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ABSTRACT

THE DOUBLE LAPLACE TRANSFORM

BASHEER, Husam

M.Sc., Department of Mathematics and Computer Science

Supervisor: Prof. Dr. Kenan TAŞ

January 2015, 30 pages

In this thesis, we present the formal definition of the double Laplace transform and

calculate the Double Laplace transforms of some elementary functions directly from

the definition. The existence conditions for the double  Laplace transform and the 

basic properties  of the double  Laplace transforms are stated . applications of the 

double  Laplace transforms to the solutions of certain integral equations and 

boundary value problems are also discussed in this work. 

  
Keywords: Double Laplace Transform, Exponential Order, Convolution, Partial 

Derivatives.
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ÖZ

ÇİFT LAPLACE DÖNÜŞÜMÜ

BASHEER, Husam

Yüksek Lisans, Matematik-Bilgisayar Anabilim Dalı

Tez Yöneticisi: Prof. Dr. Kenan TAŞ

Ocak 2015, 30 sayfa

Bu tezde, çift Laplace dönüşümünün tanımı sunulmuş ve  bazı elementer 

fonksiyonların  çift Laplace dönüşümlerinin tanımı kullanılarak doğrudan 

hesaplanmıştır. Çift Laplace dönüşümünün varlığı için gerekli koşullar 

tartışılmış ve bu dönüşümün temel özellikleri belirtilmiştir. Herhangi bir mertebeden 

kısmi türevin de çift Laplace dönüşümü elde edilmiştir. İki fonksiyonun çift 

konvolüsyonu tanımlanmış ve bu konvolüsyonunun cift Laplace dönüşümü 

hesaplanmıştır. Başlangıç ve sınır koşullu belirli Kısmi diferansiyel denklemler için

çift Laplace dönüşümlerinin uygulamaları da tartışılmıştır.

Anahtar Kelimeler: Çift Laplace Dönüşümü, Üstel Mertebe, Konvolüsyon, Kısmi 

Türevler.
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CHAPTER 1

INTRODUCTION

1.1 Background

Many physical processes in nature are described by differential and integral equation 

with initial conditions or boundary conditions. Integral transforms not only helped in 

developing the theory of such equations but also provided methods to solve these 

equations [1-2]. One of the most important integral transforms is the laplace 

transform.this well known integral transform was first used by laplace in 1812 when 

he was working on probability theory[1-2]. Since that time many works have been 

devoted to the study of the properties of the laplace transform and its various 

applications in many fields of science. Bateman in 1910 used the modern Laplace 

transform followed by Bemotien in 1920. This transform gained a more modern 

approach. In 1920 when doeth applied this transform on differential integro-

differential equation[3]. Since most of the physical evolve in time in semi finite or 

infinite domains, Laplace transform conspired with Fourier transform has shown a 

strong analytical method to solve partial differential equations obtained when dealing 

with there processes. But the one variable Laplace transform is not capable of

solving this equations alone. Thus it is very important to generalize the Laplace 

transform to function of multi-variables. the properties of double Laplace transform 

were discussed in [4-5]. Applications of this transform to partial differential equation 

were done by many authors(see [6-7] and the references therein). In this work, a 

surrey on double Laplace transform is made definitions and properties of the double 

Laplace transform are discussed and many of its applications to different kinds of 

partial differential equation are presented.  
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1.2 Organization of the Thesis

This thesis contains four chapters. All the necessary information about the double 

Laplace transform including all definitions and theorems and properties of different 

applications.

Chapter 1, is an introduction to the history of double Laplace transform and 

objectives of this thesis.

Chapter 2, includes an introduction basic definitions of double Laplace transform .

In Chapter 3, the study basic properties and formulas and the double Laplace 

transform of derivatives and the double convolution.

In Chapter 4, touching for some applications of double Laplace in partial differential 

equation and solve some important  problems for partial differential equations.

Chapter 5, includes the conclusion part.
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CHAPTER 2 

BASIC DEFINITIONS AND FORMULAS

2.1  Basic Definitions of Double Laplace Transform

2.1.1. Definition of the double Laplace transform

Let f be a function of  two variables x and t , where 0, tx The double Laplace 

transform of f is defined by

                           dxdttxfeesstxfLL xsts
xt ),(),(),(

00

21
12 





                        (2.1)

whenever the improper integral converges. Here 21,ss are complex numbers

where xL and tL represent the Laplace transforms with respect to the variables x and  t   

respectively [4].

