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ABSTRACT

ORTHOGONALITY OF STURM-LIOUVILLE PROBLEMS
AND SOME ASYMPTOTIC BEHAVIOURS

ALJUMAILI, Ahmed
M.Sc., Department of Mathematics and Computer Science

Supervisor: Prof. Dr. Kenan TAS

January 2015, 44 pages

In this thesis, we discussed some important aspects of Sturm-Liouville theory such as
orthogonality, Fourier series and asymptotic formulas for eigenvalues and
eigenfunctions. After giving an introduction about the history of Sturm-Liouville
Theory. We gave the way to convert any problem into regular Sturm-Liouville
problem by finding suitable weight function. We included a method of finding
asymptotic formulas for eigenvalues and eigenfunctions of Sturm-Liouville
Problems. We also obtain an important formula about the solutions of a specific SL-

problem and obtain formulas of eigenvalues and eigenfunctions of this problem.

Keywords:  Sturm-Liouvile Problem, Figenvalues and Eigenfunctions,

Orthogonality, Weight Function, Fourier Series, Asymptotic Behaviours.
v
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STURM-LIOUVILLE PROBLEMLERINDE DIiKLiK VE BAZI ASIMTOTIK
DAVRANISLAR

ALJUMAILI, Ahmed
Yiksek Lisans, Matematik-Bilgisayar Anabilim Dali
Tez Yoneticisi: Prof. Dr. Kenan TAS
Ocak 2015, 44 sayfa

Bu tezde Sturm-Liouville teorisi ile ilgili olarak diklik ve Fourier serileri kavramlari
ile 0zdeger ve Ozvektorler i¢in asimtotik formiiller gibi bazi 6nemli kavramlari
incelenmistir.

Sturm-Liouville teorisi hakkinda genel bir bilgilendirme yapilmis ve, herhangi bir
problemin uygun bir agirlik fonksiyonu tanimlanarak nasil diizenli bir Sturm-
Liouville problemine doniistiiriilebilecegi incelenmistir.

Sturm-Liouville problemlerinin 6zdeger ve 6zvektorleri i¢in asimtotik formiillerin
nasil bulunabilecegi hakkinda bir yontem verilmistir. Ayrica 6zel bir SL-problemi
icin O0zdeger ve 0zvektorleri ve dolayisiyla ¢oziimleri veren énemli bir formiil elde

edilmistir.

Anahtar Kelimeler: Sturm-Liouville Problemi, Ozdeger ve Ozvektorler, Diklik,

Agirlik Fonksiyonu, Fourier Serileri, Asimtotik Davranislar.



ACKNOWLEDGEMENTS

I thank Allah, The Almighty for His help and endless support in enlightening my
path of knowledge, of this humble work.

I would like to take this opportunity to show my sincere gratitude to all people who

helped me and gave me the possibility along the way to achieve this dissertation.

Here, I would like to extend my thanks and warm appreciation to my supervisor Prof.
Dr. Kenan TAS, who supported, encouraged, and paved my way through the
different stages of study. I would also like to thank the Head of Department in the
Graduate School of Natural and Applied Sciences at Cankaya University Prof. Dr.
Billur KAYMAKCALAN for her precious help and support during my study.

Finally, I have to thank my family and all my faithful friends, who supported and

motivated me to continue this research.

To them all I am very grateful.

vi



TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM....cc.coiiiiiiiiiiiiieieeeeeeeeesese e lii
ABSTRACT ...ttt ettt et ettt ettt ettt eieas Iv
OZ. o \Y%
ACKNOWLEDGEMENTS. ... ., Vi
TABLE OF CONTENTS. ...t Vii
CHAPTERS:

1. INTRODUCTION. ..ottt 1
1.1, Background..........cccoooiiiiiiiieiiiieciceeeeee et 1
1.2. Organization of the Thesis........ .o 2

2. ORTHOGONAL OF STURM-LIOUVILLE PROBLEMS..............c..oouee. 3
2.1.  Sturm-Liouville Problem..........ccccociiiiiiiiiiiniiiiiieecceeeeeeeens 3

2.1.1. Definitions of regular and singular SL-problem.........c...ccccoceviniinennenn. 3
2.1.2. Definitions of eigenvalues and eigenfunctions............cccceeeveevrierreenenennee. 4
2.1.3. Theorem for eigenvalues and eigenfunctions of SL-problem................ 5

2.1.4. Example for finding eigenvalues and eigenfunctions of regular SL-

PIODICINL ..ottt ettt e be et e e e b e e be e eenseesbeesaaennnas 6

2.2. Orthogonality of Eigenfunctions of SL-problem..........c.ccccccovevviininiincnns 8
2.2.1. Definition of orthogonal.............cccceieviiiiiiiiiiiiieeeeeeee e 8
2.2.1.1.  Example for orthogonal.............ccccoeviieriiiiiiniieeeeeceece e 8
2.2.2. Definition of orthogonal SyStem...........cccceeevievrierierieeieeeeree e, 9
2.2.2.1. Example for orthogonal SYStem...........cccccovevierierriecieerrienieeieenene, 9
2.2.3. Theorem for orthogonality of eigenfunctions of SL-problem............... 9

2.2.3.1. Example of orthogonal system of eigenfunctions for SL-

00 ] o] 157 oo PSR 13

vii



2.3. The Expansion of Function..........c.ccceeeiiiiiniininieninicicneccceecne e 14

2.3.1. Definition of normalized...........cccocuiririiniiniininiiincieceeeeee 14
2.3.1.1. Example for normalized...........ccoooimriiniiniiiiieieeee e 14
2.3.2. Definition of orthonormal SyStem..........cccceeevieviiirieriiecieeieeneecie e, 15
2.3.2.1. Example for orthonormal eigenfunctions of SL-problem................ 15
2.3.3. Theorem for expansion function from SL-problem.........c...ccccuvennennee.. 16

2.3.3.1 Example for finding expansion of function from orthonormal
eigenfunctions of SL-problem..........c.cccceevvievieniiinciiinieieeieee e, 17
2.4. Trigonometric Fourier Series. .........ooiiiiiiiiiiiiiii e 19

2.4.1. Defintion of FOUTIET SEIIES...uuumuiee ettt immeeeeeeeeeeeeeeeeeeeeeeeeeeeee 19

2.4.2. Definition of trigonometric Fourier Series.........cccoovvevvvercrieniereeneeereennenn 20
2.4.3. Definition of FOUrier SINE SETIES........coereeruiriirienieiinieeienieeeenie e 21
2.4.4. Definition of FOUrier COSINE SETIES.......cevuirirrienrieiinierienienieeieeieeeeseeeeenne 21
2.4.5. Convergence of trigonometric FOurier Series............coveevenereeneneennennenn 22
2.4.5.1. Theorem for convergence of trigonometric Fourier series................... 22
2.4.5.2. Theorem for convergence of Fourier sine and cosine series................. 23
3. THE CONVERSION TO STURM-LIOUVILLE EQUATION.........c.cccceeuee. 25
3.1. Theorem for Self-adjoint OPErator.............cccvevverieeiierieerieeseeeeeereeveesee e 25
3.2. Examples for Converting Some Famous Equtions to SL-eqution............... 29
3.2.1. Legendre polynomials.........ccccoceeoiereriininicninienenieceeeceee e 29
3.2.2. Laguerre polynomials..........cccecvuieeiieriieniinieeieecieereesee e esee e sene e 30
3.2.3. Hermite polynomials.......c...ccccoeriiniriininiiiiiiieeeceeeeeee e 31
3.2.4. Confluent hypergeometric equation..........cceecverveeereereerrescreereeseeeneeenns 31
3.2.5. Chebyshev polynomials.........ccccceeeieerieeiiicrienienie e et eseeseeeeveereenaeens 32
4. ASYMPTOTIC FORMULAS FOR EIGENVALUES AND
EIGENFUNCTIONS OF SL-PROBLEMS.......cccoiiiiiiiiiiiiiinie, 34
4.1. Asymptotic Notation (Big O Notation)............ccoeveiiiiiiiiiiniinnnn... 34
4.1.1. Definition of big O notation...............ceeveiiiiiiiiiiiieieiiannennnn. 34
4.1.2. Properties of big O notation............c..coviiiiiiiiiiiiiiiiiiiinn 35

