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NEW RELATIONSHIPS CONNECTING
A CLASS OF FRACTAL OBJECTS AND

FRACTIONAL INTEGRALS IN SPACE

Raoul R. Nigmatullin 1, Dumitru Baleanu 2,3,4

Abstract

Many specialists working in the field of the fractional calculus and its
applications simply replace the integer differentiation and integration op-
erators by their non-integer generalizations and do not give any serious
justifications for this replacement. What kind of “Physics” lies in this
mathematical replacement? Is it possible to justify this replacement or not
for the given type of fractal and find the proper physical meaning? These
or other similar questions are not discussed properly in the current papers
related to this subject. In this paper new approach that relates to the pro-
cedure of the averaging of smooth functions on a fractal set with fractional
integrals is suggested. This approach contains the previous one as a partial
case and gives new solutions when the microscopic function entering into
the structural-factor does not have finite value at N � 1 (N is number of
self-similar objects). The approach was tested on the spatial Cantor set
having M bars with different symmetry. There are cases when the aver-
aging procedure leads to the power-law exponent that does not coincide
with the fractal dimension of the self-similar object averaged. These new
results will help researches to understand more clearly the meaning of the
fractional integral. The limits of applicability of this approach and class of
fractal are specified.

MSC 2010 : Primary 28A80, 26A33; Secondary 60G18, 26A30, 28A78
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Key Words and Phrases: fractal object, self-similar object, spatial frac-
tional integral, averaging of smooth functions on spatial fractal sets, Cantor
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1. Introduction and formulation of the problem

During the last two decades it became obvious that consideration of
the properties of a fractal object (both in space and in time) needs a spe-
cial mathematical tool. One of the efficient tools of such kind became the
mathematics of the fractional calculus. Now this point of view is supported
by many researches and the abbreviation FDA (Fractional Derivatives and
its Applications) received a very wide propagation in the scientific world.
Starting from the 90th of the last century up to nowadays we have thou-
sands publications, many workshops, exhibitions and conferences that are
absorbed by the acronym FDA. For beginners one can recommend some
monographs [14, 1, 12, 15, 13] and reviews [3, 4] including extended old
and recent historical surveys, where the foundations of this ”hot spot” are
explained. The recent progress of the fractional calculus applications in di-
electric spectroscopy one can find in [2]. One of the basic problems that did
not accurately solved yet in the fractional calculus community is the finding
of the desired relationship between the smoothed functions averaged over
fractal objects and fractional operators. This problem was solved for the
time-dependent functions averaged over Cantor sets in monograph [5] and
paper [6], where the influence of unknown log-periodic function (leading
finally to the understanding of the meaning of the fractional integral with
the complex-conjugated power-law exponents) was taken into account. Pos-
sible generalizations helping to understand the role of a spatial fractional
integral as a mathematical operator replacing the operation of averaging of
the smoothed functions over fractal objects were considered in monograph
[5] also. But in order to receive as a generalization the desired expressions
for the gradient, divergence and curl expressed by means of the fractional
operator in the limits of mesoscale (when the current scale η lies in the
interval (λ < η < Λ) determining the limits of a possible self-similarity)
it was necessary to apply the additional averaging procedure over possible
places of location of the fractal object considered. This procedure provides
the correct convergence of the microscopic function f(z) on small η ≤ λ
and large η ≤ Λ scales. But the basic reason that serves as a specific
mathematical obstacle in accurate establishing of the desired relationship
between the fractal object and the corresponding fractional integral is the
absence of the 2D- and 3D-Laplace transformations. Application of the
Fourier transform replacing the absence of the (2,3)D-Laplace transforma-
tion leads mathematically to the fact that the behavior of the trigonometric
functions on large scales becomes uncertain and the limit of the function
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lim
N�1

exp(ikrξN ) =? (1)

at ξ > 1 does not exist in the conventional sense. In order to provide the
convergence of the limit (1) at conditions (N � 1, ξ > 1) the additional
averaging procedure over possible places of location of the fractal object
was applied [5]. So, the finding of the correct mathematical procedure that
helps to overcome the ambiguity of expression (1) is the actual problem in
establishing the desired “bridge” between fractal geometry and fractional
calculus.

In this paper we want to demonstrate another approach that can link
the procedure of the averaging of a smooth function for a certain class of the
given self-similar objects with the fractional integral and its possible gen-
eralizations in space. This alternative approach helps to solve this problem
in more accurate form and demonstrates new possibilities that can exist
between fractals and fractional integrals in space.

