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Abstract: Shape preservation has been the heart of subdivision schemes (SSs) almost from its origin,
and several analyses of SSs have been established. Shape preservation properties are commonly used
in SSs and various ways have been discovered to connect smooth curves/surfaces generated by SSs to
applied geometry. With an eye on connecting the link between SSs and applied geometry, this paper
analyzes the geometric properties of a ternary four-point rational interpolating subdivision scheme.
These geometric properties include monotonicity-preservation, convexity-preservation, and curvature
of the limit curve. Necessary conditions are derived on parameter and initial control points to ensure
monotonicity and convexity preservation of the limit curve of the scheme. Furthermore, we analyze
the curvature of the limit curve of the scheme for various choices of the parameter. To support our
findings, we also present some examples and their graphical representation.

Keywords: Monotonicity-preservation; convexity-preservation; curvature; rational interpolating;
subdivision schemes

MSC: 65D17; 65D05; 65U07

1. Introduction

Shape preservation has great practical importance in the designing of curves/surfaces tailored
to industrial design (e.g., related to car, aeroplane or ship modelling where convexity is imposed by
technical and physical conditions as well as by aesthetic requirements). These properties are used
in the design of curves or surfaces to predict or control their ‘shape’ by the shape of the control
points, that is, the vertices of a given polygonal arc or polyhedral surface. Efficient methods to
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construct shape-preserving approximations starting from an initial data sequence are shape-preserving
subdivision schemes, that is, schemes that preserve the shape for instance, the monotonicity or the
convexity of the control points. In the past years, the shape preservation of limit curves has been
a reliable topic in research. The main desirable properties for the implementation of smooth curves are
monotonicity and convexity preservation.

Yadshalom [1] proposed a class of subdivision scheme having finite support of curve designing
which preserved monotonicity. Carnicer and Dahmen [2] examined a characterization of strict
convexity preserving subdivision schemes (SS). Dyn et al. [3] introduced interpolatory 4-point SS for
curve designing, which preserved convexity. Kuijt and Damme [4] examined interpolating SS on shape
preservation for non-uniform data. They also presented sufficient conditions for convexity preservation.
Cai [5] introduced four-point ternary interpolating SS which preserved convexity and having a C2 limit
curve. A convexity preserving binary six-point linear approximating SS was presented by Hao et al. [6].
Mustafa et al. [7] introduced n-ary interpolating SS in which convexity preservation of the scheme was
also examined. Floater et al. [8] offered monotonicity preservation of input data having conditions
that assure differentiability to the limit function of the SS.

The shape-preserving property of ternary SS with the bell-shaped mask was examined by
Pitolli [9]. A six-point interpolating ternary SS was presented by Mustafa and Ashraf [10], in which
smoothness and differentiability of limit curves were discussed. Further, Siddiqi and Noreen [11]
analyzed convexity preservation of six-point ternary interpolating SS. Akram et al. [12] proposed binary
4-point interpolating non-stationary scheme which preserved positivity, monotonicity, and convexity.
Wang and Li [13] offered a five-point binary scheme that preserved convexity.

Mustafa and Bashir [14] dealt with the univariate scheme and its non-tensor product
generalization of bivariate SS. The proposed schemes preserved the monotonicity of initial data.
Novara and Romani [15] gave the conditions that the free parameter of the interpolating 5-point ternary
SS and the vertices of a strictly convex initial polygon needs to ensure the convexity preservation of
the limit curve. Asghar et al. [16] examined SS on probability distribution which has high continuity.
The family of SS preserved convexity. A class of non-stationary 2m-point binary scheme was presented
by Ghaffar et al. [17]. They analyzed curvature and torsion of the limit curves of the proposed schemes.
Zulkifli et al. [18] discussed the application of new rational bi-cubic Ball function with six parameters
in image interpolation, especially for the gray scale image. For more recent work on SS one may refer
to References [19–23].

A SS is said to be rational when the coefficients of the scheme are rational numbers. A ternary
four-point rational scheme (FPR-scheme) was presented by Peng [24].

