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The Generating Functions play very important role in many areas of Mathematics for 

they lead as to explore the properties of functions that they generate. 

In this thesis, definitions of generating functions and their kinds and properties are 

presented. Their relations to some special functions are discussed.  Moreover, and 

applications of generating functions in several areas of Mathematics are discussed. 
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Üreten fonksiyonlar, ürettikleri fonksiyonların özelliklerinin araştırılmalarına  

yardımcı oldukları için, matematiğin her alanında çok önemli rol oynarlar. 

Bu tezde üreten fonksiyonların tanımları, türleri ve özellikleri sunulmaktadır. Bazı 

özel fonksiyonlarla ilişkileri irdelenmiştir. Ayrıca, matematiğin bazı alanlarındaki 

üreten fonksiyonların uygulamaları tartışılmıştır. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

 

Generating functions are clotheslines on which we hang up a sequence of numbers 

for display. These functions provide a powerful tool for solving recursively defined 

and combinatorial problems. They were invented in 1718 by the French 

mathematician Abraham De Moivre (1667-1754), when he used them to solve the 

Fibonacci recurrence relation =Fn-1+Fn-2.  Then they were developed by Euler in 

1748 in connection with partition problems, and were extensively treated in the late 

eighteenth century and early nineteenth century by Laplace. Who gave them their 

name and their first systematic treatment in the course of his great work on the theory 

of Probability. Since then, applications have been developed in many areas of 

mathematics and physical problems. [1] 

 

These functions are bridges between discrete mathematics, on one hand, and 

continuous analysis on the other. They can be tools to solve discrete problems as well 

as differential equations [2]. They play an important role in the investigation of 

various useful properties of the sequence which they generate. They are used as Z- 

transforms in solving certain classes of difference equations which arise in a wide 

variety of problems in operations research (including for example, queuing theory 

and related stochastic process).[3] 

 

Generating Functions admit a natural splitting into classes. The simplest is the class 

of rational functions. It is well studied and huge bunch of problems leading to 

rational generating functions is known. The classical orthogonal polynomials 

including, for example, Lengendre, Tchebychev, Laguerre and Hermite polynomials 



 2 

 

orthogonal polynomials were developed in the late 19
th

 century and their various 

generalizations studied in recent years.  

The generalized hyper-geometric polynomials of Bateman, Bedient, Brafman, 

Fasenmyer, Gould Hopper, Mittage-leffler, Rice, Shively, Sylvester and others, a 

familiar lagrange polynomials (which arise in certain problems in statistics) and so 

on [1].  

  

The existence of generating function for a sequence { } of numbers or functions 

may be useful for finding       by such summability methods as those due to 

Abel and Cesaro [1]. Generating functions are used also to count selections and 

arrangements with limited repetition, solutions of linear equations, distributions, and 

partitions of an integer n. Ordinary generating functions are used to count 

distributions of identical objects and arrangements where the order is not important. 

On the other hand, exponential generating functions are used to count distributions of 

different objects and arrangements where the order is important [4]. 

 

 Generating functions are also standard topic in most combinatorics. Without 

generating functions it is possible to turn in one of the following directions. More 

generally, the subject of generating functions belongs to the domain of operational 

methods which are widely used in the theory of differential and integral equations. 

Algebraic generating functions also appear frequently. In the beginning of 1960s 

Schützenberger showed that their non-commutative analogues arise naturally as 

language generated by unambiguous formal grammars. However, the class of 

algebraic functions (in contrast to that of rational ones) is not closed under the 

natural operation of the Hadamard product. Generally, the Hadamard product of two 

algebraic functions is an algebro-logarithmic function and the class of algebro-

logarithmic functions, which is closed under the Hadamard products seems to be 

natural [5].  

This thesis maybe considered as a survey on generating functions and some of their 

applications. To the extent of our knowledge, there is no work on generating 

function, which contains more knowledge on these functions than this work. 
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1.2. Organization of the Thesis 

 

 This thesis contains four chapters and conclusion. All the necessary information 

about the Generating Functions, definitions, theorems, examples, properties,some 

Special Functions and some applications on Generating Functions.  

Chapter 1 is an introduction to the history and background to the Generating 

Functions. 

In chapter 2, we will present some definitions and properties of generating functions. 

In chapter  3, the relation between generating functions and some Special Functions 

are discussed. 

In chapter 4, some applications of generating functions are mentioned. 