The content of this paper is organized as follows. Section 2 is devoted
to calculation of the self-similar 1D product (structure-factor) that serves
a main link between the smoothed function and the fractal object consid-
ered. In Section 3 we realize the numerical test for 1D spatial Cantor set
containing M bars and its possible modifications. In Section 4 we con-
sider another class of fractal objects when the results obtained in Section
2 can be applicable for more complex cases. The last Section 5 summa-
rizes the basic results and outlines the perspectives of application of new
approach for solution of similar problems in the mathematical physics of
the fractional calculus. Besides, the basic results of this approach helps
to find at least three distributions that remain invariant relatively scaling
transformations.

2. Mathematical part: Properties of the 1D self-similar product

As well-known earlier [12, 5], for many fractal objects located in a space
the most convenient procedure for their description is based on the following
property of the Fourier transform

f(r) =
∫ ∞

−∞
F (k) exp(ikr)d3k =: F (k), f(r + a) := exp(ika)F (k). (2)

This property helps to segregate the Fourier image of the averaged
smooth function (presented by the function F (k) in 3D-Fourier space) from
the structure-factor, which shows the location of the fractal object in space.
The current generation of a fractal object can be expressed with the help of
a “star” of the k -vector (k 1, · · · , k r), where r determines a finite number
of new self-similar objects that are created on the current stage of the
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desired fractal object and vector a(a1,a2, · · · ,ar) shows the directions of
the location of the current generation of the given fractal in space. Based on
the property (2) it is easy to see that from the mathematical point of view
it becomes necessary to consider the product (presenting itself a general
definition of the structure-factor) of the following form

P (z1, z2, . . . , zr) =
n=N∏

n=−N

f(z1 ξ1
n, . . . , zr ξr

n), zq = kΛcos(θq),

q = 1, 2, · · · , r. (3)

In the expression (3) the value k defines the modulus of the wave-vector,
Λ is the value of the vector referring to the initial (the largest for the case
ξ < 1 and vice versa) fractal object, θq is a set of angles between vectors
kq and Λ, respectively. The value ξ defines the scaling parameter. For
self-affine fractals having different symmetry it cannot be the same.

So, the basic problem from the mathematical point of view can be
formulated as follows. To consider the properties of the product (3) and
relate these properties with some types of the fractional integrals that are
considered (for example, in the book [1]) and accepted in the fractional
calculus as basic definitions.

As it follows from (3) the consideration of a simple self-similar 1D-object
in space is closely related to consideration of the mathematical properties
of the product

P (z) =
N∏

n=−N0

bnf(zξn). (4)

The self-similar properties of sums compared from fractal units are
considered recently in our paper [11]. The product (4) is closely related
to the structure-factor for simple fractals considered in [5] that indicates
the location of the fractal studied in 3D space. Here b and ξ determine
the scaling parameters, the variable z can accept real or complex values
(for example, it can coincide with dimensionless Laplace variable variable
(z = iω + s) or with the Fourier parameter (i(ka)) in space. Here we
consider more general case when the lower limit N0 does not coincide with
upper limit N . For distinctness we put (N0 < N). Making a substitution
z → zξ in (4), we obtain the following identity

P (zξ)=
N∏

n=−N0

bnf(zξn+1) =
1
b

N+1∏
n=−N0+1

bnf(zξn) = bN−|N0| f(zξN+1)
f(zξ−N0)

P (z).

(5)
If the microscopic function f(z) describing the dynamic process or ge-

ometrical location of an elementary fractal on mesoscale is finite for large
and small values of variable z (as it was supposed in [5, 6] and other papers
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[7, 8]) then at N =| N0 | and in the limit N � 1 one can obtain (for
distinctness we put ξ > 1) the following scaling equation

P (zξ) =
A

c0
P (z), f(z) = A, for | z � 1 |, and f(z) = c0, for | z � 1 |

(6)
with the well-known solution [5, 6]

P (z) = PRν(ln(z)) · zν , ν =
lnA/c0

ln(ξ)
,

PRν(ln(z) ± ln(ξ)) = PRν(lnz). (7)

Here the expression PRν(ln(z)) defines the unknown log-periodic func-
tion. The main question can be formulated as follows: how to find the
solution for product (4) satisfying the functional equation (6) when the
asymptotic behavior of the microscopic function f(z) is not finite or does
not exist? Mathematically this condition can be expressed as

lim
N�1

f(z) = { does not exist
∞ . (8)

The first row in (8) can be associated with condition (2). In order to
find the solution of the functional equation (6) at condition (8), we present
identity (5) in the form

L(zξ) = L(z) + Φ(zξn+1) − Φ(zξ−N0) + B, (9)
where

L(z) = ln[P (z)], B = (N − N0)ln(b),Φ(z) = ln[f(z)]. (10)