The FPR-scheme plots a polygon Fj = { f j
i }i∈Z to define polygon Fj+1 = { f j+1

i }i∈Z by connecting
the resultant subdivision rule and having set of control points at level k(k ≥ 0, k ∈ Z).

f k+1
3i = f k

i ,
f k+1
3i+1 = s0 f k

i−1 + s1 f k
i + s2 f k

i+1 + s3 f k
i+2,

f k+1
3i+2 = s3 f k

i−1 + s2 f k
i + s1 f k

i+1 + s0 f k
i+2,

(1)

such that 
s0 = −243u+2

27(126u−1) ,

s1 = 873u−7
9(126u−1) ,

s2 = 129u−1
3(126u−1) ,

s3 = −135u+1
27(126u−1) ,

(2)

where the set of non-zero coefficients is called the mask of the scheme and u is shape parameter.
The necessary condition for the convergence of SS is
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∑
j∈Z

s3j = ∑
j∈Z

s3j+1 = ∑
j∈Z

s3j+2 = 1. (3)

Combining Equations (1) and (2), the FPR-scheme can be expressed as:
f k+1
3i = f k

i ,
f k+1
3i+1 = −243u+2

27(126u−1) f k
i−1 +

873u−7
9(126u−1) f k

i + 129u−1
3(126u−1) f k

i+1 +
−135u+1

27(126u−1) f k
i+2,

f k+1
3i+2 = −135u+1

27(126u−1) f k
i−1 +

129u−1
3(126u−1) f k

i + 873u−7
9(126u−1) f k

i+1 +
−243u+2

27(126u−1) f k
i+2.

(4)

Using Equation (3), it is evident that (4) is convergent. Peng et al. [24] proved that the FPR-scheme
generates C2 limit curves when u ∈ (−∞, 0)

⋃
( 1

86 , ∞). They also analyzed the fractal behaviour of
the scheme.

This motivated us to present the analysis of the geometric properties of the C2-continuous
ternary scheme which is capable of producing fractal curves. In order to show the performance
of the ternary scheme, we analyze the geometric properties such as monotonicity-preservation,
convexity-preservation and curvature of the limit curve. Moreover, the limit curves with specific value
of shape control parameter u are depicted by significant application of derived conditions on the initial
data. The rest of the paper is organized as follows: In Section 2, we present geometric properties of the
FPR-scheme. Numerical examples and conclusions are discussed in Section 3.

2. Geometric Properties of the FPR-Scheme

In this section, we present the geometric properties of the limit curves generated by the
FPR-scheme. These geometric properties consist of monotonicity-preservation, convexity preservation
and curvature of the limit curves of the geometric properties.

2.1. Monotonicity Preservation

Here we discuss the monotonicity preserving property of the FPR-scheme. For monotonicity
preservation, we consider monotone control polygon since the limiting curve generated by the
FPR-scheme preserves the monotonicity of initial data. The monotonicity preservation of the
FPR-scheme can be obtained by applying the first order divided difference (DD) as Dk

i = f k
i+1 − f k

i .
Thus the first order DD-scheme of (4) can be written as

Dk+1
3i = 1

9(126u−1)

(
(243u− 2) Dk

i + (1026u− 8) Dk
i+1 + (−135u + 1) Dk

i+2

)
,

Dk+1
3i+1 = 1

9(126u−1)

(
(−108u + 1) Dk

i + (1350u− 11) Dk
i+1 + (−108u + 1) Dk

i+2

)
,

Dk+1
3i+2 = 1

9(126u−1)

(
(−135u + 1) Dk

i + (1026u− 8) Dk
i+1 + (243u− 2) Dk

i+2

)
.

(5)

For convenience, we introduce a new parameter ω in terms of u. For this let ω = −108u+1
9(126u−1) , so the

value of u in terms of ω, can be written as:

u =
1 + 9ω

9(126ω + 12)
. (6)

By combining Equations (5) and (6) the first order DD-scheme of (4) takes the form
Dk+1

3i =
(

1−3ω
6

)
Dk

i + (1 + ω)Dk
i+1 −

(
1+3ω

6

)
Dk

i+2,

Dk+1
3i+1 = ωDk

i + (1− 2ω)Dk
i+1 + ωDk

i+2,

Dk+1
3i+2 = −

(
1+3ω

6

)
Dk

i + (1 + ω)Dk
i+1 +

(
1−3ω

6

)
Dk

i+2.