Chapter 5 is devoted to the conclusion. 
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CHAPTER 2  

 

DEFINITIONS AND PROPERTIES OF GENERATING FUNCTIONS 

 

Definition  2.1 [5] 

 

The generating function for the infinite sequence of real numbers < , ,…>  

is the power series 

                     G(x)= + x+ x
2
+….=                                                  (2.1) 

 

Example  2.1.1.  [3] 

The famous Fibonacci sequence is defined by its first two terms =  and the 

relation 

                                                         (2.2)  

   

This relation allows one to easily produce the first few terms of the Fibonacci  

                                       1, 1, 2, 3, 5, 8, 13, 21, 34…;  

Starting with    each element of this sequence is the sum of the two preceding 

elements. To compute the generating function 

 

                                    Fib(s)=1+s+2 +3                                        (2.3) 

Let us multiply both parts of Eq. (2.3) by s+ . We obtain 

 

 

                                    (s+ ) Fib(s) = s+  

                                                       +  

                                                      =  s+  
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Or 

                                     (s+ ) Fib(s) = Fib(s)-1, 

 

Whence 

                                                 Fib(s) =                                        (2.4) 

                                        

For functions of two variables we have the following definition 

 

Definition 2.2.  [6] 

Let {  (t)} be a sequence of (possibly constant) functions. If there is a function 

g(t,x) such that: 

                                                                                 (2.5) 

 

For all x in an open interval about zero, then g is called “generating function” for                  

{ }.  

 

 

 Examples 2.2.1.  [7] 

The following are simple examples of generating functions 

1) For each n , let  be the sequence where  

                                       =  

That is, 

                    =  

Then, the generating function for   is x
n
.  

2) The generating function for the sequence  is  

 

3) The generating function for the sequence  is 
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                                                       1+x+x
2
+. . .=   

 

More generally function for the sequence , where k is an arbitrary 

constant, is 

                                                         

4) The generating function for the sequence  is  

                                                       

5) The generating function for the sequence  

                                                    

                                                     

  

Formula (2, 3, 4, 5) are very useful in finding the coefficients of generating 

functions.  

6) Suppose that  

                                                 

                                           G(x)= e
x
 for all values of x. 

 

7) Suppose that G(x)=x sinx
2
 is the ordinary generating function for the sequence 

. To find ,  

 

Thus, we see that  is the k
th

 term of the sequence, 

 

 

8) There is available an unlimited number of pennies, nickels, quarters and 

generating function g(x) for the number of ways of making n cents with these 

pieces? The number  equals the number of non-negative integral solutions of 

the equations +5 +10 +25 +50 =n 
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The generating function is     

. Where n =1.2.3…n and           

is an arbitrary complex numbers. Coefficients in this generating function are called  

the binomial coefficient is denoted by  

 

; 

 

11) Sins= ; 

 

12) Coss= . 

 

Theorem  2.3.  (Operations on Generating Functions)  

          

Let A(x) and B(x) be, respectively, the generating functions for the sequence ( ) 

and ( ).[8]  Then  

(i.) For any numbers  is the 

generating function for the sequence (cr), where , for 

all r; 

(ii.) A(x)B(x) is the generating function for the sequence 

),,where,  =  +  +  +…+ + , for all r; 

(iii.) A
2
(x) is the generating function for the sequence ( ), 

where = + + +…+  , for all r; 

(iv.) x
m 

A (x) is the generating function for the sequence ( ), 

 

 

(v.)  A(kx), where k is a constant, is the generating function for 

the sequence ( ), where  
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(vi.) (1-x)A(x) is the generating function for the sequence ( ), 

where  

=  and = - , for all ; 

i.e., ( )=( , , ,…); 

(vii.)  is the generating function for the sequence ( ), where 

= + +…+ , for all r; 

i.e,( )=( , + , + + ,…); 

(viii.) A'(x) is the generating function for the sequence ( ),, 

where , =(r+1) , for all r; 

i.e., ( ) = ( ,2 ,3 ,…); 

(ix.)  is the generating function for the sequence ( ), 

where  

       = r , for all r; 

i.e., ( ) = (0, ,2 ,3 ,…); 

 

 

        (X.)  is the generating function for the sequence ( ), where  

=0  and ; 

           i.e. ( ) = (0, ,  

proof: 

 (i),(ii) and(v) follow directly from the definition whereas (iii),(iv) and(vi) are special 

cases of (ii). Also, (viii), (ix) and(x) are straightforward. We shall prove (vii) only. 

(vii) by . Thus  

                             

                                  . 

 Hence, 
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Is the generating function for the sequence ( ) where 

                                      = + ++…+ +. 

    

  2.4.  Permutations     

 

2.4.1 The number of ways in this theorem                      

 

Theorem 2.4.2     [7] For all r, n , with r , 

                                     P(n, r) = n(n-1)(n-2)…(n-r+1), 

That is   

                                     P(n, r) =  .                                                            (2.6) 

 

Proof:  

When we choose r objects in order from n objects, the first object can be chosen 

in n ways, leaving n-1 choices for the second object, and so on. After r-1 objects 

have been chosen there remain n-(r-1) = n-r+1 objects from which to make the r
th

 

choice. Hence, by the principle of multiplication of choices, the total number of 

ways of making these choices is  

                                      .  

This number can be rewritten as 

 

                                       , 

 

And using the factorial notation, we can write this expression succinctly as 

                                                      .  

 

By theorem 2.6 the number of ways of doing this is  

                                               P(n, n) = = n! 

 

So we have: 



 10 

 

Theorem  2.4.3 [8] The number of permutations of n objects is .  

the values of  grow very fast. Even for quite small values of n,  is very large. 

For example 10 =3628800, and  is larger than 10
157

. 