In the equations (8), (9) and below the value N0 is considered as a
positive value. At N = N0, B = 0. For distinctness we put ξ > 1. We
should note here that the case ξ < 1 is reproduced from expressions (7),
(9), (10) and expressions below (containing the parameter ξ > 1) by simple
replacement ξ → 1

ξ . From identity (9) by the replacement z → zξq−1, we
obtain easily

L(zξq)=L(zξq−1)+ Φ(zξN+q)−Φ(zξ−N0+q−1)+ B, q = 1, 2, ..., k − 1, k, ... .
(11)

Taking into account condition (8) we cannot eliminate the large term
Φ(zξN+q) from (11). So, in general the infinite set of equations (10) con-
tains two types of different variables L(zξq),Φ(zξN+q) (q = 1, 2, ..., k, ...)
and cannot be reduced to the system containing only one type of variable.
In order to close the infinite chain of equations (11) relatively unknown
function L(z) (or equally for the unknown microscopic function Φ(z)) we
make the reasonable supposition (it will be justified below numerically and
analytically)
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Φ(zξN+k) ∼=
k−1∑
q=1

wqΦ(zξN+q). (12)

Here {wq} (q = 1, 2, · · · , k − 1) determines a set of constants that
approximate the function figuring on the left-hand side. These constants
can be found numerically with the help of the linear-least square method
(LLSM). From the system of equations (11) we have

Φ(zξN+q) = L(zξq) − L(zξq−1) + Lmq − B, q = 1, 2, · · · , k − 1, (13)

Φ(zξ−N0+q−1) ∼= Lmq, for 1 � N0 	 N. (14)
Here we took into account the limit (6) describing approximately the

behavior of f (z ) at small values of the variable z. For q = k from (13) we
have

L(zξk−1) − Lmk + B + Φ(zξN+k) = L(zξk),
Φ(zξ−N0+k−1) ∼= Lmk, 1 � N0 	 N. (15)

Taking into account the approximate decoupling (12) and relationships
(13) we obtain

L(zξk) − L(zξk−1) + Lmk − B = Φ(zξN+k) ∼=
k−1∑
q=1

wqΦ(zξN+q)

=
k−1∑
q=1

wq[L(zξq) − L(zξq−1)] +
k−1∑
q=1

wq(Lmq − B). (16)

After some simple algebraic transformations of expression (16) we ob-
tain finally the closed functional equation with respect to the remaining
variable L(z)

L(zξk) = (1 + wk−1)L(zξk−1) +
k−2∑
q=1

(wq − wq+1)L(zξq) − w1L(z) + R,

R =
k−1∑

q
wq(Lmq − B) − (Lmk − B). (17)

So, the solutions of the functional equation (17) help to find new expres-
sions for the product (4) when the condition (8) is satisfied. The solutions
of (17) are closely related with the values of the roots of polynomial

P (λ) = λk − (1 + wk−1)λk−1 −
k−2∑
q=1

(wq − wq+1)λq − w1 = 0. (18)

If the roots of (18) are different, then the general solution of the func-
tional equation (17) can be presented in the form (see Sect. 6, Mathematical
Appendix)
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L(z) =
k∑

s=1

PRs(lnz) zνs + C(R). (19)

Here C (R) is a constant that is found by an arbitrary constant variation
method and the set of the power-law exponents νs(s = 1, 2, · · · , k) is defined
as

νs =
ln(λs)
ln(ξ)

(ξ 
 1). (20)

The set of PRs(ln(z)) from (19) determines the unknown log-periodic
functions. These functions can be decomposed into the infinite Fourier
series

PRs(lnz) = A
(s)
0 +

∞∑
k=1

[
Ac

(s)
k cos

(
2πk ln(z)

ln(ξ)

)
+ As

(s)
k sin

(
2πk ln(z)

ln(ξ)

)]
,

PRs(lnz ± ln(ξ)) = PRs(lnz), (21)

with period ln(ξ). The decomposition coefficients of the series (21) should
be found from initial or some a priori conditions (when the parameter ξ is
supposed to be known). When some root νs figuring in (20) accepts the
negative value, then (as it has been shown in [9]) it is necessary to replace
the root by its modulus value and the log-periodic function in (19) should be
replaced by some anti-periodic function having the following decomposition

PR
(a)
s (ln(z)) =

∞∑
k=1

[
Ac

(s)
k cos

(
πk ln(z)

ln(ξ)

)
+ As

(s)
k sin

(
πk ln(z)

ln(ξ)

)]
,

PR
(a)
s (ln(z) ± ln(ξ)) = −PR

(a)
s (ln(z)). (22)