(7)
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Theorem 1. Given a set of initial control points { f 0
i }i∈Z which are monotonically increasing, such that

D0
i ≥ 0. Let

rk
i =

Dk
i+1

Dk
i

, Rk
i = max{rk

i ,
1
rk

i
}, ∀ k ≥ 0, k ∈ Z, i ∈ Z.

Furthermore, the parameter ω satisfies −0.077 ≤ ω < 0. If 1
λ ≤ R0

i ≤ λ, { f k
i }i∈Z is defined by the

FPR-scheme (4), then

Dk
i ≥ 0,

1
λ
≤ Rk

i ≤ λ ∀ k ≥ 0, k ∈ Z, i ∈ Z. (8)

Thus, the FPR-scheme preserves monotonicity for initial monotone data.

Proof. To prove (8), we use mathematical induction.
By assumption it is clear that (8) holds for k = 0. Suppose that (8) holds for k ≥ 1, next we verify

that it also holds for k + 1.
In order to show that (8) is true for k + 1, we first prove that Dk+1

i ≥ 0, ∀ k ≥ 0, k ∈ Z, i ∈ Z.
As

Dk+1
3i =

(
1− 3ω

6

)
Dk

i + (1 + ω) Dk
i+1 −

(
1 + 3ω

6

)
Dk

i+2

= Dk
i+1

((
1− 3ω

6

)
1
rk

i
+ 1 + ω−

(
1 + 3ω

6

)
rk

i+1

)

≥ Dk
i+1

((
1− 3ω

6

)
1
λ
+ 1 + ω−

(
1 + 3ω

6

)
λ

)
.

For convenience put λ = − 2ω
1−2ω , we get

Dk+1
3i ≥ Dk

i+1

(
24ω2 − 19ω + 1
12ω(−1 + 2ω)

)
≥ 0.

Thus

Dk+1
3i ≥ 0. (9)

Now consider

Dk+1
3i+1 = ωDk

i + (1− 2ω) Dk
i+1 + ωDk

i+2

= Dk
i+1

(
ω

1
rk

i
+ 1− 2ω + ωrk

i+1

)
.

Since 1
λ ≤ Rk

i ≤ λ, so rk
i ≥

1
λ and 1

rk
i
≥ 1

λ ∀ k ≥ 0, k ∈ Z, i ∈ Z, then we have

Dk+1
3i+1 ≥ Dk

i+1

(
ω

1
λ
+ 1− 2ω + ω

1
λ

)
= Dk

i+1

(
(2ω− 2ω) (1− 2ω)

−2ω

)
≥ 0.

Thus

Dk+1
3i+1 ≥ 0. (10)
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Now consider

Dk+1
3i+2 = −

(
1 + 3ω

6

)
Dk

i + (1 + ω) Dk
i+1 +

(
1− 3ω

6

)
Dk

i+2

= Dk
i+1

(
−
(

1 + 3ω

6

)
1
rk

i
+ 1 + ω +

(
1− 3ω

6

)
rk

i+1

)

≥ Dk
i+1

(
−
(

1 + 3ω

6

)
λ + 1 + ω +

(
1− 3ω

6

)
1
λ

)
≥ Dk

i+1

(
24ω2 − 19ω + 1
12ω(−1 + 2ω)

)
≥ 0.

Therefore

Dk+1
3i+2 ≥ 0. (11)

By combining Equations (9)–(11), we have Dk+1
i ≥ 0 for ∀ k ≥ 0, k ∈ Z, i ∈ Z. Thus Dk

i ≥ 0.
Further we prove 1

λ ≤ Rk+1
i ≤ λ, ∀ k ≥ 0, k ∈ Z, i ∈ Z.

Since

rk+1
3i =

Dk+1
3i+1

Dk+1
3i

=
ωDk

i + (1− 2ω) Dk
i+1 + ωDk

i+2(
1−3ω

6

)
Dk

i + (1 + ω) Dk
i+1 −

(
1+3ω

6

)
Dk

i+2

=

Dk
i+1

(
ω 1

rk
i
+ 1− 2ω + ωrk

i+1

)
Dk

i+1

((
1−3ω

6

)
1
rk

i
+ 1 + ω−

(
1+3ω

6

)
rk

i+1

) .