Below, we present the double Laplace transform of some function.

2.1.2. Example ( the double Laplace transform of 1 )

Let 1),( txf a continuous function the Laplace transform is easily found to be as 

follows:                   

  dxdttxfeesstxfLL xsts

xt ),(),(),(
00

21
12 







                       dxdtee xsts 
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                               dtdxee xsts 
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Where 1s and 2s are positive.

2.1.3. Definition of an exponential order

Let ),( txf be a continuous function on ),0[   ),0[  . Then f is said to be of 

exponential order, if

                                                  btaxtx e

txf
SUP

),(
0, (2.2)

for some Rba , . [4]

The following theorem shows the existence of the double Laplace transforms and 

afunction of exponential order.

2.1.4. Theorem ( existence of the double Laplace transform )

If ),( txf is of exponential order, then double Laplace transform of f exists.

Proof: Suppose f is of exponential order, that is

M
e

txf
SUP

btaxtx 

),(
0,

for some RMba ,, . Then

)(),( btaxMetxf 

for all 0, tx . Thus

dxdttxfee xsts ),(
00

12 
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dxdttxfee xsts ),(
00

12 







dxdttxfee xsts ),(
00

12 







dxdteee btaxxsts )(

00

12 





 

dxdteeM xastbs 






0

)(

0

)( 12

thus the integral in question converges for as 1 and bs 2 .

we have to rote that not all the function of two variable one of exponential order. For 

instance the function 
33 txe    is not of exponential order and thus it does not have the 

Laplace transform.

from now on, we consider functions for which double Laplace transformation exist 

without specifying of convergence of the integrals in question, but keep in mind

broadest the’regions’ possible .

2.2. The Inverse of Double Laplace Transform

2.2.1. Definition of the inverse of double Laplace transform

Suppose ),( txf possesses first order partial derivatives 
x

f




and 
t

f




and second 

order derivative 
tx

f


 2

and there exist positive constants 21,, M such that for all 

 tx ,0

                                   txtx e
tx

f
Metxf 2121

2

,),(   



                                        (2.3)

then if

                                    dxdttxfessf tsxs ),(),(
0 0

21
21 

 
                                            (2.4)

we have [8]
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                             (2.5)                           

or [2]

                               2121221 ),(
)2(

1
),(

1

1

2

2

21 dsdsssfe
i

ttf
ic

ic

ic

ic

tsxs 











                        (2.6)

c  andc  Where 2211   .

The next theorem shows that if ),( 21 ssf is known then ),( txf can be uniquely 

obtained from ),( 21 ssf

2.2.2. Theorem for uniqueness of the double  Laplace transform

Let ),( txf   and ),( txg be continuous functions defined for 0, tx and having 

Laplace transforms ),( 21 ssf and ),( 21 ssg respectively

if 

                                                       ),( 21 ssf = ),( 21 ssg                                         (2.7)

then

                                                       ),( txf = ),( txg                                              (2.8)

Proof [9] If  and  are sufficiently large, then the integral representation given by

2121 ]),(
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2

1
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i
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for the inverse double Laplace transform, can be used to obtain
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CHAPTER 3

BASIC PROPERTIES AND CONVOLUTION FORMULA

3.1 Basic Properties and Formulas

In this section we consider some of the properties of the double Laplace Transform 

that will enable us to find further transform pairs { ),( txf , ),( 21 ssf } without having 

to compute consider the following.

3.1.1 Theorem ( linearity property )

if                                               )},({ txfLL xt = ),( 21 ssf                                        (3.1)

for as 1 and bs 2 , and ),({ txgLL xt =  ),( 21 ssg , for cs 1 and ds 2

and R ,

then             

                       )},({)},({)},(),({ txgLLtxfLLtxgtxfLL xtxtxt                 (3.2)

for 1s max },{ ca and s₂> max },{ db .

Proof : This follows easily from the linearity of the integral [4].