 

2.5. Combinations   [8] 

 

Algebraic proofs of the chief properties of the Binomial coefficients 

 

Theorem  2.6. [8] For all  

                                         .                                                         (2.7) 

 

Proof: 

We have already discovered that the number of ways in which r objects can be 

chosen, in order, from n objects is given by P (n, r) = . A set of r objects can 

be ordered in  different ways. Thus, P (n, r) gives the number of r-element subsets 

of n objects, when each r-element subset is counted  times. Hence the number of 

different r-element subset is 

                                           . 

The numbers C(n, r) are very well known. They are usually called binomial 

coefficients.  

     

Theorem 2.7.  [8, 9] For all we have 

                                               . 

 

Proof:  

Deciding which r objects to select from a set of n objects amounts to exactly the 

same thing as deciding which n-r objects not to select. Hence, the 

number of ways of choosing r objects from n is the same as the number of ways of 

choosing n-r objects from n. 
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2.8. The Binomial Theorem  [5, 9, 10] 

 

We begin with the following simplest form of the binomial theorem discovered by 

Issac Newton (1646-1727) in 1676. 

 

Theorem   2.9.  Let x, y be a real number and for any integer number non negative 

,  

 

                                                                                       (2.8) 

 

Proof: 

By using mathematical induction for n. The theorem is true when n=0 because the 

left side equal (x+y)
0
=1. Suppose veracity of the theorem when , so that :  

 

. We want to proof the 

veracity of the theorem when n=k+1. So we want to proof  

 

 

 notice that:  

                    (x+y)
k+1

=(x+y)(x+y)
k
  

 

And from the hypothesis induction  
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.  

 

We get the final equal by using Pascal’s identity. 

Note that the number of different terms in factorial (x+y)
n
 equal n+1. Called the 

series . (The Binomial Series), and 

from calculus we know if was |x|<1 then for all real number  it will be 

 

     

 

Such that n integer number and   

 

It is Generalized Binomial coefficients in purpose of using in generating functions. 

We find now factorial (1-x)
-m

 such that is positive integer number as following: 

 

  

 

          

 

           

 

           

 

           

 

              

 

About Binomial coefficients leads to a very well –known method for calculating 

their values: 
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Theorem  2.10. [8] For all  we have 

                                    . 

 

Proof: 

Again we emphasize that our aim is to give a proof of this formula. An algebraic 

proof, using the formula for the binomial coefficients is very straightforward, but 

hides the meaning of the formula. 

Let X be a set containing n+1 objects. We count the number of ways of choosing a 

subset of r objects from X. let a  be one particular fixed element of X. we divide the 

r-element subsets of X into two classes. 

The first class consists of those r-element subsets of X which do not include a. such 

subsets are made up of r elements chosen from n-element set X\{a}, and hence there 

are C(n, r) sets in this class. 

The second class consists of those r-element subsets which include a. Such subset 

consists of a and r-1 elements chosen from the n-element set X\{a}. Thus there are 

C(n,r-1) elements in this class. 

These two classes between them include all the r-element subsets of X and no r-

element subset is in both classes. Hence C(n+1,r), the number of r-element subsets of 

X, is given by  

                                    C (n+1,r) = C(n, r) + C(n,r-1). 

 

Theorem 2.11.  [5, 10](Pascal’s Identity) 

 

For any to integer numbers ,  then the following identities is fulfill  

 

             .                                                        (2.9) 

 

Proof:  

Let A={ , ,…, } set there are numbers n. let B is a partial set from A their 

numbers k. we have two cases: either . According to the rule of sum that the 

number partial set from A capacity k equal number of partial set from A capacity k 

and which not containing  adding to its partial set numbers from A capacity k 

which contain . Numbers of partial set  from A capacity k, which not containing an 
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equal numbers of partial set from { } A from capacity k. If equal  numbers of 

partial set from A capacity k which containing an equal the numbers of partial set 

from { , ,…, } } from capacity k-1, if equal  for that 

 

                                    . 

 

In using Pascal identities may make Pascal’s triangle, which containing from 

value . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                         (Figure.1 Pascal’s triangle) 

 

The binomial coefficients from an array, usually called Pascal’s Triangle, after the 

seventeenth-century a French mathematician Blaise Pascal, although the triangle was 

known much earlier, occurring in Chinese manuscript. The first few rows of Pascal’s 

Triangle are shown in figure 1. 

 

2.12. Multinomial Theorem   [5, 10] 

 

1 4 1 

1 

4 6 

1 3 3 

1 2 1 

1 

1 1 

1 5 5 1 10 10 

6 15 6 1 15 20 1 
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If , , …,  real numbers and was n non negative integer number, then: 

 .  

 

Therefore, the addition was taken for all non-negative integer numbers , ,…,  in 

which fulfillment + +…+ = n,  

 And where 

                                                                                           (2.10) 

 

 

Proof: 

,  

for that any term from factorial terms will be from the shape 

                                                         

 Where , ,…,  integer numbers non-negative fulfillment 

                                                        , +…+ = n.  