Now consider

rk+1
3i − λ =

ω 1
rk

i
+ 1− 2ω + ωrk

i+1(
1−3ω

6

)
1
rk

i
+ 1 + ω−

(
1+3ω

6

)
rk

i+1

− λ

=
ω 1

rk
i
+ 1− 2ω + ωrk

i+1 −
(

1−3ω
6

)
λ 1

rk
i
− (1 + ω) λ +

(
1+3ω

6

)
λrk

i+1(
1−3ω

6

)
1
rk

i
+ 1 + ω−

(
1+3ω

6

)
rk

i+1

.

By Equation (9), the denominator of the above equation is greater and equal to zero, and the
numerator A satisfies

A ≤ ω
1
rk

i
+ 1− 2ω + ωrk

i+1 −
(

1− 3ω

6

)
λ

1
rk

i
− (1 + ω) λ +

(
1 + 3ω

6

)
λrk

i+1

≤ −
(
−ω +

(
1− 3ω

6

)
λ

)
1
λ
+ 1− 2ω− (1 + ω) λ−

(
−ω−

(
1 + 3ω

6

)
λ

)
1
λ

≤ 3ω

2ω− 1
≤ 0.

Therefore, rk+1
3i ≤ λ.
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Further we have

rk+1
3i+1 =

Dk+1
3i+2

Dk+1
3i+1

=
−
(

1+3ω
6

)
Dk

i + (1 + ω)Dk
i+1 +

(
1−3ω

6

)
Dk

i+2

ωDk
i + (1− 2ω)Dk

i+1 + ωDk
i+2

=

Dk
i+1

(
−
(

1+3ω
6

)
1
rk

i
+ 1 + ω +

(
1−3ω

6

)
rk

i+1

)
Dk

i+1

(
ω 1

rk
i
+ 1− 2ω + ωrk

i+1

) .

Now consider

rk+1
3i+1 − λ =

−
(

1+3ω
6

)
1
rk

i
+ 1 + ω +

(
1−3ω

6

)
rk

i+1

ω 1
rk

i
+ 1− 2ω + ωrk

i+1

− λ

=
−
(

1+3ω
6

)
1
rk

i
+ 1 + ω +

(
1−3ω

6

)
rk

i+1 −ωλ 1
rk

i
− (1− 2ω)λ−ωλrk

i+1

ω 1
rk

i
+ 1− 2ω + ωrk

i+1

.

By Equation (10), the denominator of the above equation is greater and equal to zero, and the
numerator B satisfies

B ≤ −
(

1 + 3ω

6

)
1
rk

i
+ 1 + ω +

(
1− 3ω

6

)
rk

i+1 −ωλ
1
rk

i
− (1− 2ω) λ−ωλrk

i+1

≤ −
(

1 + 3ω

6

)
1
λ
+ 1 + ω +

(
1− 3ω

6

)
λ−ωλ

1
λ
− (1− 2ω) λ−ωλ

1
λ

≤ 24ω2 − 11ω− 1
12 (2ω2 −ω)

≤ 0.

Thus rk+1
3i+1 ≤ λ.

Similarly

rk+1
3i+2 =

Dk+1
3i+3

Dk+1
3i+2

=

(
1−3ω

6

)
Dk

i+1 + (1 + ω) Dk
i+2 −

(
1+3ω

6

)
Dk

i+3

−
(

1+3ω
6

)
Dk

i + (1 + ω) Dk
i+1 +

(
1−3ω

6

)
Dk

i+2

=
Dk

i+1

((
1−3ω

6

)
+ (1 + ω)rk

i+1 −
(

1+3ω
6

)
rk

i+1rk
i+2

)
Dk

i+1

(
−
(

1+3ω
6

)
1
rk

i
+ 1 + ω +

(
1−3ω

6

)
rk

i+1

) .

So

rk+1
3i+2 − λ =

(
1−3ω

6

)
+ (1 + ω)rk

i+1 −
(

1+3ω
6

)
rk

i+1rk
i+2

−
(

1+3ω
6

)
1
rk

i
+ 1 + ω +

(
1−3ω

6

)
rk

i+1

− λ

=

(
1−3ω

6

)
+ (1 + ω)rk

i+1 −
(

1+3ω
6

)
rk

i+1rk
i+2 +

(
1+3ω

6

)
λ 1

rk
i
− (1 + ω)λ−

(
1−3ω

6

)
λrk

i+1

−
(

1+3ω
6

)
1
rk

i
+ 1 + ω +

(
1−3ω

6

)
rk

i+1

.