3.1.2 Theorem ( division by xt )

if

  ),(),( 21 ssftxfLL xt





then


 










21

),(
),(

ss
xt dudvvuf

xt

txf
LL
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Proof :[10] Assume that


 

21

),(
ss

dudvvuf    exists

integrating both sides of

 
 


0 0

),(),( dxdttxfevuf vtux

with respect to u from 1s to  and with respect to v from 2s to  ,we get

dxdtdudvtxfeedudvvuf tsxs

ssss

),(),( 21

2121 00





 

 

                              dxdtdvtxfe
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e ts
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xs

s

),(2

1

1

2 00
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e
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e
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tsxs

),(0
00 2
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xt
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ee tsxs







00

),(
21

                                                     








xt

txf
LL xt

),(

thus


 










21

),(
),(

ss
xt dudvvuf

xt

txf
LL

3.1.3 Theorem ( change of scale property )

if

  ),(),( 21 ssftxfLL xt





then

  ),(
1

),( 21

b

s

a

s
f

ab
btaxfLL xt





where a and b are non zero constants [10].  

Proof: from (2.1), we have
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                           dxdtbtaxfeebtaxfLL xsts
xt ),(),(

00

12 





                                  (3.3)                               

Putting uax  and vbt  in the integral of (3.3), where u and v takes the limit 

from 0 to  . Hence, we get

 
b

dv

a

du
vufeebtaxfLL a

u
s

b

v
s

tx ),(),(
00

)( 12
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thus
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1

),( 21
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s
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3.1.4 Theorem ( multiplication by nmtx )

if

  ),(),( 21 ssftxfLL xt





then

  ),()1(),( 21
21

ssf
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txftxLL
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nmnm

xt









Proof : [10] from

dxdttxfessf tsxs ),(),(
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                             dxdttxfetx tsxsnm ),()()( 21

0 0
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0 0

),()1( 21 dxdttxftxe nmtsxsnm

                                        )},({)1( txftxLL nm
xt

nm

3.1.5 Theorem ( first shifting property )

if







 



),(}),({ 21 ssftxfLL xt

then

  ),(),( 21 bsasftxfeLL btax
xt 




where a and b are non zero constants [10] .

Proof: From (2.1), we have

                                 ),( txfeLL btax
xt

 dxdttxfeee btaxxsts ),(
00

12 





 

                               dxdttxfee xastbs ),(
0

)(

0

)( 12 





 ),( 21 bsasf 


thus

  ),(),( 21 bsasftxfeLL btax
xt 




3.1.6 Theorem

if

                      















btaxbtaxf

btoraxIf

txg
,),(

0

),(                             (3.4)

Then if  ),( 21 ssf   exists

                                            ),(),( 2121
21 ssfessg bsas                                            (3.5)

Proof : From (2.1), we have
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3.1.7 Theorem
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),(                                         (3.6)

and ),( 21 ssf   exists, then                   
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                                     (3.7)

Proof: From (2.1), we have
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3.1.8 Theorem
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Proof: From (2.1), we have
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3.1.9 Corollary

if                              

                                          















txtf
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)(
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2

1
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and the Laplace 1f and 2f exists, then

                                   )(
1

)(
1

),( 212
1

211
2

21 ssf
s

ssf
s

ssg                                (3.11)

Proof: straight forward.

3.1.10 Theorem

If ),( 21 ssf exists then, the double Laplace transform of

                             















xt

xtxtxf

txg
0

),(

),(           is                                     (3.12)

),( 221 sssf 

Proof: From (2.1), we have

dxdtxtxfetxgLL
x

tsxs
xt ),()},({

0

21   
 



let 

xutxtu 

we get

 
 


0 0

)( ),(21 dxduuxfe xusxs

 
 


0 0

),(221 dxduuxfe xsusxs

 
 


0 0

)( ),(221 dxduuxfe usxss

                                              ),( 221 sssf 

Similarly, it can be proved that the double Laplace transform of















tx

txttxf

txg
0

),(

),(

is   ),( 211 sssf    
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3.2. The Double Laplace Transform of Derivatives.

In this section we present the double Laplace transform of the partial derivatives of a 

functions.

3.2.1 Theorem (the double Laplace transform of the first order partial 

derivatives)

If ),( txf be a continuous function and its first order partial derivatives are of 

exponential order [11], then

                     )},0({)},({),}(
),(

{ 121 tfLtxfLLsss
x

txf
LL txtxt 




                        (3.13)

                    )}0,({)},({),}(
),(

{ 221 xfLtxfLLsss
t

txf
LL xxtxt 




                      (3.14)

respectively, where 0, tx

Proof: (3.13) by using the definition of the double Laplace transform

  dxdttxfeetxfLL xsts
xt ),(),(

00

12 







we get

                           dxdttxfeetxfLL x
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xt ),(),(
00

12 







    dtdxtxfee x
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x
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0

1

0
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0
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                                                )},({)},0({ 1 txfLLstfL xtt 

                                              )},0({)},({1 tfLtxfLLs txt 



15

thus

)},0({)},({),}(
),(

{ 121 tfLtxfLLsss
x

txf
LL txtxt 




.