viii



4.2. Asymptotic Formulas for Eigenvalues and Eigenfunctions of SL-

PTODICIN. ... 36

4.2.1. Theorem for solutions of the SL-problem and formulas of eigenvalues

and eigenfunCtioNS. ... ...o.iiiit e 37

4.2.2. Evaluate asymptotic formulas for eigenvalues and eigenfunctions of

SLAPrObIeML. ...ttt e 41

4.3. Future WOork..... ..o 43

5. CONCLUSION......cotitititetitetetet ettt sttt ettt 44
REFERENCES ...ttt R1
APPENDICES..... ..ottt ettt Al
A. CURRICULUM VITAE.....cc. ittt Al

X



CHAPTER 1

INTRODUCTION

1.1 Background

Sturm-Liouville theory was established by two mathematicians. The first one is the
Swiss mathematician Charles Franc¢ois Sturm, who was born in 1803 in Geneva and
also he took his education in this city. He put his remark on Geneva by his scientific
activities. After that in 1825 he transferred to Paris and he settled there until his death
in 1855. He did most of his scientific research in Paris. The second scientist is the
French mathematician Joseph Liouville (1809-1882), who became a close friend with

Sturm and his cooperator [1].

Charles Francois Sturm and Joseph Liouville published in 1836-1837 many papers
about second order linear ordinary differential equations, which included boundary
value problems. As a result of their scientific efforts during this period, what is
known as Sturm-Liouville Theory came into existence. The effect of these papers
exceeds their topic to general linear and nonlinear differential equations and analysis
which includes functional analysis. They were the first to feel its importance to find
directly the properties of solutions from the equation even when no analytic

expressions for solutions are available [2].

A Sturm-Liouville Problem is a special kind of boundary value problem, which
consists of a second order of linear differential equation and two complementary
conditions. A second order differential operator which is a self-edjoint in Sturm-
Liouville problems has orthogonal sequence of eigenfuncitons which leads to

essential theory of Fourier series [3].



In spite of the fact that the topic of Sturm-Liouville problem is more than 170 years
old, many Mathematicians, Physicists and engineers have written thousands of
papers about it. However, this topic is active field of research today. And also every

year many papers are published on Sturm-Liouville problems.

1.2 Organization of the Thesis

This thesis contains five chapters. It covers some important aspects of Sturm-
Liouville theory such as orthogonality, Fourier series and asymptotic formulas for
eigenvalues and eigenfunctions .

Chapter 1 is an introduction to the history of Sturm-Liouville Theory.

Chapter 2 includes a definition of Sturm-Liouville Problem and some essential
theorems of Sturm-Liouville Problem and its solutions (eigenfuntions), which leads
to essential theories of Fourier series.

Chapter 3, includes the way to convert any problem into regular Sturm-Liouville
problem by finding suitable weight function.

Chapter 4, includes finding asymptotic formulas for eignvalues and eigenfunctions of
Sturm-Liouville Problems.

Chapter 5 includes the conclusion.



CHAPTER 2

ORTHOGONALITY OF STURM-LIOUVILLE PROBLEMS

In this chapter we will provide boundary value problem known as Sturm-Liouville

problem and several important notions including :
- Eigenvalues and eigenfunctions.

- Orthogonality.

- Expansion of function.

- Fourier series.

These notions are often used in the applications of differential equations in

engineering and physics.

Sometimes we will denote to Sturm-Liouville problem as SL-problem.

2.1 Sturm-Liouville Problem :

2.1.1 Definition of regular and singular SL-problem:

1. A second-order homogenous linear differential equation which is in the form :
d d
e+ le.0-+ sty =0 1)

where both ¢,(x) and S(X) are continuous and positive on the closed interval [a, ,B],
and c}(x) esists and is continuous on [a, ,B], and CZ(X) is real and continous on

[a, ﬂ], and A is an independent parameter of X .



2. two complementary conditons

M, y(a)+M,y'(a)=0
N,y(B)+N,y'(8)= o} (2.2)

where M,, M,, N and N, are real constants and at least one of M, and M,are
not zero , and at least one of the N, and N, are not zero .

The equation (2.1) with two complementary conditons (2.2) is called a regular
Sturm-Liouville problem [4].

And the equation (2.1) with two complementary conditons (2.2) on the interval
[a, ,B] is called singuler Sturm-Liouville problem if at least one of these hold:

a) a=-x or f=0 orboth of them, it means the interval [a, ﬂ] is unbounded.

b) ¢,(x)=0 or S(X)= 0 for some x belongs to the closed interval [a, ﬁ].

c¢) Both the absolute values of c,(x) and s(x) or one of them gose to infinty when

X gose to a or X goseto [ or both to of them [5].

The complementary conditions if they are given by

or

are consider two exceptionally important cases [6].

2.1.2 Definitions of eigenvalues and eigenfunctions :

The values of the parameter 4 in the homogenous linear differential equation

d dy _
S @00 |+l as(aly =0 2.1)
of the Sturm-Liouville problem with the two complementary conditons
Mly(a)+ sz!,(a)zo} (2'2)
N, Y(8)+ N,y (8)=0



for which there exist nontrivial solutions of the problem are called the eigenvalues of
the problem. The nontrivial solutions which correspond to these eigenvalues are

called the eigenfunctions of the problem [6].
2.1.3 Theorem for eigenvalues and eigenfuntctions of SL- problem [7]:

For the regular Sturm-Liouville problem which consists of:

1. A second-order homogenous linear differential equation which is written as :

d [co(x)d—y} +[c,(x)+ As(x)ly =0 (2.1)

dx dx

where ¢,(x), CZ(X) and S(X) are real and continuous functions on [a, ﬂ], S(X)is
differentialble, both c,(x)and S(X) are larger than zero for all X e [a, ﬁ], and Lis a

parameter independent of X .

2. Two complementary conditons

M, y(a)+ M,y (a)=0
N, y(8)+ Nzy'(ﬁ)zo} (2.2)

where M,, M,, N,and N, are real constants and at least one of M, and M,are

not zero , and at least one of the N,and N, are not zero .
Conclusions

1. There are infinite number of eigenvalues A,,(r =1,2,3,...) . These eigenvalues A,

can be arranged as a monotonic increasing sequence in the form
such that

2. The eigenfunctions ¢r(x),(r =1,2,3,...) which correspond to the eigenvlaues A,

have exactly (I‘ —l) zeros in the open interval (a, ﬂ)



2.1.4 Example for finding eigenvalues and eigenfunctions of regular SL-

problem:

Let us suppose that we have this system of Sturm-Liouville problem:

(x? y’)’ +Ay=0 (2.3)

and

forall xe [1,2].
To solve this system , we can write the equation (2.3) as:
XY +2xy + Ay =0 (2.5)
the characteristic equation for (2.5) is :
N> +n+1=0 (2.6)
the roots of (2.6) are :

-1-v1-44
n=———
2
and
—1++1-44
n=————.
2
Now there are three cases which depend on the sign of (1-4A4) :
First case, if A<1/4, then 1-44>0. That means the two roots nand n, of
characteristic eqution (2.6) are real. Therefore the general solution of (2.5) is :
y= j1xn1 + jzxn2
now by Applying the complementery conditons (2.4) we have:
h+1,=0
and
52" 4,2 .
Since N, #N,, the solution j, = j, =0 is the only solution .Therefore A <1/4 is not

eigenvalue.