 

The coefficients of this term is permutation number  element from type  and  

element from type  and… and  element from type  from Binomial theorem  

will be the coefficient  it is . Note: if we put m=2 in 

multinomial theorem, we will get the Binomial theorem. 

 

Theorem 2.13. (Vandermonde's Identity):   [9, 10] 

 

      For all   

 

            

 

                                                                                                           (2.11) 

 

 Proof 1.  

Expanding the expression on both sides of the identity  
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                              (1+x)
m+n 

= (1+x)
m

 (1+x)
n
  

We have by the theorem (Binomial theorem)                 

 

      

                          

                         .  

 

Now, comparing the coefficients of x
r
 on both sides yields 

 

                    

 

Proof 2. 

Let x={ , ,…, , , ,…, } be a set of m+n objects. We shall count the 

number of r-combinations A of x. 

Assuming that A contains exactly i a’s, where i=0,1,..,r, then the other r-i elements of 

A are b’s; and in this case, the number of ways to form A is given by .  

Thus, by (AP), we have 

                                           .  

 

For a closer look on generating function, it proves the following important theorem. 

 

Theorem 2.14.  [12]( About the inverse function). 

Let a function  

                                       B(t)= t
2
+ t

3
+…,                                        (2.12) 

 

Be such that B(0)= =0, and 0. Then there exist functions  

 

                      

  

Such that  

                            A (B(t)) =t and B(c(u)) =u. 
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 Each of the functions A and C is a unique function possessing this property. 

The function A is said to be left inverse and the function C is said to be right inverse 

to the function B. 

 

Proof. 

 Let us proof the proof the existing and uniqueness of the left inverse function. For 

the right inverse function is similar. We compute the coefficients of the function A 

step by step. The coefficient a1 is the solution of the equation =1, whence 

                                                           . 

Now suppose the coefficients , ,…,  are already known. Then the coefficient 

+1 is the solution of the equation + , where dots denote some 

polynomial in , …and, . Hence, the equation is a linear equation 

with respect to  and the coefficient of   is . This coefficient is non-

zero, therefore, the equation has a unique solution and the proof of the theorem is 

completed 
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CHAPTER 3 

 

GENERATING FUNCTIONS AND  SPECIAL FUNCTIONS 

 

In this chapter we will give some important results on generating function in 

Bernoulli polynomial and special functions of classical orthogonal polynomial. 

 

3.1    Bernoulli Polynomials [11] 

 

In this section we will introduce exponential generating function, because it is the 

fundamental of Bernoulli Polynomial.  

Definition 3.1 

Let  be a sequence of (possibly constant) functions. If there is a function on 

h(t,x) so that 

                                          . 

 For all x in an open interval about zero. Then h is called the “exponential 

generating function” for { (t)}. 

 

Example 3.1.1. [11] 

 

Let  (t) = (u(r))
n
 for some function u(r). To compute the generating function 

for  we must the series  

                                        .  

By simply recognizing this to be a geometric series, we obtain the sum 

                                         . 

For |u(r)s|<1. This result can be used to find other generating function using 

differentiation, 
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                                 , 

                    

  So  is the generating function for the sequence {n(u(r))
n
}.  

The exponential generating function for the sequence {(u(r))
n
} is 

 

                                        .  

Definition 3.2. The “Bernoulli Polynomials” (t) are defined by the equation 

 

                                                                          (3.1) 

In other words,  is the exponential generating function for the sequence 

(t). 

Theorem  3.3. The exponential generating function of Bernoulli Polynomials is 

given by 

 

                                      .                                          (3.2) 

Proof: 

 

 Start with 

                              

                

                                                                 

                                                                   

Definition  3.4. The “Bernoulli numbers”  are given by =  (0), the value of 

the k
th

 Bernoulli Polynomial at t=0. We could use equation 
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                       . 

 To compute the first few Bernoulli Polynomials, but it is easier to use the equation 

in Definition 2 directly. First, multiply both sides of the equation by  

.  

Then expand the exponential functions on each side in their Taylor series about 

zero and collect terms containing the same power of X: 

                      

                      

                     . 

 Equating coefficients of like powers of x, we have  

.  

Then the first eight Bernoulli numbers are 

 B0=1, B1= , B2= , B3=0, B4= , B5=0, B6= , B7=0, B8= .  

The first one is easy to compute Bernoulli numbers: 

                                   

        

                                     and =1. 
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k 0 1 2 3 4 5 6 7 8 

Bk 1 

  

0 

 

0 

 

0 

 

                                   (Table.1 Bernoulli Numbers) 

 

And so forth. The first few Bernoulli Polynomials are given by  

. 

We present several properties of Bernoulli polynomials in the following theorem 

Theorem  3.5.  [9] 

 

a) .                                                 (3.3) 

b) .                                                 (3.4) 

c) .                                                 (3.5) 

d)                                                 (3.6) 

Proof:  

a) . 

Now make change of index  in the left- hand sum: 

                             . 

Equating coefficients. 