Now I will prove (3.14) by using the definition of the double Laplace transform

  dxdttxfeetxfLL xsts
xt ),(),(
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we get

                       dxdttxfeetxfLL t
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thus
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.

3.2.2 Theorem(the double Laplace transform of the second order partial 

derivatives)

Let ),( txf be a continuous function of xponential order such that its second partial 

derivatives are continuous function of xponential order as well,[12] then   

   }
),0(

{)},0({)},({}
),(

{ 1
2

12

2

x

tf
LtfLstxfLLs

x

txf
LL ttxtxt 







                 ( 3.15)

        }
)0,(

{})0,({),({]
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[ 2
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t
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LxfLstxfLLs
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txf
LL xtxtxt 







                 (3.16)
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)0,0(),0()0,(),(),( 22112121

2

fsfssfsssfsstxf
tx

LL xt 









 

       (3.17)

Proof: from (3.13) we get:-

)},0({)},({)},({ 1 tfLtxfLLstxfLL xtxxtxxxt 

using (3.13) we get:

)},0({)}],0({),({[)},({ 11 tfLtfLtxfLLsstxfLL xttxtxxxt 
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2
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From (3.14) , we get
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using (3.14) , we get 
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For the proof 0f (3.17) we will use the definition of the double Laplace transform of  

the mixd partial derivatives 
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The previous theorem can be generalized as follows :

3.2.3 Theorem ( the double Laplace transform of a general partial derivatives )

Let ),( txf and all of its partial derivatives
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of exponential order then
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)}0,({)},({[)},({
1

0

1
221 xf

t
LstxfLLsstxf

xt
LL j

j

x

m

j

j
xt

mn
nm

nm

xt 





 







                                                          

               )]0,0()},0({ 1
2

1

0

1

0

1
1

1

0

1
1 f

xt
sstf

x
Ls

ij

ji
j

n

i

m

j

i
i

i

t

n

i

i

























                        (3.20)

Proof: [11] we will use the mathematical induction to proof (3.18). (3.19) can be 

proved similarly for 1n ,the formula is true from proposilion 3.2.1  suppose that 

the formula true for 1 np
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By using (3.18) now , we get
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3.2.4 Theorem ( the double Laplace transform of an integral )

if 
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Proof: [10] Let
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tx

dudvvuftxg
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hence we have
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From( theorem 3.2.3 ) we have

 ),(),(
2

txgLLtxg
tx

LL xtxtxt 











)0,0(),0()0,(),( 22112111 gsgssgsssgss 

thus we have

),0()0,(),(),( 2211212121 sgssgsssgssssf 


),0(
1

)0,(
1

),(
1

),( 2
1

1
2

21
21

21 sg
s

sg
s

ssf
ss

ssg 


   ),0(
1

)0,(
1

),(
1

),(
12

21
21

21 tgL
s

xgL
s

ssf
ss

ssg 


but   

    0),0(0)0,(  tgLandxgL

there fore

),(
1

),( 21
21

21 ssf
ss

ssg




hence  

21

21

00 ,

),(
),(

ss

ssf
dudvvufLL

tx

xt














3.3 The Double Convolution

3.3.1 Definition ( the double convolution )

The double convolution between two continuous functions ),( txf and ),( txg is       

defined by [13]

                            
x t

ddtxgftxgtxf
0 0

),(),(),(**),(                     (3.21)
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3.3.2 Theorem (commutativity)

                               ),(**),(),(**),( txftxgtxgtxf                                     (3.22)

Proof: [4]

  
x t

ddtxgftxgtxf
0 0

),(),(),(**),( 

Let
uxxu  

wttw  

                                                
0

1

),(

),( 





wu


1

1

0




  
x t

dwduwugwtuxftxgtxf
0 0

),(),(),(**),(

    ),(**),( txftxg

The following theorem gives the double Laplace transform of the convolution of       

two functions .