By Equation (11), the denominator of the above equation is greater and equal to zero, and the
numerator C satisfies
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C ≤
(

1− 3ω

6

)
+

(
(1 + ω)−

(
1 + 3ω

6

)
1
λ

)
λ +

(
1 + 3ω

6

)
λ2 − (1 + ω)λ−

(
1− 3ω

6

)
λ

1
λ

≤
(

1 + 3ω

6

)(
− 2ω

1− 2ω

)2
−
(

1 + 3ω

6

)
≤ (3ω + 1)(4ω− 1)

6 (−1 + 2ω)2 ≤ 0.

Therefore rk+1
3i+2 ≤ λ.

By following same steps, we can also prove 1
rk+1

3i
≤ λ, 1

rk+1
3i+1
≤ λ and 1

rk+1
3i+2
≤ λ. Therefore,

1
λ ≤ Rk+1

i ≤ λ and by induction, we have 1
λ ≤ Rk

i ≤ λ, ∀ k ∈ Z, i ∈ Z.
This completes the proof.

2.2. Convexity Preservation

Now we discuss the convexity preservation of the FPR-scheme. For convexity preservation,
we consider convex control polygon so the limiting curve generated by the FPR-scheme preserves
convexity of initial data. The convexity preservation of the FPR-scheme can be obtained by applying
second order DD as Pk

i = 32k
(

f k
i−1 − 2 f k

i + f k
i+1

)
.


Pk+1

3i = 117u−1
126u−1 Pk

i + 9u
126u−1 Pk

i+1,
Pk+1

3i+1 = 9u
126u−1 Pk

i + 117u−1
126u−1 Pk

i+1,
Pk+1

3i+2 = −135u+1
3(126u−1)Pk

i + 648u−5
3(126u−1)Pk

i+1 +
−135u+1

3(126u−1)Pk
i+2.

(12)

For convenience, we introduce a new parameter σ instead of u. For this let σ = 1−135u
3(126u−1) and

u 6= 1
126 , so the value of u in terms of σ can be expressed as

u =
1 + 3σ

378σ + 135
, σ 6= −135

378
. (13)

By combining Equations (12) and (13), second order DD-scheme takes the form
Pk+1

3i = (2 + 3σ) Pk
i − (1 + 3σ) Pk

i+1,
Pk+1

3i+1 = − (1 + 3σ) Pk
i + (2 + 3σ) Pk

i+1,
Pk+1

3i+2 = σPk
i + (1− 2σ) Pk

i+1 + σPk
i+2.

(14)

Theorem 2. Given a set of initial control points { f 0
i }iεZ which are convex, such that P0

i ≥ 0, ∀ i ∈ Z,

denote qk
i =

Pk
i+1
Pk

i
, Qk

i = max{qk
i , 1

qk
i
}, ∀ k ≥ 0, k ∈ Z, i ∈ Z. Furthermore, the parameter σ satisfies

−0.33 < σ ≤ −0.20. If 1
µ ≤ Q0

i ≤ µ, { f k
i } is defined by the FPR-scheme (4), then

Pk
i ≥ 0,

1
µ
≤ Qk

i ≤ µ ∀ k ≥ 0, k ∈ Z, i ∈ Z. (15)

Thus, the FPR-scheme preserves convexity for initial convex data.

Proof. To prove (15), we use mathematical induction.
By assumption it is clear that (15) holds for k = 0. Assume that (15) also holds for k ≥ 1, next we

verify that it also holds for k + 1.
In order to show that (15) is true for k + 1, we first show that Pk+1

i ≥ 0, ∀ k ≥ 0, k ∈ Z, i ∈ Z.
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As

Pk+1
3i = (2 + 3σ) Pk

i − (1 + 3σ) Pk
i+1

= Pk
i+1

(
(2 + 3σ)

1
qk

i
− 1− 3σ

)

≥ Pk
i+1

(
(2 + 3σ)

1
µ
− 1− 3σ

)
.