Second case, if A=1/4, that means 1—44 =0, then the roots of characteristic
equtation (2.6) are :

n=n,=-1/2.
Therefore the general solution of (2.3) is :

y=Wx"?+Zx"*Inx.
Now by applying the complementery condtions (2.4) we have:
W =0

and

Z2"?In2=0.
Therefore Yy =0 and also in this case A is not an eigenvalue.
Third case, if 4 >1/4, that means 1—44 <0. Set 1-44 =—49°with 4>0. In this

case the roots of characteristic equtation (2.6) are :

n :_l_iq
2
and
n1=—l+iq.
2

The general solutions of the equation (2.3) is :

1

y(x)=x 2[j, cos (glinx )+ j, sin (glinx )]

more simplified :

B [j1 cos (q In x)+ J, sin (q In x)]
y(x)= I :

Now by applying the complementey conditions (2.4) we get :

y(1)= [J, cos (q lnl)\J/rl_j2 sin (q lnl)]: 0

that means:
Y(l): =0
and

B [j1 cos (q In 2)+ J, sin (q In 2)] B
y(2)= 7 =0




thus,
j,sin(qIn2)=0.
To obtain a nontrivial solution y(x) , we must put :
sin(qIn2)=0
thus,

Iz

=— reZ”
In2

q

now from 1-414=-4q°, we have the eigenvalues :

/1r=1+qf=l+ 7 rez
4 4 \In2

and the corresponding eigenfunctions are :
y (X)_ L sin rrrlnX
' N In2

2.2 Orthogonality of Eigenfunctions of SL-problem:

2.2.1 Definition of orthogonal [8]:

If we have the two functions K and Q, these functions are called orthogonal with

respect to the weight function S >0 on the interval [a, ﬁ] if and only if

[/ K(xR()s(x) dx =0

2.2.1.1 Example for orthogonal:

Let K(X)zsin(x) and Q(x)=sin(2x), these two funtions are orthogonal with

S(X) =1 (weight function) on the interval [0, 71'] , for:
J.O” sin(x).sin(2x)(1) dx= J.O” sin(x).2sin(x).cos(x) dx

=2J.0” sin’(x).cos(x) dx




2.2.2 Definition of orthogonal system|[7]:

Let {¢,(x)},(r :l,2,....), be an infinite set of functions defined on the interval
a<X< [ . The set {¢r(x)} is called an orthogonal system with respect to the
function s (weight function) on a < x < g if every two distinct functions of the set
are orthogonal with respect to son a < x < f. That is, the set {¢r(x)} is orthogonal

with respect to s on the interval @ < X< S if

[7 4,006 (x)s(x) dx=0, for rei.
2.2.2.1 Example for orthogonal system :

Let we have @(x)=siirY) (r=1,2,....), on [0,7]. This infinit set of functions {¢, } is

orthogonal system with S(X) =1 (weight function) on [0, 71'], for

2

[ sin(rnsin(ix)1) dx= L’f[cos(rx—ix)—cos(rx—ix)} "

B [Sir;((::ii))x B Sh;((rr:ii))xy

=0, for r #I.

0

2.2.3 Theorem for orthogonality of eigenfunctions of SL-problem [5-6-9]:

For the regular Sturm-Liouville problem which consists of

1. A second-order homogenous linear differential equation which is written as :

d dy _
&[co(x)&} +[c, (x)+ 2s(x)ly = 0 (2.1)
where ¢,(x), CZ(X) and S(X) are real and continuous functions on [a, ﬂ], S(X)is

differentialble, both c,(x)and S(X)are larger than zero for all Xe [a, ,B], and L is a

parameter independent of X .



2. Two complementary conditons

M, y(a)+M,y'(e)=0
N,y(8)+N,y'(8)= 0} (2.2)

where M,, M,, N;and N, are real constants and at least one of M,and M,is
not zero , and at least one of the N;and N, is not zero .

Let A,and A, be any two distinct eigenvalues of this problem. Let ¢ be a
eigenfunction corresponding to A, and let ¢, be a eigenfunction corresponding to 4, .
Then, The eigenfunctions ¢, and ¢, are orthogonal with respect to the weight

function s on the interval ¢ <X<f.
Proof:

Since ¢, is an eigenfunction corresponding to 4,, the function ¢, satisfies the
equation (2.1) with A=A, .

And since ¢, is an eigenfunction corresponding to A,, the function ¢, satisfies
the equation (2.1) with 4 =4, .

So we substitute the derivatives of ¢, and ¢, by ¢ and ¢ respectively, we get

;_X[co(x)¢;(x)]+ e, (x)+ 2, s(), (x)= 0 (27)

and

e GG [e (6)+ 2,560 (x) = 0 (28)

for all x,xe|a, B].

Multiply the equation (2.7) by ¢, we get
6 6) g Lo 00N 0, 000+ 20, 0 () =0 (29)

multiply the equation (1.8) by ¢, , we get

10



6000 [ea G0+ 0ok, (K 0+ 26, 0k (xs0) =0 (2.10)
by subtract the equation (2.10) from the equation (2.9), we get
0 3 e M )+ 2,6, 304 00) 0 Lo M 0 26, (004 (o) =0
and thus
(o = 22000 000, 0)500) = 6,6 - o (W= 1 (6) .- Lo () )

now, integrate each part of the last equation from « to [ to have:

(2, = 2] (X4 (¥(x)ex= jj¢ [c (Xl [ (00~ (<) (0l (2.11)

now, we use integration by parts for the right hand of the equation (2.11)by

assuming;:
d
first part {u & (x), dv—al ¢, (X (x )]dx]
and
second par{u—ﬂ(x), dv_dix[co(x)¢;(x)]dx]
to get,

G20 6060506 = I, 0, OO — [ 4 i) e
- M (X)CO(X)# (X)E + L ¢, (X) (X)g! (x)dx

and thus

(2 = 2)[ 8, ()8, ()s()x = g, (x)e, (D (L. = [, (x ), (<) ()L,

2, —MI” 6, 0, GosCax = [e g (g, OO ()= 0 GO
(2 =A)[| .00 (xs(xdix=c,( B (B (5) (Bt 5]~ (ei(0) (et (] (2.12)

11



Since ¢, and ¢ are eigenfunctions of the equation (2.1) and satisfy the
complimentary conditions (2.2), and now if

M,=N,=0
in the complimentary conditions (2.2), these conditions will be

yla)=0, y(B)=0

then in this case

#,(a)=0, 4(B)=0

and
¢,(@)=0, ¢,(8)=0
so the right hand of the equation (2.12) will be equal to zero .

Andif M, =0 but N, #0 inthe complimentary conditions (2.2), these conditions

will be:
y(@)=0, Cy(B)+y(B)=0
where
c_ S
Cz

then the second bracket in the right hand of the equation (2. 12) will equal to zero.
Now add and subtract [Ce(8)4,(8)] for the first bracket on the right hand of

equation (2.12),

[Coi (B, (B)+ 6, (B)s/(B)-C(8)s, (B)- (8. (B)]

more simplifed :
[(C o (8)+ /(B ). (B)-(Co.(8)+ (8N (8)]
and also it is equal to zero. Therefore the right hand of the equation (2.8)will be

Z€10.