 

                            

                                                            

                                                  

                                              

b) Immediately by equating coefficients. 

c)  
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d)  

S=0 

 

                    

                           =  

                            

 

 

Then  

                    

                        

 So, 

                  

                  

 

Comparing the coefficients, we have  

=   

If  

If  

That is, =0, . 
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Corollary 3.6. 

 

If r=0,1,2,…, then  

                                           

 

Example 3.6.1.  Use corollary to show that  

                                          

Solution: Let , then by Thm. 

 

                                       .  

By corollary, we have  

 

                                   

           

                                                   

Then 

 

                                                                       

 

 

Example 3.6.2.  The result of example 3.6 to compute  

Solution:  by (3.6) 

 

)                                                                                
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Theorem 3.7. (Euler Summation Formula)  

Suppose that the 2b
th

 derivative of Y(h), Y
2b

(h), is continuous on [1,w] for some 

integers  and . Then 

                                                 

(3.7)                            

 

Where  the greatest integer less than or equal to h, 

(called the “floor function”  or greatest integer functions"). 

 

Proof: 

 Integration by parts gives each r,  

 

                                              

 

 

Note that in the first integral in Eq(3.8) 

 

                                             . 

 Similarly, we have by Theorem 3.6(a) and (c)  

 

                  

 

 

For n=1,… 2b-1. Summing Eq(3.8)and Eq(3.9) as r goes from 1 to n-1, we have, 

respectively, 
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          . 

Finally we begin with Eq(3.10) and use Eq(3.11) repeatedly to obtain  

    

 

                                      

                                    

,                                   

Where we have used theorem 3.6 (d). Rearrangement yields the Euler Summation 

Formula. 
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Example  3.7.1.  Given an estimate for  . 

Solution:

. 

                                 

            

                             

                                     

                                  

3.8. The Classical Orthogonal functions 

In this section we will give some results about the classical orthogonal polynomials. 

For more details of these polynomials, the reader might refer to [1, 11, 12]  

Definition 3.8.1. (Orthogonal Functions) [1, 12] 

Functions set { (u), (u),…, (u),…} orthogonal on interval [f,j] with weight 

function quantity w(u) if     
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Theorem  3.9.  for all h, t: [f, j] /R real functions 

 

 Where 

  is inner product. 

Proof: 

For all h, t, y is real functions and   we have  

 

 

 

Remark : called scale function h and quantity  and we symbolize to him 

in symbol ||h||. 

 

Some of Orthogonal Polynomials  3.10. [1, 13] 

1) Laguerre Polynomials       

Definition  3.10.1.  (Laguerre Polynomials) 

  Are known Polynomials unit from degree r and they are the solutions 

of the following differential equations:  

 

 

 

The following is the generating function of the Laguerre polynomials:  

(v)                                (3.13) 

Example 3.10.2. [9] Given that y(v,u)=(1-u)
-1

 exp  is the 

generating function for the Laguerre Polynomials (v), find (v) for 

 

Solution:  
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. Thus when u=0, y(v,o)=1, y(v,o)=1-v, 

  

 

 

 

 

 

2) Legendre Polynomials ( (u)) 

Definition [1, 14] (Legendre polynomials) we say that  it is Legendre 

polynomials of degree r if we have: 

                                             (3.14)                       

The following is the generating function of the Legendre polynomials: 

,-1<v<1,|k|<1                                             (3.15) 

Example 3.10.3.   [11] Given that  is the generating 

function for the Legendre polynomials  

 Solution:   
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3) Hermite Polynomials  

Definition   [1, 12] (Hermite Polynomials) Hermite functions  are defined 

follows: 

                (3.16)                          

Y(v,u) is called generating function for Hermite Polynomials.  

Example 3.10.4.   [11] The function  is the generating      

function for the Hermite Polynomials . Compute  

 Solution:   
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4) Tchebychev Polynomials from first kind ( ) and second kind ( ) 

 

Definition:  [1, 13] Tchebychev Polynomials is from first kind ( ) and second 

kind (  on interval I=[-1,1] as follows: 

 

The following is the generating function of the Tchebychev polynomials: 

 

 

 

First type: 

                     =( ,-1<v<1,|k|<1             (3.17)                 

 ,-1<v<1,|k|<1            (3.18)                         

  ,-1<v<1,|k|<1                                                    (3.19) 

 

Second type: 

 

                ,-1<v<1,|k|<1                                      (3.20)   

 

    ,-1<v<1,|k|<1    

(3.21)             

 

Example   3.10.5.  [11] Find the generating function for 
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Solution: 

 

   

 

 

 

 

 

 

 is the generating function for 
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CHAPTER 4 

 

SOME APPLICATIONS OF GENERATING FUNCTIONS 

 

4.1. The Method of Generating Functions.  [3] 

 

A recurrence formula that is to be solved by the method of generating functions. 

1) Make sure that the set of values of the free variable (say n) for which the given 

recurrence relation is true, is clearly delineated. 

2) Give a name to the generating function and look for it. And write out that 

function in terms of the unknown sequence (e.g., call it A(x), and define it to be 

. 

3) Multiply both sides of the recurrence by x
n
, and sum overall values of n for 

which the recurrence holds. 