For convenience put µ = 2+3σ
1+3σ , σ 6= − 1

3 , we get

Pk+1
3i ≥ Pk

i+1 (1 + 3σ− 1− 3σ) ≥ 0.

Thus

Pk+1
3i ≥ 0. (16)

Now consider

Pk+1
3i+1 = − (1 + 3σ) Pk

i + (2 + 3σ) Pk
i+1

= Pk
i+1

(
− (1 + 3σ)

1
qk

i
+ 2 + 3σ

)
≥ Pk

i+1 (− (1 + 3σ) µ + 2 + 3σ)

≥ Pk
i+1 (−2− 3σ + 2 + 3σ) ≥ 0.

Thus

Pk+1
3i+1 ≥ 0. (17)

Now consider

Pk+1
3i+2 = σPk

i + (1− 2σ) Pk
i+1 + σPk

i+2

= Pk
i+1

(
σ

1
qk

i
+ (1− 2σ) + σqk

i+1

)

≥ Pk
i+1

(
2σ + (1− 2σ)µ

µ

)
≥ Pk

i+1

(
2 + σ

2 + 3σ

)
≥ 0.

Therefore

Pk+1
3i+2 ≥ 0. (18)

So by combining Equations (16)–(18), we have Pk+1
i ≥ 0, ∀ i ∈ Z. Thus Pk

i ≥ 0, ∀ k ≥ 0, k ∈ Z, i ∈
Z. Now we will prove 1

µ ≤ Qk
i ≤ µ, ∀ i ∈ Z, k ≥ 0.
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Consider

qk+1
3i =

Pk+1
3i+1

Pk+1
3i

=
− (1 + 3σ) Pk

i + (2 + 3σ) Pk
i+1

(2 + 3σ) Pk
i − (1 + 3σ) Pk

i+1

=

Pk
i+1

(
− (1 + 3σ) 1

qk
i
+ 2 + 3σ

)
Pk

i+1

(
(2 + 3σ) 1

qk
i
− 1− 3σ

) .

Further, we have

qk+1
3i − µ =

− (1 + 3σ) 1
qk

i
+ 2 + 3σ

(2 + 3σ) 1
qk

i
− 1− 3σ

− µ

=
− (1 + 3σ) 1

qk
i
+ 2 + 3σ− (2 + 3σ) µ 1

qk
i
+ (1 + 3σ) µ

(2 + 3σ) 1
qk

i
− 1− 3σ

.

By Equation (16), the denominator of the above equation is greater and equal to zero, and the
numerator D satisfies

D ≤ (− (1 + 3σ)− (2 + 3σ) µ)
1
qk

i
+ 2 + 3σ + (1 + 3σ) µ

≤ (− (1 + 3σ)− (2 + 3σ) µ) µ + 2 + 3σ + (1 + 3σ) µ

≤ −3 ((3σ + 2)(2σ + 1))

(1 + 3σ)2 ≤ 0.

Therefore, qk+1
3i ≤ µ.

Similarly

qk+1
3i+1 =

Pk+1
3i+2

Pk+1
3i+1

=
σPk

i + (1− 2σ) Pk
i+1 + σPk

i+2

− (1 + 3σ) Pk
i + (2 + 3σ) Pk

i+1

=

Pk
i+1

(
σ 1

qk
i
+ 1− 2σ + σqk

i+1

)
Pk

i+1

(
− (1 + 3σ) 1

qk
i
+ 2 + 3σ

) .

Since

qk+1
3i+1 − µ =

σ 1
qk

i
+ 1− 2ω + σqk

i+1

− (1 + 3σ) 1
qk

i
+ 2 + 3σ

− µ

=
σ 1

qk
i
+ 1− 2ω + σqk

i+1 + (1 + 3σ) µ 1
qk

i
− (2 + 3σ) µ

− (1 + 3σ) 1
qk

i
+ 2 + 3σ

.

By Equation (17), the denominator of the above equation is greater than and equal to zero, and the
numerator E satisfies
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E ≤ σµ + 1− 2ω + σµ + (1 + 3σ) µ2 − (2 + 3σ) µ

≤ (1 + 3σ)

(
2 + 3σ

1 + 3σ

)2
− (2 + σ)

(
2 + 3σ

1 + 3σ

)
+ 1− 2σ

≤ 1 + 5σ

1 + 3σ
≤ 0.