(2 = 2] 6.0 (s (x Jax = 0

since A, and A, are distinct eigenvalues, their difference (4, — 2 )#0, therefore we

r

must have:

[7 0. G (s ()ax =0
and so ¢, and ¢ are orthogonal with respect to s for all x,xe [a, ,B].
12



2.2.3.1 Example for orthogonal system of eigenfunctions for SL-problem :
Let we have the system of SL-problem by :

y'+y=0

and

forall xe [0,7[].
The eigenvalues of of this system of SL-problem are :
A, =r%  (r=123,....)
and the corresponding eigenfunctions are :
y,(x)=j, sin(rx), (r=1,23,.....)

and

is arbitrary constant not equal zero.

Let {¢r }refer to the infinit set of eigenfunctions with j, =1, (r =123,...... ) That is,
¢.(x)=sin(rx), (r=123,.....)

then by the previous theorem, the set {¢r}is an orthogonal system with respect to

S(X) =1(weight function) for all X e [0, 7[]

That is, the previous theorem shows that :

[ sin(rnsin(ix)1) dx= L’f[cos(rx—ix)—cos(rx—ix)} "

2

) [Sﬁ;((::ii))x ) SiI;((rr:ii))XT

=0, for r=i (r,i=12,.)

0

13



2.3 The Expansion of Function :
The expansion of function is very important topic because it made a significant

development in the advaced mathematical analysis and it had many applications.

The form of expansion of function f is:

We will find the expansion for function f from an orthonormal system of
eigenfunctions {¢,(x)},(r=1,2, ..... ) of SL-problem. This function and eigenfuctions

must satisfy some restrictive conditions as we will see that in the next theorom.
Before that we will provide the definition of normalized and orthonormal system.

2.3.1 Definition of normalized [7]:

A function ¢ is called normalized with respect to the function s (weight function)

on the interval o < x < f if and only if

[ BOF s(x) ax =1

2.3.1.1 Example for normalized:

This function ¢(x)=~/2/7 sin(x), is normalized with respect to S(x)=1(weight

function) on the interval 0 < x< 7,

) [\Esm(x)}z-(l) dx=2" in’(x) ox

2 ¢r [1—cos2X
=— | dx
2 (e

=1

14



2.3.2 Definition of orthonormal system [7]:

The infinit set functions {¢,(x)},(r=l,2,....), which are defined on the interval

a < X< B, are called an orthonormal system with respect to s (weight function) on

a<x< pif:
(1) itis an orthogonal system with respect to s for all X e [a, ﬂ]

(2) every function of the system is normalized with respect to s for all X e [a, ﬁ].

That is, the set {#, (x)} is orthonormal with respect to s for all X € [a, ﬂ] if :

0 for r =i  orthogonal

.[aﬂ ¢, (x ), (x)s (x )dx =

for r=i normalized

2.3.2.1 Example for orthonormal eigenfunctions of SL-problem :

Let we have the system of SL-problem by :
y'+Ay=0

and

forall xe [0,7[].

We proved in example (1.2.3.1) that this system of SL-problem has set of orthogonal

eigenfunctions { ¢, (x)}, when :

¢, (x)= j, sin(rx),  (r=123,.....)
Now we need to prove that it is also normalized to have orthonormal system for

eigenfunctions of this SL-problem.

Thus must hold that :

[T [ COFsCOdx =1, (r=1.2...)

15



now if {¢, (X) }is not normalized it will be :

[7 I, COFsGOx =V, (r=12..)
and so

I, [ﬁ(f’r(x)}zS(X)dx =1, (r=12..)

therefore the set

{ﬁ@(x)}’ (r=12,..)

1s normalized. and we will denote

now for our example we will find Vv, by :

—I sin (i< ) (1)dx = jf%
1 I |2
V,=——=—,]—
I

now,

therefore the eigenfunctions T,(x)=+/2/7.sin(rx),(r =1,2.......) are orthonormal

system for this Sturm-Liouville problem .
2.3.3 Theorem for expansion function from SL-problem [6]:

1. Let a regular SL-problem:

16



where ¢,(x), C,(x) and s(x) are real functions, c,(x) has a continuous derivative ,
¢,(x) and s(x) are continuous, both ¢,(x)and s(x) are larger than zero for all
Xe[a, ﬁ].
Let {4 },(r =1,2....) be the infinit st of eigenvalues in the form,

A <A <A <.
and let {g, },(r =1,2,...)be the corresponding set of orthonormal eigenfunctions of

this problem .

2. Let T be continuous on the interval o <X</ and has a piecewise continuous

derivative f on the interval aa<X</f , and is such that
f(a)=0 if ¢(a)=0 and f(B)=0 if ¢(B)=0

then the series

> 5% (2.13)

where
i = [ P00 000 ax, (r=12...) (2.14)

a

converges uniformly and completely to f on the interval @ <X<f3.

2.3.3.1 Example for finding expansion of function from orthonormal

eigenfunctions of SL-problem:

Let
f(x)=mx-x*,xel0,7],
and
¢.(X)=~2/z.sin(rx),0<x <z (r=12,...)
are orthonormal eigenfunctions of SL- problem in example (1.3.2.1). We will use

previous theorm (2.3.3) to find the expansion of f by the serise :

17



i i#:, (2.13)

r=1

where

i = P00 000 ax, (r=12...) (2.14)

a

after simplifying, we will get :

. 2 4
I, = ;.F(l—cos(rﬂ))

After subsitituting the value of j, in the series (2.13), it will become :

8 & sin (2r —1)X
8 s @ro)

3
T = (2r-1)

(2.15)

That means f will be :

(zx - x?) zii sin 21 X e [0,7]

3 b
T = (2r-1)

We can write (2.15) as :

i[sin (x)+sin (3x)+sin (5X)+ ....... }

P 1° 33 5°

Now, note that c,(x), CZ(X) and S(X) in the differential equations of Sturm-

Liouville problem of this example satisfy the first condition of the previous theorem
(2.3.3).

Since the function f is a polynomail function, so it satisfy the condition of

continuity and a piecewised continuous derivative for all X e [0, 72'], also we note :

$,(0)= \E sin(0) =0, f(0)=7.0-(0) =0,

40)= | Zsintz)

therefore all the conditions of the previous theorem (2.3.3) are achieved. That means

0, f(z)=nx—(7) =0,

the series (2.15) converges uniformly and completely to f (X ), X e [0, p1 ] Thus

we can write :

(7Z'X—X2) :8_2‘”: sin (2r_1)x, for xe[0,7]
Vs

(2r-1)

r=1
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2.4 Trigonometric Fourier Series:

In the previous section (1.3), we found the expansion of function f from an
orthonormal eigenfunctions {¢r },(I’ =1,2,...) of SL-problem with respect to the

function s (weight function) on the closed interval [a , P ], by the form of series :

D Qb (2.13)
r=1
where

o= [ 000800 ok, (r=12...) (2.14)

a

Accurately, this expansion is formal expansion and with some restrictive conditions
for f and{g, } leads to make the series (2.13) convergesto f forall x € [, #].
In the next definition we will assume that the functions on (2.14) are integrable and

we will give a name for the expansion of f.
2.4.1 Defintion of Fourier series [10]:

Let we have an orthonormal system {¢,(x)}(r :1,2,.....) with respect to the function
s (weight function) on the interval [, 8]. Let f be a function such that for each

(r=l,2,....) the product fg,s is integrable on [a, 8] . Then the series :

0

i#:, (2.13)

where
i = [ 000800 ok, (r=12...) (2.14)

a

is called the Fourier series of f relative to the system {¢, } and the coefficients j,

are called the Fourier constants of f relative to {¢, } and its written by :

() ~ Y i asxs<p.

r=1
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There is an important kind of Fourier series. Therefore to introduce this purpose, let

we have the systems of functions {Tr (X)} :

T()=1,
TW=cof ] =12

T2r+1 (X) = Sln(%}

(2.16)

for Xe [— h, h]and h>0. When we apply the definition of orthonormal system for

{Tr (X)} with respect to S(X)=1(weight funtion), the result will be orthonormal

system {g, (X)} by :

b (x)= ECOS(VT’“J (r=12..
b0 ()= %sin[%} (r=12,

for x e[~h,h].