      

3.3.3 Theorem ( the double Laplace transform of convolution )

      
)},({)},({)},(**),({ txgLLtxfLLtxgtxfLL xtxtxt 

                                                             ),(),( 2121 ssgssf                             (3.23)

Proof :[4]

)},(**),({ txgtxfLL xt

   
 


x t

tsxs dvdxdtdtvxgvfe
0 00 0

),(),(21 

dvdxdtdtvxgvfe
x t

tsxs s  ),(),(
0 0 0 0

1     
 



If one uses the transformation

vux 
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 wt
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   we get

dvdudwdwugvfeetxgtxfLL wsvus
xt  ),(),()},(**),({

0 0 0 0

)()( 21   
   



                            
   


0 0 0 0

2121 ),(  dvdedudwwuge svswsus

                                                 ),().,( 2121 ssgssf
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CHAPTER 4

APPLICATION OF DOUBLE LAPLACE TRANSFORM

IN PARTIAL DIFFERENTIAL EQUATION

In this chapter we are going to solve some important problems for partial differential 

equations which is one of the most important subjects in mathematics and other 

sciences by using  double Laplace transform.

4.1 Examples for Partial Differential Equations

It is well known that in order to obtain the solution of partial differential equations by 

integral transform methods we need the following two steps:

1- We transform the partial differential equations to algebraic equations by using   

double integral transform methods.

2- On using the double inverse transform to get the solution of PDEs [7].

4.1.1 Example (solving non-homogeneous wave equation with convolution term)

Apply double Laplace transform to solve non-homogeneous wave equation with 

convolution term, where the non-homogeneous term is double convolution in general 

case consider non-homogeneous wave equation in the form

                              ),(**),()*(*),( txgtxfuutxk xxtt          2),( Rxt               (4.1)

where ),( txk is polynomial defined by   


m

j

n

i

ij

txtxK
1 1

),( and the symbol ∗ ∗

means the double convolution with respect to x and  t under the conditions

                                       )()0,( 1 xrxu               )()0,( 1 xrxut                                 (4.2)

                                       )(),0( 1 thtu                )(),0( 1 thtux                                 (4.3)
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[14] where the non-homogeneous term of Eq. (4.1) is double convolution terms and 

non-homogeneous initial condition are single convolution. If one applies the double

Laplace transform to Eq. (4.1) and single Laplace transform to Eqs. (4.2) and (4.3) 

we obtain
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                                                                       (4.4)

where )(),( 1121 sHsR are single Laplace transform of initial condition with respect to 

tx, respectively and ),(),,( 2121 ssgssf is double Laplace transform of f(t,x)∗∗ g(t,x). 

By taking inverse double Laplace transform of Eq. (4.4) we obtain the solution of Eq. 

(4.1) as follows
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2121

ssKss
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                                                                                 (4,5)

4.1.2 Example (solving partial integrodifferential equation with boundary 

conditions )

Consider the following partial integrodifferential equation

                           
x t

xxtt ddutxguuutxf
0 0

),(),(),(                     (4.6)

with boundary conditions

                                    )(),0( 1 tftu                  )(),0( 2 tftux                                (4.7)

and initial conditions

                                  )()0,( 1 xgxu                  )()0,( 2 xgxut                              (4.8)

[9] .By taking double Laplace transform for (4.6) and single Laplace transform for

(4.7) and (4.8), we get



24
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                 (4.9)

                                                                                                                                                                                     
by applying double inverse Laplace transform for (4.9), we obtain the solution of 

(4.6) in the following form
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             (4.10)

We provide the double inverse Laplace transform existing for each terms in the right

side of (4.10). In particular,consider the following example.

4.1.3 Example ( solving the partial integrodifferential equation with conditions )

Consider the partial integro-differential equation                                                     

                                txtx
x t

tx
xxtt xteeddueuuu    

0 0

),(            (4.11)

with conditions

                                             xexu )0,(                    x
t exu )0,(

                                             tetu ),0(                     t
x etu ),0(                          (4.12)

[9]. By taking double Laplace transform for (4.11) and single Laplace transform for 

(4.12), we have
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             (4.13)

by simplifying (4.13), we obtain

                                                 
)1)(1(

1
),(

21
21 


ss
ssu                                      (4.14)

by using double inverse  Laplace transform for (4.14),we obtain the solution of 

(4.11) as follows
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                                                     txetxu ),(                                                    (4.15)

4.1.4 Example ( solving the non-homogeneous wave equation)

Let us consider the non-homogeneous wave equation in the form                                  

                   ttx
xxtt exeuu )cos(

2

1

2

1
  )cos(

2

1
)cos(

2

1
txtex                     (4.16)