4) Express both sides of the resulting equation explicitly in terms of the generating 

function A(x). 

5) Solve the resulting equation for the unknown generating function A(x). 

6) The exact formula for the sequence that is defined by the given recurrence 

relation, then to get such a formula by expanding A(x) into a power series by any 

method you can think of. In particular, if A(x) a rational function (quotient of two 

polynomials), success will result from expanding in partial fractions and then handling 

each of the resulting terms separately. 

Example 4.1.1.  How many strings are there of n digits which do not contain 

consecutive zeroes? 

A string of n digits is simply a sequence , ,…,  , where each di is one of the 

numbers 0,1,2,…,9. We let  be the number of such strings which do not contain 
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consecutive zeros. We calculate  by considering how strings of n digits, not 

containing consecutive zeros, can be built up from shorter strings with this property. We 

can divide the strings of length n without consecutive zeros into two disjoint classes. The 

first class consists of all those strings which do not begin with a zero. The first digit can 

those be any of the other nine and the remaining n-1 digit must themselves from a string 

without consecutive zeros. There are  these. Hence there are all together  

strings in this class. The second class consists of those strings which start with a zero. 

The initial zero must be followed by one of the other 9 digits, and the remaining 

numbers make up a string of n-2 digits not containing consecutive zeros. Thus, there are 

 strings in this class. It follows that for all n  

 

                                 . 

        

This formula makes it quite straightforward to calculate the value of an for any particular 

value of n, given the additional facts that 

                                             . 

Which can easily be checked, for example, we can calculate a5 as follows: 

=9 +9  

  =891+90 

  =981 

=9 =+9  

  =8829+891 

  =9720 

=9 +9  

  =87480+8829 

  =96309. 

 

As a first shot we could say that a recurrence relation has the form 

. 

This can be defined by the recurrence relation 

.  
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Together with the initial value =1 Thus, general recurrence relation has the form 

 

  

Where f is some given function. Again, our notation is deliberated vague about the 

number of terms of the sequence which are involved on the right-hand side of equation 

(4.5) as we wish to allow for such cases as 

 

                                                  

 

Where the number of terms of the sequence which are involved in the definition of 

can vary from the value of n. 

Recurrence relations are classified according to the form of the function f   which occurs 

in the relation. Recurrence relations can be solved by using the device of generating 

functions. 

 

 4.2. Generating Functions and Recurrence Relations     [8] 

 

The basic idea of generating function approach to recurrence relations is to translate the 

recurrence relation into equation involving the generating function of the sequence. If 

we can extract from this equation an explicit formula for the generating function, we 

may be able to use this to derive a formula for the coefficients in its power series. These 

coefficients are, of course, just the terms of the sequence In which we are interested. 

Before discussing this method in general we illustrate it in relation to the particular 

recurrence relation of (4.1), as given by equation (4.2) and subject to the initial 

conditions (4.2). 

We let A be the generating function for the sequence { }. Thus, 

                                              . 

If we multiply both sides of the recurrence relation (1) by x
n
, and sum for all integers 

, for which the relation (4.1) holds, we obtain 
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The sum on the left-hand side of equation (4.6) is just the power series for A without the 

first two terms. Thus 

 

                        

                                            

To relate the term 

                                       .  

 

Which occurs on the right-hand side of equation (4.6) to the generating function A we 

need to pull out a factor x so that  multiplies x
n-1

, as it does in the series for A         

      

                                             .  

(Note that  , and so is the power series for A without 

the first term, that is, A(x)-a1x, which is where we obtained equation(4.7) from).  

    In similar way, 

                           

               

Thus, we can reduce from the equation (4.6) that 

 

    

 

It is now a straightforward matter to rearrange equation(4.8) to give 

 

       . 

 

Thus, we have now achieved the first stage of our objective. We have obtained an 

explicit formula for the generating function of the sequence { }. More than one 

method can be used to derive from this a formula for the coefficients in the 

corresponding power series. Probably the most coefficients of these is to rewrite the 

formula for A(x) using the technique of partial fractions 

  

Where  and  are the reciprocals of the solutions of the equation 
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         .  

 

Thus,  and  are the solutions of the equation 

 

    

 

                                    

 

  

And by equating coefficients we can deduce that, for , 

  

 

 With  and as given above. We have those obtained an explicit formula for . 

 

4.3. Generating Functions for Combinations  [15, 16] 

 

We have seen that the polynomial (1+ax)(1+bx) is the ordinary generating function of  

the different ways to select the objects a, b and c. 

   

Instead of the different ways of selection, we may only be interested in the number of 

ways of selection. By setting a=b=c=1, we have 

                   (1+x)(1+x)(1+x) = (1+  = 1+3x+3x
2
+x

3
.  

Clearly, we see that there is one way to select no objects from the three objects, C (3,0) 

three ways to select one object out of three, C (3,1), etc. 

