �rg tð Þ; g t0ð Þ ¼ x0 � 1: ð28Þ
The solution of system (28) is given by

g tð Þ ¼ x0 � 1ð Þ þ x0 � 1ð Þ
X1
j¼1

�rð Þj 1� a
B að Þ

� �j

E�cj
a;j 1�lð Þþ1 k; t� t0ð Þ;

and hence the equilibrium point y ¼ 1 is asymptotically stable.

4.2. Analysis of the cubic logistic model

We see that the cubic logistic model has the equilibrium points
y1 ¼ 0; y2 ¼ m and y3 ¼ k. The corresponding right hand side
function of (2) is f xð Þ ¼ rx tð Þ 1� x tð Þ
k

� �
x tð Þ �mð Þ and hence

f0 xð Þ¼ r 1� x tð Þ
k

� �
x tð Þ�mð Þþ rx tð Þ 1� x tð Þ

k

� �
� r

k
x tð Þ x tð Þ�mð Þ

and f0 0ð Þ¼�rm; f0 mð Þ¼ rm 1�m
k

� �
, and f0 kð Þ¼�r k�mð Þ.

The perturbed system associated to the equilibrium point

y ¼ 0 is the fractional linear system

ABC
t0

Da;l;cg tð Þ ¼ �rmg tð Þ; g t0ð Þ ¼ x0; t > t0: ð29Þ
Applying Lemma 3 with g tð Þ ¼ 0 and q ¼ rm, the solution of

system (29) is given by

g tð Þ ¼ x0 þ x0

X1
j¼1

�rmð Þj 1� a
B að Þ

� �j

E�cj
a;j 1�lð Þþ1 k; t� t0ð Þ:

Since r;m > 0 the equilibrium point y1 ¼ 0 is asymptotically
stable.

Also the perturbed system associated to the equilibrium
point y2 ¼ m is the fractional linear system

ABC
t0

Da;l;cg tð Þ ¼ rm 1�m

k

� �
g tð Þ; g t0ð Þ ¼ x0 �m: ð30Þ

The solution of system (30) is given by

g tð Þ ¼ x0 �mð Þ

þ x0 �mð Þ
X1
j¼1

rm 1�m

k

� �� �j 1� a
B að Þ

� �j

E�cj
a;j 1�lð Þþ1 k; t� t0ð Þ

Since r;m; k; q > 0 and m < k, then the equilibrium point

y2 ¼ m is unstable.
Finally, the perturbed system associated to the equilibrium

point y3 ¼ k is the fractional linear system

ABC
t0

Da;l;cg tð Þ ¼ �r k�mð Þg tð Þ; g t0ð Þ ¼ x0 � k: ð31Þ
The solution of system (31) is given by

g tð Þ ¼ x0 � kð Þ

þ x0 � kð Þ
X1
j¼1

�r k�mð Þð Þj 1� a
B að Þ

� �j

E�cj
a;j 1�lð Þþ1 k; t� t0ð Þ:

Since r;m; k > 0 and m < k, then the equilibrium point z3 ¼ k

is asymptotically stable.

Remark 2. Upon Theorems 2 and 3 the quadratic logistic
model and the cubic logistic model lead to the trivial cases for
the case l ¼ 1. Hence, the case l – 1 turns to be of more

interest. In fact, when l ¼ 1 we have

� Under the assumptions x t0ð Þ ¼ 0; x t0ð Þ ¼ 1 the equilibrium

points y1 ¼ 0 and y2 ¼ 1 of the quadratic logistic model
are stable, respectively. Their corresponding perturbed lin-
ear system in this case will have the trivial solution.

� Under the assumptions x t0ð Þ ¼ 0; x t0ð Þ ¼ m and x t0ð Þ ¼ k
the equilibrium points y1 ¼ 0 and y ¼ m and y3 ¼ k of the
cubic logistic model are stable, respectively. Their corre-
sponding perturbed linear system in this case will have the

trivial solution.
5. Numerical discussion

In this section, we give a description of the numerical scheme
to solve the initial value problem
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ABC
t0

Da;l;cx tð Þ ¼ f t; x tð Þð Þ; x t0ð Þ ¼ x0; t 2 t0;Tð �; ð32Þ
where a 2 0; 1ð Þ.

5.1. Numerical scheme

The scheme is a predictor-corrector method based on
Lagrange interpolation. We derive two schemes, one explicit

(the predictor scheme) and the other implicit (the corrector
scheme).