As reminded above, the constant figuring in (19) is determined by the
arbitrary constant variation method and depends totally on the constant
value R from (17). If one of the roots of the polynomial (18) νg is degen-
erated, then the solution for this root is written in the form

Lg(z) =

[
g∑

r=1

PRr(ln(z))(ln(z))r−1

]
zνg , νg =

ln(λq)
ln(ξ)

, ξ > 1, (23)

where the value g determines the degree of degeneracy. Here, again the
unknown log-periodic functions entering into (23) are determined by de-
compositions (21) or (22). If we take into account relationship (10), then
one can obtain the solution for the product P(z). It is useful also to give the
solution of (17) for the case when a couple of the roots in (18) is complex-
conjugated,

ν = Re(ν) ± iIm(ν) =
ln(Reλ ± iImλ)

ln(ξ)
,
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L(z) = zRe(ν)

[
A0 +

∞∑
k=1

(
Ack cos( 2πk

ln(ξ) lnz + (Imν) lnz)
)]

+zRe(ν)

[ ∞∑
k=1

(
Ask sin( 2πk

ln(ξ) lnz + (Imν) lnz)
)]

. (24)

Here we want to demonstrate some general properties of the functional
equation (17) and its corresponding polynomial (18).

A direct test shows that the polynomial (18) has always the root λ = 1
and so it can be decomposed as

P (λ) = (λ − 1)
(
λk−1 − wk−1λ

k−2,− · · · ,−w1

)
. (25)

If the functions defined by relation (10)

f(zξN+q) = exp
(
Φ(zξN+q)

)
, q = 1, 2, · · · , k − 1, (26)

have negative values then from decoupling procedure (12) it follows

f(zξn+k) =
k−1∏
q=1

f(zξN+q)wq . (27)

Taking the imaginary part from both parts of (27) we have

iπ =
k−1∑
q=1

iπwq or
k−1∑
q=1

wq = 1. (28)

Condition (28) leads to the two-fold degeneracy of the root λ = 1 and
for this case instead of decomposition (25) we have

P (λ) = (λ − 1)2
(
λk−2 + ak−2λ

k−3 + · · · + a1

)
,

a1 = w1, a2 = w1 + w2, · · · , ak−2 = w1 + w2 + · · · + wk−2. (29)

Before to start considering some interesting example, it is instructive
to give the solution for some partial cases k=2, 3, 4. These cases admit
analytical solutions. As we will see below, these cases can be met frequently
in possible applications.

Case k = 2. Approximate decoupling (it follows from (11), w1 = 1)

f(zξN+2) ∼= f(zξN+1), or Φ(zξN+2) ∼= Φ(zξN+1). (30)

The functional equation

L(zξ2) − 2L(zξ) + L(z) = R. (31)

The desired polynomial and its roots

P (λ) = (λ − 1)2 = 0. (32)
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The general solution of the functional equation (31)

L(z) = PR1(lnz) + PR2(lnz)ln(z) + k2ln
2(z),

k2 = R
2ln2ξ

. (33)

Case k = 3. For this case we suppose that the following approximate
decoupling is satisfied

f(zξN+3) ∼= f(zξN+1)w1f(zξN+2)w2 . (34)

The functional equation

L(zξ3) − (1 + w2)L(zξ2) − (w1 − w2)L(zξ) + w1L(z) = R. (35)

The desired polynomial and its roots

P (λ) = (λ − 1)(λ2 − w2λ − w1) = 0, w1 + w2 �= 1,

λ1,2 = w2
2 ±√(w2

2 )2 + w1. (36)

The general solution of the functional equation (35) (w1 + w2 �= 1):

L(z) = PR0(lnz) + PR1(lnz)zν1 + PR2(lnz)zν2 + k1lnz,

ν1,2 =
ln(λ1,2)
ln(ξ)

, k1 =
R

ln(ξ)(1 − w1 − w2)
. (37)

The general solution of the functional equation (34) (w1 + w2 = 1):

P (λ) = (λ − 1)2(λ + w1) = 0,
L(z) = PR1(lnz) + PR2(lnz)ln(z) + PR

(a)
3 (lnz)zν3 + k2ln

2z,

ν3 =
ln(| w1 |)

lnξ
, k2 =

R

2ln2ξ(1 + w1)
. (38)

Case k = 4. We suppose that for this case the following approximate
decoupling is valid

f(zξN+4) ∼= f(zξN+1)w1f(zξN+2)w2f(zξN+3)w3 . (39)

The functional equation

L(zξ4) − (1 + w3)L(zξ3) − Σ2
q=1(wq − wq+1)L(zξq) + w1L(z) = R. (40)