(2.17)

Now we will apply the definition of Fourier series on the set funtions {¢r(X)} as

orthonormal system (2.17) for X e [— h,h], we will have a special kind of the Fourier

series as in the next definition.

2.4.2 Definition of trigonometric Fourier series [6]:

Let function f is defined on the interval —h < x <h and the intergrals

th f(x)coerﬂxdx and th f(X)sianﬂde, (r

exist.Then the trigonomatric Fourier series of f on the interval —h<x <h is:

rzx

f(x) ~ %A0+ri: (A,cosrTﬂX+Brsin .

j, -h<x<h

(2.18)
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where

=—I sm—dx (r =12,..... )

the constants A, and B, are called the Fourier coefficients of f .

According to determination of Fourier coefficients, there are two significant cases

when f is even function or odd function.
2.4.3 Definition of Fourier sine series :

Let function f be defined on the interval 0 < X <h and the intergrals
h . Irax
L f(x)sdeX, (r=12,...)
exsist.Then the Fourier sine series of f oninterval 0<Xx<h is:

0

f(x) ~ Brsin%ZX 0<x<h
1

-
I

where

We note that the Fourier sine series is similar to the trigonometric Fourier series

(2.18) of the odd function which is defined on —h < x <h [11].

2.4.4 Definition of Fourier cosine series:

Let function f be defined on the interval 0 <X <h and the intergrals
[ 1 (X)cosrTﬂXdX, (r=012....)

exsist. Then the Fourier cosine series of f oninterval 0<Xx<h is:
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f(x) ~ %Ao+i Arcos% 0<x<h
r=1
where

= _J' cos—dx (r =0,1,2,..... )

We note that the Fourier cosine series is similar to the trigonometric Fourier series

(2.18) of the even function which is defined on —h < x<h [11].

2.4.5 Convergence of trigonometric Fourier series:

In the previous section we found the trigonometric Fourier series of f for all x

which belongs to the closed interval [—h,h] in the form :

f(x) ~ %A0+i (A,cosrTﬂX+Brsianﬂxj, _h<xs<h (2.18)
r=1
where

- _.[ x)cox—dx (r=0,1.2,...)

and this expansion of function f is formal expansion becasue we did not talk about

the convergence of this expansion .
Now we will provide two theorems for convergence of the trigonometric Fourier

series and the Fourier sine series and the Fourier cosine series.
2.4.5.1 Theorem for convergence of trigonometric Fourier series[6]:

Let function f be periodic of period 2h and piecewise smooth on the closed

interval [~h,h], then the trigonometric Fourier series of f
%AO = (Ar cos%JrBr sin%}, _h<xs<h (2.18)
r=1
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where

- _I x)cox—dx (r=0,12,..)

:—I sm—dx (r=12,..)

converges at every point x to the value

f(x+)+ f(x-)

2
where f(x—) is the left-hand limit of f at x and f(x+) is the right-hand limit of

f at x.
And, the trigonometric Fourier series of f at x converges to f(x) when f is

continuous at x , because the average of limils for the right-hand and left hand for

f at x will equale f(x).
2.4.5.2 Theorem for convergence of Fourier sine and cosine series[6]:

Let function f be piecewise smooth on the closed interval for all X €[0,h], then
1. The Fourier sine series of f ,

Z Brsin% 0<x<h

r=1

where

converges at every point X to the value

f(x+)+ f(x-)

2

for every x belongs to the open interval (O, h).
And, the Fourier sine series of f at x converges to f(X) when f is continuous at

x , for all x belongs to the open interval (O, h).
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And, at the two end points of the closed interval [0,h], the Fourier sine series of f
converges to zero.

And, the Fourier sine series of f converges at point x to the value

u(x+)+u(x-)
2

where u is odd function and periodic function of period 2h which coincide with
function f in the open interval for all x belongs to (0, h) and is such that

u(0)=u(h)=0.

2. The Fourier cosine series of f ,

1 A+ z A cosr—ﬂx,
2 r=1 h
where

A = % [ 1 (X)cosrTﬂde, (r=0.2,...)
converges to the value
f(x+)+ f(x-)
2

b

for every x belongs to the open interval (0, h).

And, the Fourier cosine series of f at x converges to f(X) when f is continuous
at x, for every x belongs to the open interval (O, h).

And, the Fourier cosine series of f converges to f(0 +) [ the right-hands limit of
f Jat x=0 and to f(h-) [ the left-hands limit of f Jat x=h.

And, the Fourier cosine series of f converges at every point X to the value

2(x+)+z(x—)
2

where Zis even function and periodic function of period 2h which coincide with

function f in the closed interval for every x belongs to [O, h].
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CHAPTER 3
THE CONVERSION TO STURM-LIOUVILLE EQUATION

In this chapter we will convert any problem into regular Sturm-Liouville problem

by finding suitable weight function .
3.1 Theorem of Self-adjoint Operator [12]:

Let L be the operator
L(y)=c,(x)y"+¢,(x)y'+c,(x)y
for xela, f].

Suppose

over | = [a, ,3], and C is a linear space of functions which the following hold:

(i) C isinvariant under L.
(i) (y.,)=[pydx <o (finite), Vy, € C .
(iii) V vy,,y,eC

1P, (OLy, ()3 () = v, ()yi(x)] = [peq (v,y5 — v,y))E =0

then the operator L is self-adjoint on the interval | with respect to the inner

product:
B
<Y1> y2> = L p(X)Y1(X)y2(X)dX
Proof:

Starting with the conditions of self-adjoint of operator L,
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(Ly 1 y:) =[P Oy ()y (x )ox
= Lﬂ p(X)[CO(X )y1"+ Cl(x)yll + cz(x)yl]yzdx

s ) g, s
= ["pc, iy dx+ [ pe,yiy,dx+ [ pe,y, y,dx.