Thus, qk+1
3i+1 ≤ µ.

Also

qk+1
3i+2 =

Pk+1
3i+3

Pk+1
3i+2

=
(2 + 3σ) Pk

i+1 − (1 + 3σ) Pk
i+2

σPk
i + (1− 2σ) Pk

i+1 + σPk
i+2

=
Pk

i+1

(
2 + 3σ− (1 + 3σ) qk

i+1

)
Pk

i+1

(
σ 1

qk
i
+ 1− 2σ + σqk

i+1

) ,

it follows

qk+1
3i+2 − µ =

2 + 3σ− (1 + 3σ) qk
i+1

σ 1
qk

i
+ 1− 2σ + σqk

i+1

− µ

=
2 + 3σ− (1 + 3σ) qk

i+1 − σµ 1
qk

i
− (1− 2σ) µ− σµqk

i+1

σ 1
qk

i
+ 1− 2σ + σqk

i+1

.

By Equation (18), the denominator of the above equation is greater than and equal to zero, and the
numerator F satisfies

F ≤ 2 + 3σ− (1 + 3σ)
1
µ
− σµ

1
µ
− (1− 2σ) µ− σµ

1
µ

= 2 + σ− (1 + 3σ)
1
µ
− (1− 2σ) µ

= 2 + σ− (1 + 3σ)

(
1 + 3σ

2 + 3σ

)
− (1− 2σ)

(
2 + 3σ

1 + 3σ

)
=

−1 + 7σ + 15σ2

(2 + 3σ) (1 + 3σ)
≤ 0.

Therefore, qk+1
3i+2 ≤ µ.

By following same steps we can also prove 1
qk+1

3i
≤ µ, 1

qk+1
3i+1
≤ µ and 1

qk+1
3i+2
≤ µ. Therefore,

1
µ ≤ Qk+1

i ≤ µ, and by induction, we have 1
µ ≤ Qk

i ≤ µ, ∀ k ∈ Z, i ∈ Z.
This completes the proof.

2.3. Curvature

In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively,
the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates
from being a plane. Curvature is very important property not only in continuous geometry but also in
network applications; see Reference [25].

The quality of SS can be measured quantitatively by finding curvature, as functions of cumulative
chord length. We use the method described in Reference [17] to determine the curvature and numerical
simulations are provided to illustrate the effects of various choices of shape parameter on curvature.
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Since the FPR-scheme is parametric, it is obvious to see the results for various choices of the parameter
u. Here we measure the curvature of limit curves of the FPR-scheme for various choices of u.
In Figures 1 and 2, we consider a control polygon of a circle. The shape of the circle is obtained
by applying an FPR-scheme five times on this initial control polygon for various choices of parameter
u. These limit curves are shown in Figures 1a,b and 2a,b, while their corresponding curvatures are
shown in Figures 1c,d and 2c,d. In Figures 3 and 4, we consider a star-shaped closed control polygon.
The limit curves after applying the FPR-scheme five times on this initial control polygon for various
choices of parameter u is shown in Figures 3a,b and 4a,b, while their corresponding curvatures are
shown in Figures 1c,d and 2c,d. In Figures 5 and 6, we consider an open control polygon that presents
the basic limit function of the scheme. The limit curves after applying the FPR-scheme five times
on this initial control polygon for various choices of parameter u is shown in Figures 5a,b and 6a,b,
while their corresponding curvatures are shown in Figures 5c,d and 6c,d.

(a) (c)

(b) (d)

Figure 1. Results for various choices of the parameter u are shown on the left together with their
corresponding curvature on the right. From top to bottom: u = 0 and 0.0074. (a) Limit curve at u = 0;
(b) Limit curve at u = 0.0074; (c) Curvature plot of (a); (d) Curvature plot of (b).
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(a) (c)

(b) (d)

Figure 2. Results for various choices of the parameter u are shown on the left together with their
corresponding curvature on the right. From top to bottom: u = 0.0076 and 0.0077. (a) Limit curve at
u = 0.0076; (b) Limit curve at u = 0.0077; (c) Curvature plot of (a); (d) Curvature plot of (b).
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(a) (c)

(b) (d)