The desired polynomial and its roots

P (λ) = (λ − 1)
(
λ3 − w3λ

2 − w2λ − w1

)
= 0. w1 + w2 + w3 �= 1. (41)

The general solution of the functional equation (39) (w1 +w2 +w3 �= 1)

L(z) = PR0(lnz) +
∑3

s=1 PRs(lnz)zνs + k1ln(z),

ν1,2,3 =
lnλ1,2,3

lnξ
, k1 =

R

lnξ(1 − w1 − w2 − w3)
. (42)
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The general solution of the functional equation (40) (w1 +w2 +w3 = 1)

P (λ) = (λ − 1)2
(
λ2 + (w1 + w2)λ + w1

)
= 0,

L(z) = PR1(lnz) + PR2(lnz)ln(z) + Σ4
s=3PRs(lnz)zνs + k2ln

2z,

k2 =
R

2ln2ξ(1 + 2w1 + w2)
. (43)

In the expressions given above the log-periodic functions are defined
by decompositions (21) and (22) for periodic and anti-periodic cases, cor-
respondingly. The desired expressions for the product P (z) are obtained
from the solutions for L(z ) with the use of relationship (10). Solutions for
the case ξ < 1 are obtained from these expressions by simple replacement
ξ → 1

ξ . We want to stress here the principle difference of appearance of the
power-law exponents in expressions (7), (37) and (42) and a formal absence
of the power-law behavior in expression (33). Besides this difference, we
obtain the mixed dependence between power-law and logarithmic behavior
in expressions (38) and (43).

Before it was accepted to consider that the power-law exponent is
formed from the limiting values of the microscopic function (expression
(7)). In the new expressions derived in this paper we can mark at least two
new reasons of appearance of the power-law exponent when the condition
(8) is fulfilled.

For the nondegenerate case Σk−1
q=1wq �= 1 the power-law exponent is

formed from the value k1 figuring in expressions (37), (42) while for the
degenerate case Σk−1

q=1wq = 1 (expressions (33), (38) and (43)) in formation
of the power-law exponent the constant A0 from (21) plays the essential
role. In these two new cases marked above the power-law exponent does not
coincide with the fractal dimension of the geometrical object considered.
In the conclusion of this section we want to give some additional arguments
and determine some conditions justifying the decoupling supposition (12).
Definitely, for each concrete form of the fractal considered the limits of ap-
plicability should be considered independently. The approximate relation-
ship (12) represents itself the functional equation for the function Φ(z). If
N >> 1, then from this expression we obtain approximately the desired
solution

Φ(zξN ) ∼=
(

k−1∑
q=1

wq

)
Φ(zξN ),

Φ(z) ∼= PR0(lnz),
k−1∑
q=1

wq = 1. (44)
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Here PR0(lnz) is defined by decomposition (21). So, the decoupling
(12) can be realized with high accuracy, if, in turn, the function Φ(z) can
be approximated and finally replaced with high accuracy by log-periodic
function determined by decomposition (21). If condition (44) is realized
then (because of log-periodic properties of (21)) the condition (30) referring
to Case 2 will be realized automatically. But we stress again that for each
specific type of fractal condition (44) should be more accurately tested in
order to find the limits of applicability.

3. Numerical test for Cantor set with M bars

As an example for testing of decoupling condition (12), we consider the
classical Cantor set containing M bars in each stage of its generation. As it
has been shown in the book [5] the structure-factor (defined above by the
general expression (3) for the Cantor set containing M bars and located
along OX axis is expressed as

PN1(x) =
N−1∏

n=−N1

Re

[
1 − exp(ixMξn)

M(1 − exp(ixξn))

]
=

N1∏
n=−N1

fM(xξn),

x = ka, ξ > 1,ΦM (x) = ln(| fM(x) |), LN1(x) = ln(| PN1(x) |). (45)

For concrete calculations of this expression and testing the supposition
(12) we chose the following values of the parameters entering into (45):

ξ = 1.5, N1 = 50, x ∈ [0, 1], M = 2, 3, 5. (46)

The discrete number of points determining the interval of the current
variable x was limited by three values of N = 50, 150 and 500. Calculations
show that it is much convenient to test the value LN1(x) = ln(PN1(x)). The
typical behavior of this function for M = 5, N = 150 is shown on Figure 1.
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Figure 1. Typical behavior of the function LN1(x1) =
ln(PN1(x)) for M = 5 defined by expression (44). The val-
ues of parameters are collected in (45). Number of points
N = 150. Interval of the variable x is [0.05-5.0].

All test calculations are divided into two steps:
Step 1. The verification of the supposition (11) (or equivalently the ac-

curacy of the decomposition (44)) and calculation of the fitting parameters
{wq}.