The solution of (32) is written as

x tð Þ ¼ x t0ð Þ þ
X1
k¼0

Aa;l;c
k Ik xð Þð Þ tð Þ; ð33Þ

where

Ik xð Þð Þ tð Þ ¼ R t

t0
t� sð Þak�l

f s; x sð Þð Þds;
Aa;l;c

k ¼ c
k

� �
ak

B að Þ 1�að Þk�1
1

C ak�lþ1ð Þ :

The interval 0;Tð � is discritised uniformly with grid points
tm ¼ t0 þmh; m 	 0; h a step size. Then at tm, we have

x tmð Þ ¼ x t0ð Þ þ
X1
k¼0

Aa;l;c
k Ik xð Þð Þ tmð Þ: ð34Þ

Then integral for Ik xð Þð Þ tmð Þ is written as

Ik xð Þð Þ tmð Þ¼
Xm�1

j¼0

Imk;j xð Þ; Imk;j xð Þ¼
Z tjþ1

tj

tm� sð Þak�l
f s;x sð Þð Þds:

Here, depending on how we approximate Imk;j xð Þ, we obtain

either an implicit scheme or an explicit one. For an explicit
scheme, we approximate f s; x sð Þð Þ by a Lagrange polynomial
using the nodes tj and tj�1:

f s; x sð Þð Þ 
 1

h
s� tj�1

� �
fj � s� tj

� �
fj�1

� 	
; fj ¼ f tj; x tj

� �� �
:

This gives the following approximation for Imk;j xð Þ; j P 1:

Imk;j 
 hak�lþ1 fjw
m;1
k;j � fj�1w

m;0
k;j

� �
;

where

wm;i
k;j ¼ m� jþ ið Þ m� jð Þak�lþ1 � m� j� 1ð Þak�lþ1

ak� lþ 1

þ m� j� 1ð Þak�lþ2 � m� jð Þak�lþ2

ak� lþ 2
:

For j ¼ 0, we approximate Imk;0 by approximating f s; x sð Þð Þ in

the integrand by f0 ¼ f t0; x t0ð Þð Þ. This gives the approximation

Imk;0 
 hak�lþ1nmk f0; nmk ¼ mak�lþ1 � m� 1ð Þak�lþ1

ak� lþ 1
:

Therefore, Ik xð Þð Þ tmð Þ; m 	 1, is then approximated by

Ik xð Þð Þ tmð Þ ¼ Imk;0 xð Þ þ
Xm�1

j¼1

Imk;j xð Þ


 hak�lþ1 nmk f0 þ
Xm�1

j¼1

fjw
m;1
k;j � fj�1w

m;0
k;j

� �" #

¼ hak�lþ1
Xm�1

j¼0

rmk;jfj; ð35Þ
where

rmk;j ¼
nmk � wm;0

k;1 ; if j ¼ 0;

wm;1
k;j � wm;0

k;jþ1; if 1 6 j 6 m� 2;

wm;1
k;m�1; ifj ¼ m� 1:

8>><
>>:

Substituting (35) into (34), letting xm 
 x tmð Þ, we obtain the
following explicit scheme:

xm ¼ x0 þ
X1
k¼0

Aa;l;c
k hak�lþ1

Xm�1

j¼0

rmk;jfj

" #

which can be written as

xm ¼ x0 þ
Xm�1

j¼0

cmj fj; cmj ¼
X1
k¼0

hak�lþ1Aa;l;c
k rmk;j

� �
ð36Þ

Note that if c is an integer, say c ¼ K, then Aa;l;c
k ¼ 0 for k > K,

and cmj becomes cmj ¼ PK
k¼0 hak�lþ1Aa;l;c

k rmk;j

� �
.

For an implicit scheme, we approximate f s; x sð Þð Þ in the
integral defining Imk;j xð Þ using the nodes tj and tjþ1:

f s; x sð Þð Þ 
 1

h
s� tj
� �

fjþ1 � s� tjþ1

� �
fj

� 	
;

which gives the following approximation for Imk;j xð Þ; j P 1:

Imk;j 
 hak�lþ1 fjþ1w
m;0
k;j � fjw

m;�1
k;j

� �
;

Therefore, Ik xð Þð Þ tmð Þ; m 	 1, is then approximated by

Ik xð Þð Þ tmð Þ ¼
Xm�1

j¼0
Imk;j xð Þ


 hak�lþ1
Xm�1

j¼0

fjþ1w
m;0
k;j � fjw

m;�1
k;j

� �

¼ hak�lþ1
Xm
j¼0

~rmk;jfj; ð37Þ

where

~rmk;j ¼
�wm;�1

k;0 ; if j ¼ 0;

wm;0
k;j�1 � wm;�1

k;j ; if 1 6 j 6 m� 1;

wm;0
k;m�1; if j ¼ m:

8>><
>>:

Substituting (37) into (34), leads to the following implicit
scheme:

xm ¼ x0 þ
Xm
j¼0

~cmj fj; ~cmj ¼
X1
k¼0

hak�lþ1Aa;l;c
k ~rmk;j

� �
: ð38Þ
5.2. Numerical simulations

For sake of simplicity, we will focus on the numerical discus-
sion of Eq. (1) given by:

ABC
t0

Da;l;cx
� �

tð Þ ¼ rx tð Þ 1� x tð Þ=Kð Þ; t > t0; x t0ð Þ ¼ x0; ð39Þ

with r ¼ 0:5 and K ¼ 2. The targets of this example are to dis-
cuss the effects of the parameters x0; a; l, and c on the solution
trajectories.

It is clearly observed that Eq. (39) has two equilibria given
by x1 ¼ 0 and x2 ¼ 2. Fig. 1 shows the solution trajectories as
the initial point, at x0, changes in the set 0:5; 1; 1:5; 2:5; 3f g



Fig. 1 Graphs of the solution trajectories for Example 1 at c ¼ 1; a ¼ 0:5, and l ¼ 0:5 for different values of initial condition.
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when c ¼ 1; a ¼ 0:5, and l ¼ 0:5. One can clearly see that the
solution trajectories converge to x2 ¼ 2 asymptotically for any

x0. Thus, we conclude that x2 ¼ 2 is asymptotically stable equi-
librium solution whereas x1 ¼ 0 is unstable equilibrium solu-
tion. The rate of convergence of solution trajectories to the

equilibrium solutions is strongly dependent on the initial
points; i.e. it is higher as the initial point closer to the value
of the steady state, x2 ¼ 2. It is worth mentioning that the

behaviour of solution trajectories in this case is similar to the
integer case.

The effect of changing c from 1:0 to 3:0 at fixed values
of a ¼ 1=2 and l ¼ 1=2 on the behaviour of solution trajec-

tories is presented in Fig. 2. We consider two values for
x0 : 1:0 and 3:0. Obviously, the required time for solution
trajectories to reach the equilibrium solution x2 ¼ 2
Fig. 2 Graphs of the solution trajectories for Example 1 at x

c ¼ 1:0; 2:0; 3:0.
decreases as c increases. An interesting phenomenon is the
oscillatory behavior at early stages of the time appeared

as c increases.
Fig. 3 shows the solution trajectories at a ¼ 1=2; c ¼ 1:0

and x0 ¼ 1:0 and 3:0, while l is changing in the set

0:4; 0:6; 0:8f g. we observe that the required time for solution
trajectories to reach the equilibrium solution decreases as l
decreases.

The effect of changing a in the set 0:7; 0:9; 0:99f g at fixed
values of c ¼ 1 and l ¼ 1=2 on the behaviour of solution tra-
jectories is presented in Fig. 4. We consider two values for
x0 : 1:0 and 3:0. It is noted that the effect of increasing a will

slow the required time for solution trajectories to reach the
equilibrium solution. Once again, the oscillatory behaviour
as a increases is captured.
0 ¼ 1:0;x0 ¼ 3:0; a ¼ 1=2 and l ¼ 1=2 for different values of



Fig. 3 Graphs of the solution trajectories for Example 1 at x0 ¼ 1:0;x0 ¼ 3:0; a ¼ 1=2 and c ¼ 1:0 for different values of l ¼ 0:4; 0:6; 0:8.

Fig. 4 Graphs of the solution trajectories for Example 1 at x0 ¼ 1:0;x0 ¼ 3:0;l ¼ 1=2 and c ¼ 1:0 for different values of

a ¼ 0:7; 0:9; 0:999.

Analysis of some generalized ABC – Fractional logistic models 7
6. Conclusion

In this article, we analysed the logistic equations in the setting
of ABC-fractional derivatives with generalized Mittag-Leffler

kernels. Such kind of a fractional derivative contains two
parameters c and l along with the order a. We discussed the
Existence and uniqueness condition in addition to their stabil-
ity. Further, numerical examples were considered to demon-

strate these results. It is clearly seen that for fixed values of
the parameters a; l and c, the convergence of the solution to
the equilibrium point is dependent on the initial value. For

fixed initial value and fixed a and l, the convergence of the
solution of to the equilibrium point is faster when greater val-
ues of c are considered while for fixed values of a; c, the conver-
gence of the solution of to the equilibrium point is faster for
smaller values of l. Moreover, it can be obviously observed

that for greater values of a, the required time for solution tra-
jectories to reach the equilibrium solution decreases. To prove
the convergence in the stability analysis is analytically hard.
However, it was confirmed numerically.
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