Now using integration by parts for the first part and the second part:

u=pe,y, - dU(pcoyz)dX}

[ peoyiyadx=[(pe,y, Wi T ~ [ 'vi(peyy,) dx
dv=yldx — v=y,

u=pey, - dU(pclyz)dX}

s, 5 '
["pcyivadx =[(pe,y. v,k — [ vi(peyy, ) dx
dv=ydx — v=y,

S0,

<|—y 1° y2> = [(pcoyz)y;]g _Lﬁyl,(pcoyz) dX+[(PC1y2)y1]aﬂ _Lﬂyl(pclyz) dx—’_Lﬁ pCzylyde

now,

' v F " u=(pc,y,) — du=(pc,y,) dx
jfy{(pcoyz)dh[(pcoyz) yl} "y (peyy,) dx (Peoy) (Peoy:)
“ dv=ydx — v=y,

(Ly,ya)=[(peoy, yi 1T, —[(pcoyz )T + "y, (pey,) ax+[(pe,y, )~ [y, (peyy,) dx

S
+[ Py y,dx

(Ly,,y,)= [(pq)yz)y{ ~(pey) v +(pqy2)yI +ﬂyl(pcoyz)"—yl(pqyz)' +y1(pczyz)}i><

with more simplification, we get:

n

(110320 = [(psyi—tpeye) v +lpeyn | +'y[(pan) ooy lpey e (6.1

we have
(vioby 2= [ p (y, (L 5 (x dax
(Ly s ya)= [ oGy feg )y + ¢ (s + o5 (x)y, Jox

<Ly1,y2>: faﬂpyl[coy;'+c1y;+c2y2]dx (3'2)

now (3.1)and (3.2) must be equal , if the boundary terms
26



[(pcoyz )y, —(pcoys) v, + (pclyz)y&j =0 (3.3)

and

fyl[(pcoyz)

n

~(pgy,) +(pgyz)}d><= [Toy [eoys+cyi+e,y,Jix  (34)

in the equation (3.4), (pc,Y, )” —(pc,y, ), = pcC,Y; + Py, must hold:

[(pco)yz] _[(pcl)yz] = pcoyg"' pc1y;

!

[(pco)y; +(pc,) yz} —[(pcl)y; +(pc,) y2}= pC, Y7 + pc,y}

[(pco)y;T+[(pco) yz] —(pc,)ys = (pc,) vy, = pc,ys + pc,y;

(pc,)ys +(pcy) vs +(pc,) v5 +(pcy) v, —(pe,)ys —(pc) v, = pe,ys + pe,Y,

/!

(e, )ys +2(pcy ) v5 +(pcy) v, —(pc, )y —(pc,) v, = pe,ys + peys
(pco) Y, _(pc1) Y, +2(DCO) y; =(pcl)y; + pcly;
[(pco) —(pc,) }yz +2(pc,) vs =2(pc,)y;.

Now by making the coefficient of y,and Y, on the both sides equal, we will get:

”

(pco) _(pc1)’ =0 (3'5)
and
(pco )’ = pc, (3'6)
the equation (3.3):
[(pcoyz )y ~(peyys ) v, + (pe,ys )yl}f =0 (33)

can be simplified to get:

, B
[(pcoyz)yf—[(pco)y;+(pco)yz}yﬁ(pclyz)yl} =0
. , ' B
[(pcoyz)yl - (pco)yzyl - (pco) Yo ¥, + (pclyz)yl:| =0
we will substitute (pCO)' = pc, and we will get,
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' ' B
[(pco)yzy{—(pco)y;yl—(pco)y2y1+(pco)y2y1J =0

[(pc, )y, yi = (pcy)ysy, L =0
[pc,(y2y; - viv)L =0 (37)

after multiplying the equation (3.7) by (-1), we will get the boundary condition (iii),
’ Y
[peq (v,ys = v2y)l = 0
now we will find the weight function p(X) from the equation (3.6):
(pc,) = pe (36)

pc, + p'c, = pc,

pCy = pc, — pPCq
[p'c, = pc, - pey ]+ (pc, )
Ez (Cl _C<I))
P c

by integral both sides , we will get :

P _ (e —c)
I?dx_j ICO"dx

nfpl= [ C— %)

0

(ci(x)-ch ()
p(X) = ej co(x) ¢
or
p(X): ej[q—;]dx e.[idx e—.[adx

p(x)= ejz_:‘dx e el ejz_:‘dx .|co|_1

We can also find the weight function by another way, If we consider the equation :

¢, (X)y" +¢,(x)y’ +¢,(x)y = —Aw(x)y (3.8)
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for xela,B] , with ¢, (x)= c;(x) .

Now multiply both sides by some function p(X) , we will get:

p(x)c,(x)y" + p(x)e, (x)y’ + p(x)c, (x)y = —Ap(x)w(x)y

form the definition of sturm-liouville equation , we need to hold :
(pco) = PpC

to make equation (3.9) satisfy Sturm-Liouville equation ,
(pco) = pC

pc, + p'c, = pc,

pcy = pc, — pc
[p'c, = pc, - pey ]+ (pc, )
Ez (Cl _Cé)
P c

by integral both sides:

ln] p| c
0
we get the weight function :
(e (x)-ch (x))
px)=e 0

3.2 Examples for Converting Some Famous Equtions to SL-equation:

3.2.1 Legendre polynomials [13]:

Consider this Legendre equation,

(1—x2)y”—2xy’+ Ay =0

(3.10)

we must find the weight function to convert the equation (3.10) to the form of SL-

equation,
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cl(x)X B Jixzdx
p(x)= ! ej°°(”d:[ ! e I

1 n |1-x2 1
S e e |

p(x)=1.

Since the weight function p(X) =1 ,we get:
e x2) _
» [(1 X )dx } + Ay =0 (3.11)

so the equation (3.1 1) becomes in the form of SL- equation .

3.2.2 Laguerre polynomials [14]:

Consider this Laguerre equation:

xy"+ Q- x)y'— Ay =0 (3.12)
since ¢,(x)=x, ¢,(x)=(1-x) and ¢(x)=1.
We note ¢, (x)=c,(x) , that means the equation(3.12) is not in the form of SL-
equation.

Now we must find the weight function p(X) ,

CI(X) 1-x
_ 1 ferco®™ _ | 1| [ e

p(x)= {li—l .ej[;_l)dX = [1—}3 g Jre

1_ n |x —x 1 —x - x
p(x):{m emlle :{m}.w.e = :

by multiplying the equation (3. 12) by the weight function p(X) =e ", we will get :
xe “y"+(0-x)k *y'—ie *y =0 (3.13)

now , we note in the equation (3.13), c,(x)=xe ™ and ¢/(x)=(1-x)e™* =c,(x)
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we get:

A (),
™ [ixe - j ey =0 (3.14)

the equation (3.14) becomes as the form of SL- equation .

3.2.3 Hermite polynomials [15]:
Consider the following Hermite equation:
y = 2xy' '+ 21y =0 (3.15)

since ¢,(x)=1, CI(X)=—2X and ¢} (x)=0.
We note c(x)#c,(x), that means the equation (3.15) is not in the form of SL-

equation. Therefore we will find p(X):

p(x)=

O
o, (x) 1]
F’(X)=e_2IXdX :eiz[xz_.J:e’xz

2
x2

multiply the equation (3.15) by the weight function p(X) =e ,wewill get:

xe y"+(1-xe Xy +22ey=0 (3.16)

now , we note in the equation (3,12), ¢,(x)= xe ™" and ¢, (x)=(1-x)e™ =c,(x)

we get :

d -x? dy -x?
— — |+ 22 =0
dx (xe dijr © 3.17)

the equation (3.17) becomes in the form of SL-equation .

3.2.4 Confluent hypergeometric equation [16]:

Here the differential equation is,
Xy"+(z-x)y' =iy =0 (3.18)
since ¢,(x) =X, CI(X) = (Z - X) and ¢/ (x)=1.
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We note c{(x)#c,(x), that means the equation (3.18) is not in the form of SL-

equation .

multiply the equation (3. 1 8)by the weight function p(x) = |X’Z_1 e, we will get:

| e xy x| e (2 = x )y + Ax[ ey =0 (3.19)

Now, we note in the equation (3.19),
c,(x)=|x|""xe and c)(x)=(z - x)x"" e =c,(x)
we will get:

ael D G e ey <o 6.20)

the equation (3.20) becomes in the form of SL-equation .