Step 2. The final fitting of one of the functions (33), (37), (38), (42),
(43) to the function LN1(x) that depends essentially on the number of
parameters {wq}.

These calculations were realized for different number of Cantor bars
having M = 2, 3, 5 and number of points N = 50, 150 and 500. The
results of the verification of hypothesis (44) for the function ΦM (x) (M =
2, 3, 5) are illustrated by Figures 2, 3 and 4 for N=50.

The value of the cutoff parameter K determining the upper limit of
decomposition (21) and the value of the relative error (defined below by
(50)) for different M and N are collected in Table 1.

The analysis shows that for relatively large values of N1 >> 1 the
supposition (43) is realized with relatively high accuracy (the value of the
relative cannot exceed 1 (per/cent) or can be even less) for all tested N
= 50, 150 and 500. The value of the constant R entering into expression
(32) and calculated from (16) equals zero. So, the fitting function for the
fractal object as the Cantor set is reduced (because of expression (44)) to
the simplest Case k=2,

L(z) = PR1(lnz) + PR2(lnz) lnz. (47)
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Figure 2. The verification of the hypothesis (43) for M = 2
(N = 50). The points correspond to the function Φ2(x) and
solid line corresponds to fit of log-periodic function from
(20). In the small plot below the distribution of the ampli-
tudes of the corresponding log-periodic function is shown.

Figure 3. The verification of the hypothesis (43) for M = 3
(N = 50). The points correspond to the function Φ3(x)
and solid line corresponds to fit of the log-periodic function
from (20). In the small plot above the distribution of the
amplitudes of the log-periodic function for this case is
shown.

Taking into account the relationships (21) it is convenient to present
function (47) for the fitting purposes in the form

Lf(x) = A
(2)
0 ln(x) +

K∑
k=1

Ac
(2)
k Clk(lnx) +

K∑
k=1

As
(2)
k Slk(lnx)

+A
(1)
0 +

K∑
k=1

Ac
(1)
k Ck(ln(x)) +

K∑
k=1

As
(1)
k Sk(ln(x)),
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Figure 4. The verification of the hypothesis (43) for M =
5. The points correspond to the function Φ5(x) and solid
line corresponds to fit of the log-periodic function from (20).
In the small plot above the distribution of the amplitudes of
the log-periodic function for this case is shown. The values
of the relative error for different M = 2, 3, 5 and N = 50 is
collected in Table 1. For other values of N = 150, 500 the
fit looks similar and so it is not shown. The values of the
relative error for all these cases are collected in Table 1.

Table 1. The value of the relative error calculated in test-
ing of the hypothesis (44) Φ ∼= PR0(lnz). See the set of
Figures 2, 3 and 4 for details.
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Ck(ln(x)) = cos(2πk
lnξ ln(x)), Sk(ln(x)) = sin(2πk

lnξ ln(x)),

Clk(ln(x)) = (lnx) cos(2πk
lnξ ln(x)), Slk(ln(x)) = (lnx) sin(2πk

lnξ ln(x)). (48)

The function (47) contains 2+4K fitting parameters. The cutoff pa-
rameter K is determined by the value of the relative error

RelErr(%) =
(

stdev(LN1(x) − Lf(x))
mean | LN1(x) |

)
100%. (49)

Here Lf(x) implies the corresponding fitting function, the symbols
stdev(f(x)) and mean (f(x)) determine the conventional value of the stan-
dard deviation and expectation value, respectively. The results of the fitting
of the function LN1(x) = ln(PN1) from (45) to function (48) are illustrated
by Figures 5, 6, 7, 8 for M = 2 and M = 5, correspondingly. The re-
sults for M = 3 are not shown because they are similar. Analysis of these
figures shows that for the accurate fitting the relatively large number of
the fitting parameters entering into (48) is required. The accuracy of the
fitting is decreased with increasing of the value of N. The calculated values
of A

(2)
0 , RelErr(%) at given N(K ) are collected in Table 2. This simple

test shows that decoupling supposition (12) (which is justified by the fit
of expression (44)) to ΦM (x) is very reasonable and can be applied for
establishing the desired relationships between non-integer operators and
fractals averaged with smooth functions in space. These results give new
understanding of the fractal dimension and additional evidences that the
relationship between the power-law exponent figuring in non-integer oper-
ator and power-law exponents appearing in Cases 2, 3, 4 considered above
is not simple as it was supposed earlier.