Usually, a generating function that gives the number of combinations or permutations is 

called an ordinary enumerator. This notion can be extended immediately. To find the 

number of combinations of n distinct objects, we have the ordinary enumerator 

  

.  
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In this expansion of (1+x)
n
, the coefficients of the term x

r
 is the number of ways the term 

x
r
 can be formed by taking rx’s and n-r1’s among the n factors 1+x. It is for the reason 

that the C (n, r)’s are called the binomial coefficients. In binomial expansion,  is a 

common alternative notation for C (n, r). 

 

Examples 4.3.1.  [16] 

1) From 

 

We have the identity  

 

By setting x equal to 1.  The combinatorial significant of this identity is that both sides 

give the number of ways of selecting none, or one, or two,.., or n objects out of n distinct 

objects. We also have the identity 

, 

 by setting x equal to -1.  

Writing this as 

 

.  

 

We see that the number of ways of selecting an even number of objects is equal to the 

number of ways of selecting an odd number of objects from n distinct objects. 

 

2) The identity 

, can be provided in two ways. 

 

Method 1: 

We observe that the expression on the left-hand side is the constant term in (1+x)
n
(1+x

-

1
)
n
.  

Since (1+x)
n
(1+x

-1
)
n
=(1+x)

n
(1+x)

n
 x

-n
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    =x
-n

(1+x)
2n

,  

And the constant term in x
-n

(1+x)
2n

 is , we have proved the identity.   

Method 2: 

We rewrite the identity to be proved as 

 ,  

 

and use a combinatorial argument. To select n objects out of 2n objects, we shall first 

divide them(in any arbitrary manner) into two piles with n objects from the first pile 

and  ways to select n-I objects from the second pile to make up a selection of n 

objects. Therefore, the number of ways to make the selection is  which 

is also equal to . 

 To see an application of this result, let us consider the problem of finding the number 

of 2n- digit binary sequences which are such that the number of 0’s in the first n 

digits of a sequence is equals to the number of 0’s in the last n digits of the sequence. 

Since the number of n-digit binary sequences containing r 0’s is , the number of 

2n-digit binary sequences containing r 0’s in the first n digits as well as in the last n 

digits is . Therefore, the number of 2n-digit binary sequence  which are such that 

the sequence is equal to the number of 0’s in the last n-digits of the sequence is 

 

  

  

3) Prove the identity 

 

,  

 

4) Differentiation both sided of the identity 

 

 .  

We have 
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 .  

 

The given identity is obtained by setting x equal to 1.   

5) What is the coefficients of the term x
23 

in (1+x
5
+x

9
)
100

? 

Since x
5 

x
9
 x

9
=x

23
 is the only way to term x

23
 can be made up in the expansion of 

(1+x
5
+x

9
)
100

 and there are C(100,2) ways to choose the two factors x
9
 and then C(98,1) 

ways to choose the factor x
5
, the coefficients of x

23
 is 

             C(100,2)⨯ C(98,1)= . 

 

6) Show the ordinary generating function of the sequence  

 

, is . According to the binomial theorem 

        

 

The binomial theorem is  

 

 

 

 

 

 

As an application of this result we evaluate the sum 

                      for a given t.  
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Since  is the coefficients of the term x
i
 in  and  is the 

coefficients of the term x
t-i

 in ,  is the coefficients of the 

term x
t
 in .  

Since  

          

We have 

                                                     . 

 

4.4. Generating Functions and Permutations [15, 16] 

 

For permutations, the generating function is a little less inclusive; it is reduced to 

enumerator.. in the simplest case, for n distinct things and no repetition, the number of 

permutations k at a time is P(n, k), where 

                                                 P(n, k)=k  C(n, k),  

Since the positions of the objects in a combination of k may be permuted in k(k-

1)…1=k  ways. Hence we have 

                                             

                    =   

The enumerator for permutations is an exponential generating function. When 

repetitions are allowed, the enumerator for any object is a series containing a term 

 for each k in the specification for repetitions. 

 If an object may appear zero, one or two times, the enumerator is the polynomial 

  

If unlimited repetition is specified, it is 

  

The following examples illustrate a few of the possibilities. 

Example 4.4.1. 

 Consider permutations k at a time of n objects with repetition. The enumerator is 

( =e
nt

, and 
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                                              ,  

The number of permutation in equation is n
k
, a result easily found by other means. 

Example  4.4.2. 

 Consider again the permutations of example (3.7), with the added condition that each 

object must appear at least once. The enumerator is (e
t
-1)

n
, 

                                             (e
t
-1)

n
=  

                                         

If E is the shift operator, Ef(n)=f(n+1) and , then the inner sum may be 

written as , which is equal to n  S(k,n), with S(k,n) astirling number of the second 

kind, an ubiquitous number in combinatorics. Thus 

                                         

is the exponential generating function for stirling numbers of the second kind. 

 

4.5. Generating Functions and Finding Averages [17] 

 

To finding means, standard deviations and other distributions, with lower work by power 

series generating functions are unusual. 

How to find means ( μ ) by generating functions ? 

                             μ=                                                                         (4.14) 

Suppose  f(m) represents the number of objects. In a clear set T of M objects, that have 

properly m properties, for each  m =0, 1, 2,…, with 

                                    

Averages can be computed immediately from generating functions by object power 

series generating functions of the sequence  say F(u) . 