Figure 3. Results for various choices of the parameter u are shown on the left together with their
corresponding curvature on the right. From top to bottom: u = 0 and 0.0074. (a) Limit curve at u = 0;
(b) Limit curve at u = 0.0074; (c) Curvature plot of (a); (d) Curvature plot of (b).
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(a) (c)

(b) (d)

Figure 4. Results for various choices of the parameter u are shown on the left together with their
corresponding curvature on the right. From top to bottom: u = 0.0076 and 0.0077. (a) Limit curve at
u = 0.0076; (b) Limit curve at u = 0.0077; (c) Curvature plot of (a); (d) Curvature plot of (b).
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(a) (c)

(b) (d)

Figure 5. Results for various choices of the parameter u are shown on the left together with their
corresponding curvature on the right. From top to bottom: u = 0 and 0.0074. (a) Limit curve at u = 0;
(b) Limit curve at u = 0.0074; (c) Curvature plot of (a); (d) Curvature plot of (b).
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(a) (c) Curvature plot of (a)

(b) (d) Curvature plot of (b)

Figure 6. Results for various choices of the parameter u are shown on the left together with their
corresponding curvature on the right. From top to bottom: u = 0.0076 and 0.0077. (a) Limit curve at
u = 0.0076; (b) Limit curve at u = 0.0077; (c) Curvature plot of (a); (d) Curvature plot of (b).

3. Numerical Examples and Conclusions

In this section, we present some numerical examples to show monotonicity and convexity
preserving behaviour of the FPR-scheme. At the end of the section, we discuss the conclusion
of the work done so far.

3.1. Numerical Examples

We consider monotone data in Tables 1 and 2. Figure 7 explains monotonicity preserving property
of the FPR-scheme. Figure 7a is generated by using monotone data as given in Table 1. In this figure,
dotted lines show the initial set of values and the solid line represents the limit curve generated by
the FPR-scheme which is clearly monotonically increasing curve. Figure 7b is generated by using
monotone data as given in Table 2. In this figure, dotted lines show the initial set of values and the solid line
represents the limit curve generated by the FPR-scheme, which is clearly monotonically increasing curve.
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Table 1. Monotone set of values.

x 0 0.25 0.5 0.75 1 1.25 1.5

y 0 0.25 0.55 0.94 1.53 2.51 4.14

Table 2. Monotone set of values.

x −1.5 −1 −0.5 0 0.5 1 1.5

y −98.16 −32 −7.1 0 1.47 2 2.53

(a) (b)

Figure 7. The monotone curves generated by the FPR-scheme (4). (a) Monotone curve at u = 0 and
(b) Monotone curve at u = 0.0076.

We consider convex data in Tables 3 and 4. Figure 8 explains convexity preserving property of
the FPR-scheme. Figure 8a is generated by using monotone data as given in Table 3. In this figure,
dotted lines show the initial set of values and the solid line represents the limit curve generated by
the FPR-scheme which is clearly monotonically increasing curve. Figure 8b is generated by using
monotone data as given in Table 4. In this figure, dotted lines show the initial set of values and the solid line
represents the limit curve generated by the FPR-scheme which is clearly monotonically increasing curve.

(a) (b)

Figure 8. The convex curves generated by the FPR-scheme (4). (a) Convex curve at u = 0 and
(b) Convex curve at u = 0.0076.
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Table 3. Convex set of values.

x 0 0.5 1.0 1.5 2.0 2.5 3.0

y 1 2 8 28 77 176 352

Table 4. Convex set of values.

x −0.6 −0.4 −0.2 0 0.2 0.4 0.6
y −1.15 −1.65 −1.92 −2 −1.92 −1.65 −1.15

3.2. Conclusions

In this paper, we have presented geometrical properties of the FPR-scheme, which improves on
the scheme in various ways that meet different requirements. These geometric properties demonstrate
that the shape-preservation of the limit curve is a useful mechanism for modifying the FPR-scheme.
We have shown that by taking initial control data monotone and convex, the limit curves generated by
the FPR-scheme are also monotone and convex. As observed, the FPR-scheme for various choice of
shape control parameter can be considered more universal. Several examples are given which support
our findings. Finally, the same idea could be applied to bivariate surfaces. A useful extension of this
work is to analyze shape preserving behaviour of SSs when scattered data is considered.
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