4. Possible generalizations

How to generalize the results obtained in the previous section for more
complex fractals? For example, if the Cantor set with M = 2 is ob-
tained with the help of rotation operation realized along OZ-axis, then the
structure-factor for this fractal having a continuous cylindrical symmetry
is expressed as [5],

PN1(x) =
N1∏

n=−N1

(
1
2(1 + J0(xξn))

)
, x =

√
k2

x + k2
y λmin (1 − ξ−1),

ξ > 1, η ∈ [λmin,Λmax]LN1(x) = ln(PN1(x)). (50)

Here J0(x) is the classical Bessel function of the zeroth order. The scal-
ing parameter ξ (it is equaled to 3/2 for numerical calculations) is counted
off from the minimal scale λmin.
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Figure 5. Verification of hypothesis (46) for M = 2 and
N = 50. The function LN1(x) from (44) is presented by
crossed points. The fitting function (47) is presented by
solid line. The distribution of amplitudes of the log-periodic
function is shown above in the small frame.

Figure 6. Verification of hypothesis (46) for M = 3, 5 and
N = 50. The functions LN1(x) from (44) are presented by
crossed triangles and black rhombs, correspondingly. The
fitting functions (47) are presented by solid lines. The distri-
butions of amplitudes for these cases are not shown because
they look similar to M = 2.

The similar test described above and applied to product (50) shows
that Case k=2 is valid for this case also. So, for the fitting of the func-
tion LN1(x) = ln(P1(x)) the hypothesis (46) is applicable again. Figure
9 demonstrates the results of the fitting of function (48) to LN1(x) from
(50)) for N=150 and K= 10. We should note here that in opposite to the
first example the Bessel function J0(x) entering to the product (50) has the
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Figure 7. Verification of hypothesis (46) for M = 2, 5 and
N = 150. The functions LN1(x) from (44) are presented by
crossed circles and grey stars, correspondingly. The fitting
functions (47) are presented by solid lines. The distributions
of amplitudes are not shown because they look similar to
M = 2. Other parameters are collected in Table 2.

Figure 8. Verification of hypothesis (46) for M = 2, 5 and
N = 500. The functions LN1(x) from (44) are presented
by dark circles and crossed rhombs, correspondingly. The
fitting functions (47) are presented by yellow and blue lines.
The fit of the Cantor set for M=3 and distributions of am-
plitudes are not shown because they look similar to M = 2.
Other parameters are collected in Table 2.

finite limits for both cases

J0(z) = 0, for z � 1, and J0(0) = 1. (51)

It means that the solution for (50) has the form (6) with power-law exponent
ν = ln1/2

lnξ . In order to compare the known solution (7) with solution (33),
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Table 2. The value of the relative error calculated in test-
ing of the hypothesis (47) and (48). See the set of Figures
5, 6, 7 and 8.

Figure 9. The results of the fitting of the function LN1(x)
from (49) to hypothesis (47). The relative error defined by
expression (49) equals 1.233%. ξ = 3/2.

we present the last one in the form

PN1(z) = PRν(lnz)zA0+RP2(lnz),

RP2(lnz) =
∞∑

k=1

[
Ack cos(2πk

lnξ lnz) + Ask sin(2πk
lnξ lnz)

]
. (52)
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Table 3. The comparison of the value of the fractal dimen-
sion ν = ln(1/2)

ln(3/2) = −1.70947... with value A0 at different
values of K and N . See expression (51). The closest value
to the desired dimension ν is bolded.

From solution (52) it follows that the new solution (32) creates also
the log-periodic corrections to the power-law exponent and the constant

A0 should coincide with fractal dimension ν = ln 1
2

ln(ξ) . Test calculations
realized presumably for N=150 and different values of the cutoff parameter
K confirm this relationship. The results of comparison are depicted in
Table 3. So, this simple test leads us to one important conclusion: if the
microscopic function f(z) from (3) has finite limits for small and large
values of z, then the simplest solution (32) allows to find the log-periodic
corrections to the fractal dimension coinciding with the constant A0. This
statement is violated when condition (8) is valid.

To conclude this section, let us consider the Cantor set located on the
plane XOY and concentrated along two axes. The structure-factor for this
case is expressed as [5],

P (z1, z2) =
N1∏

n=−N1

(
cos(z1ξ

n) + cos(z2ξ
n)

2

)
,

z1 = kxa, z2 = kyb. (53)

A direct application of the approach developed above is impossible be-
cause the structure of (53) does not coincide with the structure of the initial
product (4). In order to apply this approach, it is necessary to factorize
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the product (53) and reduce it to a new set of variables. For (53) it can be
done easily and the desired product accepts the form

P (z1, z2) =
N1∏

n=−N1

(
cos(z1+z2

2 ξn) cos(z1−z2
2 ξn)

)

=
N1∏

n=−N1

(
cos(z1+z2

2 ξn)
) N1∏

n=−N1

(
cos(z1−z2

2 ξn)
)

. (54)

Now it becomes obvious that this approach can be applied for each
product figuring in (54) in separate. From this example one important con-
clusion follows. If the general structure-factor (product) containing many
variables and expressed in the form of expression (3) can be factorized and
presented in the form

P (z1, z2, · · · , zr) =
N1∏

n=−N1

f(z1ξ
n
1 )

N1∏
n=−N1

f(z2ξ
n
2 ) · · ·

N1∏
n=−N1

f(zrξ
n
r ), (55)

then one can apply the approach developed above to each product figuring
in (55).