3.2.5 Chebyshev polynomials [8]:

Consider the following Chebyschev equation:
(1 = xz)y" —Xy'—Ay=0 (3.21)

now we will discuss the equation (3.21),
c,(x)=(1-x*) , c(x)=—x and c}(x)=-2x
We note c;(x)#c,(x), that means the equation (3.21) is not in the form of SL-

equation.

o JEe ] | e
p(x)_|C0(X)|e = = e
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|1 - X 1 - X
when multiplying the equation (3.21) by the weight function p(x)= 1ix2 , we
will get:
(1—><2)%y"—\/lfx2 y’—\/lfxz y=0 (3.22)
now, we note in the equation (3.22),
c,(x)=(1- xz)% and c)(x)=— 1ﬁx2 =¢,(x)
we will get:
;—X(ﬁz—ij+ 1:1x2 y=0 (3.23)

the equation (3.23) becomes in the form of Sturm- Liouville equation .
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CHAPTER 4

ASYMPTOTIC FORMULAS FOR EIGENVALUES AND
EIGENFUNCTIONS OF STURM-LIOUVILLE PROBLEMS

In this chapter we will find asymptotic formulas for eignvalues and eigenfunctions of
Sturm-Liouville problems. Firstly we will talk about asymptotic notation (Big O

notation):
4.1 Asymptotic Notation (Big O Notation) :

Big O notation, which contains a capital letter O (not zero), was invented in 1892 by
Paul Bachmann (1873-1920), who is a German mathematician [17]. And then in
1909, its use was popularized by Edmund Landau (1877-1938). Therefore,
sometimes they named this symbol Bachmann-Landau symbol [18]. Big O notation
is used in computer science, complexity theory and mathematics to describe the
asymptotic behavior of functions. Essentially, it is used to inform us how fast a
function grows or declines. The letter O is used because the rate of growth of
function is also called its order. Big O is more common in use than other four
notations for comparing functions which are little o, big Omega (Q), little Omega

(@) and Theta (®) [19].
4.1.1 Definition of big O notation [19]:

f(x) e O(g(x)) if there exist positive constant ¢, X, such that :
|f(x)<clg(x) forall x=x,,
that means g(X) is an asymptotic upper bond for f(x) or f(x) is Big O ofg(x).
f(x) e O(g(x)) equivalent to f(x)=0(g(x))
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which is more common in use and we must be careful because it is not the same if
we write,
4.1.2 Properties of big O notation [19-20]:

. x+K= O(X), vV K e®R (ignoring constant) .
2. 18 £(x)=0(g(x)), then Kf (x)=0(g(x) .

3. If
F(X)= JoX" + Jo X"+ + X"+ s
where
Joo Jiseeeeeos Jnts Jn
are real numbers, then
f(x)=0(x")

4. 1f f(x)=0(g(x)) and g(x)=0(h(x)), then
f(x)=0(h(x)).
5. 1f f(x)=0(g(x)) and g(x)=0(h(x)), then

f(x)+g(x)=O(h(x))-

That means, If f_(x) = O(g(x)) forall r € N, then

foranyK e N .
6. 1f 1,(x)=0(g,(x)) and f ( ) 0(g, (x)), then

(
£ ( O(m x(lg, (x)g, (x)).
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10. If f(x).g(x)=0(h(x)) and g(x) has a positive asymptotic lower bound, then
f(x)=0(h(x)).
11. If f(x)=0(g(x)) and f'(x)=0(g'(x)), then

#(x)=0(g(x)g'(x))-
4.2 Asymptotic Formulas for Eignvalues and Eigenfunctions of SL- problem:

Consider the Sturm-Liouville problem:

2

d-y

o q(x)y =2y

Ly =

and
y(@)cosa + y'(a)sinar = 0
y(b)cos B+ y'(b)sin =0

if we divide boundary conditons into sina #0 and sin S # 0 respectively , we

obtain :
cosa , \Sina
y(a)=———+y'(a)=—=0
sine sina
b c9sﬂ ry b)s?nﬁ _
sin 8 sin
that means:

y(@)cota + y'(a)=0
y(b)eot +y'(b)=0

let cota =—h and cotf =H, then we obtain the condtions :

if q(x) is continuous and the numbers h and H are finite, then this problem is called

regular Sturm-Liuoville problem. Otherwise it is called singular Strum-Liuoville

problem.
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4.2.1 Theorem for solutions of the SL-problem and formulas of eigenvalues and

eigenfunctions [21]:

Consider Sturm-Liouville problem:

—y"+q(x)y =2y (4.1)

and

y'(0)-hy(0)=0 }

y'(m)+Hy(z)=0
where xe[0,7],and g(x):x€[0,7] > R continuous.
Let ¢(x,A) be the solution of (4.1)which satisfies the conditions ¢(0,1)=1 and
¢'(0,4)=h .
Also, suppose that w(x,A) is the solution of (4.1) which satisfies the conditions
w(0,1)=0 andy'(0,4)=1.

If A=s" then
(p(x,ﬂ)zcos(sx)+gsin(sx)+éj.oxsin[s(x—r)h(t)(p(r,ﬂ)dr (43)
and
v (6.2)= csin () <[ sinfs(- @y )M (44)

Proof:

Firstly, we will prove equation(4.3). Since ¢(x,4) is the solution of (4.1), then we

have,
J: sin[S(X - T)h(t)(p(r, A)dr = J: sin[S(X - T)][(p"(r, )+ Aoz, ﬂ)]d T
J: sin[s(x —7)ji(t Jo(z,A)dz = J: sin[s(x—7)lp"(z,A )z
+ Szjoxsin[s(x—r)}o(r,ﬂ)dr (4.5)

now, integration by parts for the first part of the right hand of the last equation is

done by using:

37



u=sin[s(x - 7)]—> du = —scos[s(x — 7 )Jdz
dv=9'(r,A)dr — v=9/(7,1)

we obtain:

[Jsin[s(x=7)p"(c, 4 )7 = {p'(r, 2 )sin [s(x - 2 )]};
5[ cos [s(x—)p (.2 )
[ sin[s(x=0)p"(c, A )z = p'(x,4)sin [s(x — )]~ ¢'(0, 2 )sin [s(x ~ 0)]
5] cos [s(x - e )p (. A N

From the initial condition we have ¢'(0,4)=h, we obtain:

J.Ox sin[s(x —7)p"(z,2)d 7 = —hsin(sx )+ SJ.OX cos[s(x—7)p'(c,A)d7

integration by pasts again by using :
u = cos[s(x —7)]— du = ssin[s(x - 7)|d7
dv =p'(r,A)dr > v=0(,1)

we obtain:

onsin [s(x-=7)p"(z,2)d 7 = —hsin (sx )+ s{p(z, 1 )cos [s(x — 7 )]}
- Szjoxsin [s(x=7)p(z, A )d7
J.Ox sin[s(x—7)}p"(z, A)dz = —hsin(sx)+ s{p(x, 4 )cos[s(x — x)]— (0, 4 )cos[s(x - 0)]}

- SZIOXsin [s(x=7)p(z, 2 )d7

from the initial condition we have (0(0,/1) =1, we obtain:
IOX sin [s(x =7 )p"(r,A )7 = —hsin (sx )+ s@(x,1)—scos (sx)

—SZLXsin[S(X—T)](p(T,ﬂ)dT (4.6)

we substitute (4.5) on (4.6), we obtain:
j: sin[s(x—7)(t)p(z, A)d 7 = —hsin(sx)+ sp(x, 1) - scos(sx) - s j sin[s(x—7)lp(r,2)dz
+5° J.OX sin[s(x—7)lp(r, A)dz
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J.Oxsin [s(x-7)h(t)p(z,2)dz = —hsin (sx )+ sp(x,4)-scos (sx) (4.7)

thus:
o(x,2)=con (sx )+ %sin (sx )+ i—fox sin [s(x - 7)) (z, A )z (4.8)
from (4.7) and (4.8) we obtain:

o(x,4)=con(sx)+ gsin (sx)+ %[— hsin (sx )+ s@(x, 4 )—scos (sx )]

o (x,2)= con (sx )+ %sin (sx)- %sin (s )+ ¢ (x, 2 )= con (sx)

p(x.2)=9p(x.2).