                          )().0( xxu                       )(),0( xxut                               (4.17)

                          )()0,( ttu                         )()0,( ttux                                    (4.18)

where all the initial conditions have singularity at 0x and 0t and 2),(  Rxt

Then it is easy to see that the non-homogeneous term of Eq. In the form of

                              ),(),(**),(),(),( txhxtgxtfxtuxtu xxtt                             (4.19)

2),( Rxt

can be written in the form

       )cos(
2

1
)cos(

2

1
)cos(

2

1

2

1
**)sin( txteexeetx xttxtx                      (4.20)

[14]. Now we apply the Laplace transform technique for Eq(4.19) and we obtain the 

solution of Eq.(4.19) in the form of

txxx etxtxtxtxetetxu 
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1
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1
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8

1
)cos(

4

1
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1
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         )sin(
8

1

4

1
txte tx                                                                                 (4.21)

Now, if we consider to multiply the left-hand side equation of (4.19) by the non-

constant coefficient  **23xt then Eq.(4.19) becomes                                                

         )cos(
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1
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2

1
)cos(

2

1

2

1
)*(*32 txteexeuutx xttx

xxtt                 (4.22)

                                    )(),0( xxu                        )(),0( xxut  

                                    )()0,( ttu                          )()0,( ttux                        (4.23)

by using the similar technique as above, we obtain the solution of Eq.(4.18) as

     )cos(
96

1
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1
)cos(

96

1
)sin(

48

1
)cos(

48

1
),( txetxxetetxv txtx                                                             
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                             tettxtx tx
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1
)cos(

48

1
)sin(

16

1
                               (4.24)

if we take second derivatives with respect to t and x for Eq.(4.22), and taking the 

difference between the second derivatives and multiply the result by 

convolution **32tx we obtain the non-homogeneous term plus a function ),( xth as

tx
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1 22                                                                (4.25)                                                                                                     

That is in the form of  ),()*(*32 txhuuvvtx xxttxxtt  and one can easily obtain 

the function ),( yxh .

4.2. Some Boundary Value Problems

In this section we  going to solve some boundary value problem by using double 

Laplace transform.

4.2.1 Example ( solving a boundary value problem )

Let                                     

x
x

y

t

y sin2

2

2

2









,  10  x , 0t

for :-

1- 0)0,( xy            10  x

2- 0),0( ty             0t

3- 0),1( ty               0t

4- 0)0,( xyt           10  x

[15]. Solution: Taking double Laplace transform
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using 1
tL we get
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}1{cos
1

)(sin),(
2

 txtxy 




4.2.2 Example ( finding the temperature at any point of a bar at any time )

A semi-infinite insulated bar which coincides with the x -axis, 0x is initially at 

temperature zero At 0t , a quantity of heat is instantaneously generated at the point 

ax  where 0a . Find the temperature at any point of the bar at any time 0t

Solution: The equation for heat conduction in the bar is
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u
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          0,0  tx                                  (4.27)

The fact that a quantity of heat is instantaneously generated at the point ax  can be 

represented by the boundary condition

                                                   )(),( tQHtau                                                    (4.28)

where Q is a constant and )(tH is the dirac delta function. Also, since the initial 

temperature is zero and since the temperature must be bounded [15], we have

                                       0)0,( xu           ,            Mtxu ),(

Taking double Laplace transform on (4.27)                     
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since ),( txu is bounded as x then ),( 2sxu is bounded as x

from boundedness condition, we require
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using 1
tL we find the required temperature
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The point source ax  is some times called a heat source of strength Q .
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CHAPTER 5

CONCLUSION

Many physical processes in nature evolve with time in semi infinite or infinite 

domains. Since these processes are described by both ordinary and partial differntial

equations, solving such equations is of great importance. Since the Laplace 

transforms transform a differential equation to an algebraic one, the double Laplace 

transform is considered to be a strong tool for solving partial differential equations 

that appear in various fields of science and engineering. Besides,the Laplace 

transforms method is considered to be the easiest methods used to solve such 

equations because unlike the other methods used less and uncomplicated calculations 

are needed.

This thesis can be considered as a survey on double Laplace transform. and we 

believe that this thesis will be a reference for all scientists who want to use double 

Laplace transform to solve linear partial differential equation which they encounter 

in their scientific researches.
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