In the equation (4.14)  way to express the mean μ. In terms of F. certain, 

                                         μ =  

How to find the standard deviation σ, of the distribution by generating functions? 

                                     =                                          (4.15)                                         

h : represents an object in the set T. 

m(h): is the number of properties that h has . 
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 : which is known as the variance of the distribution, is therefore the mean          

square of the difference between the number of properties that each object has and the 

mean number of properties μ. 

(m(h)- : Every one of the f(m) objects h that has exactly m properties will contribute 

(m-  to the sum in (4.14), and therefore 

 =  f (m) 

                                         =  -2 μ m+ ) f (m) 

                                         =   

                                         = (F″ (1) + (1-2μ) F′(1)+  

                                    = F″ (1) / F (1) + F′ (1) / F (1) – (F′ (1) / F  

                                    =  

 

Can also be calculated standard deviation in terms of the values of F and its first two 

derivatives at u=1. 

In an exponential family F.  The average number  μ (m), of cards in a hand of weight m. 

If  y (m, r) is the number of hands of weight m that have r cards, then the average is 

              μ (m)=                                                                              (4.16) 

Now if we begin with exponential formula  

              =  

Apply the operator  and then set w=1. 

 

The result is that   = D(u) y(u)                            (4.17) 

 

Theorem 4.6. 

In exponential family F, the average number of cards in hands of weight m is 

                          μ = (m) =  D (u) y(u)                       

                             =   di y(m-i)                                                                (4.18) 

 

Example  4.7.  (Cycles of Permutations) 
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The averaging relations (4.14) are particularly if y (m) = m!, as in the family of all 

permutations. There, (4.14) becomes  

                             μ (m) =   (i-1) ! (m -i) ! 

                                       = 1+  +  +…+   . 

Consequently, the average number of cycles in a permutation of m letters is the 

harmonic number y m. 

What is the standard deviation?  The function F(u) that appears in (4.11), in the case of 

permutations, is, for m fixed, 

                                     F (u) =  

                                               

By  

                                            =  (1- . 

 

After taking logarithms and differentiating, following (4.11), we find  

 

                                           F(1)= m!, (log F)′ (1) = , and  

                                          (log F)″ (1)= -1-1 /4-1 /9-1 /16-…-1/ . 

 

If we substitute this into (4.11), we find that the variance of the distribution of cycles 

over permutations of n letters is 

=  

                                        = log m + ɣ-  

Where ɣ is Euler's constant. 

Hence the average number of cycles is ~ log m with a standard deviation 

                                          σ~  

 

4.8. Ordinary Differential Equations and Generating Functions. [18]  

 

When deriving generating function for the Bernoulli and Euler sides of the Bernoulli-

Euler triangle we had to solve ordinary differential equations satisfied by these 

functions. 
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The theorem below solves the problem of existence and uniqueness of a solution for a 

large class of ordinary differential equations containing both equations 

 

                                           B′ (x)= (x)+1                                                              (4.19) 

        And  

                                           E′(y)=E(y) B(y)                                                             (4.20)            

 

 

Theorem 4.9.     

 Consider the ordinary differential equation  

 

                                           f ′ (s) = F(s, f(s))                                                           ( 4.21) 

 

With respect to the generating function f(s), where  F=F (s, t) is a generating function in 

two variables, Polynomial in t(i.e., having finite degree in t). Then for each  Eq. (4.21) 

possesses a unique solution with the initial condition f(0)=  

          For equation (4.19), the function F is  

                                                     F (s, t) = +1,  

          While for equation (4.20) it is  

                                                    F (s, t) = B(s) t. 

 

Proof of the theorem: 

The proof follows our usual pattern of finding the coefficients of the unknown function f 

one by one. Let n be the degree of F with respect to t and let  

                                                F (s, t) = ( +  s+  +…….) 

                                                           + (  +  s+ +…….)t 

                                                           +….+ 

                                                           + ( +  s+ +….)  

                                                      f(s) = +  s+  +… 

 

Equating the coefficients of  on the left-and on the right-hand sides of Equation 

(4.21) we obtain 

= + +…+ . 
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Similarly, the equation for the coefficients of  yields 

 

                                               2 =  + + +….+ + . 

 

More generally,  is the root of the equation  

                              

                                            n = .                                                              

 

Where dots denote a Polynomial in coefficients of F   and the coefficients  

, ….,  of   For each n˃0 Eq. (4.22) has a unique solution. 
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CHAPTER 5 

 

CONCLUSION 

 

The subject of generating functions belongs to the domain of operation methods 

which are widely used in many areas of Mathematics such as the theory of 

differential equations, difference equations, integral equations and Algebra. 

These functions also appear in various fields of Sciences and Engineering. These 

functions are considered as a link between the discrete analysis and the continuous 

one. Such functions play an important role in searching for many useful properties of 

the sequence that they generate. 

In this thesis, I presented some important definitions, theorems and elementary 

operations related to these functions and  relations between these functions and some 

orthogonal polynomials were discussed some applications of these functions were 

considered. 
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