The proof of equation (4.3) is complete.

Secondly, we will prove the equation(4.4). Since l//(x,ﬂ,) is the solution 0f(4.l),

then, we have:

joxsin [s(x-7)htw (r,A)dz = joxsin [s(x=72)w"(z,2)+ 2y (z,2)d =
.[Oxsin [S(X - r):h(t)// (T,l)dz' = .[Oxsin [S(X - z’)}// ”(z’,ﬂ)jr
+52joxsin[s(x—r)1z/(r,l)dr (4.9)

now, integration by parts for the first part of the right hand for the equation (4.9) is
done by using:
u = sin[s(x — 7)] - du = —scos[s(x — 7 )jdz
dv=y"(r,A)dr >v=y'(r,1)

we obtain :

[Tsin [s(x= ) ", 2)dr = f ', )sin [s(x - 2]}
+s] cosfs(x— o) (7, A)de
[Vsin[s(x= ) "(z, 4 )7 = y'(x, 4 )sin [s(x = x)]- (0, 2 )sin [s(x - 0)]
+s[ cosfs(x—c ) (r. A)de

from the conditions we have l//'(O, ﬁ) =1, we obtain:
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joxsin [s(x=2)lr"(r,2)d 7 = —sin (sx)+ SLXCOS [s(x=2)'(r,A )z

integration by pasts again by using :
U = cos[s(x — )] — du = ssin[s(x — 7)|dz
dv=y'(r,A)dr > v =ypl(r,1)

we obtain:

J: sin[s(x =) "(z,4)d 7 = —sin (sx )+ sfy (z, 2 )cos [s(x - 7)]};
- SZLXsin[S(X —7)p(r,A)dr
.Lxsin[s(x —7)l"(r, A)d 7 = —sin(sx)+ s{y(x, A )cos[s(x — x)] -y (0, A )cos[s(x - 0)]}

-5’ .[OX sin[s(x —7)(z,A)d7

from the conditions we have l//((), ﬁ) =0, we obtain:

f:sin[s(x —7)"(z,2)d7 = —sin(sx)+ sy (x, 1)-s’ jox sin[s(x—7)(z,A)dx  (4.10)

we substitute (4.10) on(4.9), we obtain:
[ sinls(c— o Ttk (e, A)dz = —sin(5x)+ sy (x,2) - [ sinfs(x o) (e, A )iz
+5?[sin[s(x—)l (r. A)de
[sin [s(x= )R G a)e = —sin (x)+ sy (x,2) (4.11)

thus:
sy (x.2) = sin (5)+ ["sin [s(x - £ (. 2 )7
(% 2)= Ssin(ox)+ — [sin[s(x - bty (. 2 )7 (4.12)
now we substitute (4.11) on (4.12), we obtain:
w (x,2) = Zsin () + [ sin (o) + sy (x,2)]
v (x,2) = <sin ()= sin (o) + v (x,2)

w(x.2)=y(x2).

By this way we proved the equation (4.4) .
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Remarkl:

Suppose S=0 +it= Vi , where it is customary to take the branch of the square root
on the positive real A- axis. However, it should be in mind that gD(X,l) and

l//(X, /1) are entire functions of A4 so that no need to make use of the branch of s, all

asymptotic formulas involving combinations of elementary functions for which the

branch actually disappears [21].

Remark2 [21]:

If s=o +it=+/4,then Is, > 0 s.t V|S|>So , we have :

0(x.4)-0f"") ary
w(x,1)= OQs|fl.e|t|'x)
@(x,2)=cos (sx )+ O Qs|_l.e|t|x) (4.14)
w(x,1)= ésin (sx )+ OQS|_1.e|t|X). (4.15)

where X € [O, 7[]

4.2.2 Evaluate asymptotic formulas for eignvalues and eigenfunctions of SL-

problem:

Now, we can evaluate asymptotic formulas for the eigenvalues and eigenfunctions
corresponding to the SL-problem (4.1) and (4.2).

By theorem (4.2.1 ) and remark 1, we have:

o(x, 1) = cos(sx) + gsin(sx)+ é [sin[s(x- b2 (43)
and

@ (x,4)=cos (sx )+ O([s|71.e|t|x). (4.14)
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Suppose h # o and H # . Since (D(X,/"t) is the solution, then if we write the value

of this function at point (7[) into condition (2) we will find eigenvalues.
Because of Remarkl, all eigenvalues are real and a number of negative eigenvalues

is finite. Therefore, from equation (4.14) we have:
@(x, 1) = cos (sx )+ O(%) (4.16)

now, differentiating the equation (4.3) with respect to x and using the

equation (4. 1 6) , We obtain:
¢'(x, 1) = —ssin(sx) + hcos(sx) + OG)
since y'(ﬁ)+ Hy(ﬂ) =0 and by substitution we get :

—ssin(sz) +hcos(sz)+ O(éj +H {COS(SE)-F O(lﬂ =0

S

thus

—ssin(s7)+(h+ H )cos(s7z)+ O(%) =0 (4. 1 7)

for large values of s, the equation (4.17) has solutions. This means that we have

infinitley many eigenvalues for the specified Sturm-Liouville problem.

Now, our claim is to show that, for a sufficiently large number of n, the equation

(4.17) has only one solution . That is the unique solution .

For this, differentiate the equation (4.17) with respect tos . We obtain :
—sin(sz)—szcos(sz)—(h+H)zsin(sz)+0(1)=0 (4.18)

For sufficiently large values of s, we can easily see that left side of equation (4.18)

is not zero .

That means, for a sufficiently large number of 4, , the equation (4.17) has unique

eigenvalue, which is the unique solution.

42



4.3 Future Work:

We will study the zero of eigenvalues (nodal points) and the cases in which at least

one of h and H equal tooo.
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CHAPTER 5
CONCLUSION

In this thesis, we provided in chapter two some properties of SL-problem and we
focused on the property of orthogonal of SL-problem. By using theorem (2.2.3), we
found that the eigenfunctions of regular SL-problem are orthogonal with respect to
the weight function Son the closed interval[a,3]. And then from this result we
found that these eigenfunctions of SL-problem can form a set of orthonormal
eigenfunctions of SL-problem. And with some conditions on function f in theorem
(2.3.3), the set of orthonormal eigenfunctions of SL-problem can form the series
(2.13) which converges to the function f . The series (2.13) which is an expansion
of function f is called the Fourier series. And after that Fourier series guides us to
special and important kind of Fourier series called trigonometric Fourier series. And
also there are two significant cases when fis even function or odd function

according to determination of Fourier coefficients, which are Fourier sine and

cosine series.

In chapter three, by using theorem of Self-adjoint Operator, we found the suitable

weight function to convert any problem into regular Sturm-Liouville problem.

In chapter four, we discussed Asymptotic Formulas for Eigenvalues and
Eigenfunctions of Sturm-Liouville problems. We also gave an important formula
about the solutions of a specific SL-problem and obtain formulas of eigenvalues and

eigenfunctions of this problem.
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