5. Results and discussions

The approach presented in this paper helps to find new relationships
between the procedure of averaging of smooth functions over fractal sets
and spatial non-integer integrals. As one can see from the results presented
in this paper, this relationship is not simple. If condition (8) is satisfied,
then the desired relationship between spatial non-integer integrals that are
derived presumably from the structure-factor of type (3) is becoming ques-
tionable. In this case there is no direct relationship between the fractal
dimension and power-law exponent figuring in the fractional integral. Even
in cases when condition (8) is not satisfied, the new approach helps to find
the log-periodic corrections (52) for the power-law exponent defining the
fractal dimension. Nowadays, many researches try to postulate simply the
desired relationship between the fractal structure and the fractional integral
and this sincere desire in establishing of this relationship can be violated.
This paper can be considered as a specific warning in attempts to impose
simply this “obvious” relationship between fractals and non-integer order
integrals in space. In next papers we will show that each fractal can gen-
erate its specific fractional integral. It is necessary to stress also that the
desired original containing convolution of the spatial integral with smooth
function in r-space can be obtained from the corresponding Fourier image
in k-space by means of expression (3) only approximately. Finishing this
section, we want to make two remarks.
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Remark R1. The first remark is associated with the observation that
the linear functional equation (17) is not unique. Other functional equa-
tions connecting different P (zξk) are also possible. They can be obtained
from any decoupling relationship

f(zξN+k) = F
(
f(zξN+k−1), f(zξN+k−2), · · · , f(zξN+1)

)
, (56)

where F (z1, z2, · · · , zs) determines an arbitrary decoupling function of many
variables. Of course, in each specific case the selection of the decoupling
function F (z1, z2, · · · , zs) should be justified, explained clearly and tested
numerically.

Remark R2. The second remark contains the answer for the following
question: are there distributions (which are widely used in the mathemat-
ical statistics) that can be derived from the product (4) having self-similar
properties? At least, one can show three distributions that can be derived
from the corresponding functional equations:

(a) Log-normal distribution:
Let us suppose that instead of condition (5) and functional equation

(6) we have the following behavior of the microscopic function f(z):

P (zξ) = bN−|N0| f(zξN+1)

f(zξ−|N0|)P (z), ξ > 1,

f(z) = Az−α + · · · (α > 0), for z � 1,
f(z) = c0 + c1z

β · · · (β > 0), for z � 1. (57)

Taking the natural logarithm from (57) we obtain the following func-
tional equation

L(zξ) = L(z) + B − αln(z),
B = (N − N0)lnb + ln A

c0
. (58)

As it was done above in (10), in expression (58) we consider N0 as a
positive value (N0 > 0). The solution of the functional equation (58) has
the form

L(zξ) = PR0(ln(z)) + a1lnz + a2ln
2z,

a1 = α
2 + B

lnξ , a2 = − α
2lnξ (α > 0, ξ > 1). (59)

If in expression (57) the constant c0 = 0, then the solution (59) keeps
the same form but (in accordance with (57)) it is necessary to make the
replacements c0 → c1 in (58) and α → α + β in (59), correspondingly.
Taking into account the fact that any smooth function taken from the log-
periodic function does not change the property of periodicity one can write
the solution for P(z) from (59) in the form

P (z) = PR0(lnz) exp(a1lnz + a2ln
2z). (60)
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Here the log-periodic function is defined again by relationship (21). In
particular case, when PR0(lnz) = A0 the last expression is reduced to the
conventional log-normal distribution.

(b) The χ2-distribution:
If the microscopic function f(z) has asymptotic behavior of the type

f(z) = A exp(−γz) + · · · (γ > 0), for z � 1, (61)

then the functional equation for L(z) takes the form

L(zξ) = L(z) + B − γz. (62)

Using again an arbitrary constant variation method, it is easy to find the
solution for P (z). It is expressed as

P (z) = PR0ln(z)za2 exp(−a1z), a1 =
γ

ξ − 1
, a2 =

B

lnξ
(a1,2 > 0). (63)

In the particular case, when PR0(lnz) = A0, we obtain from (63) the well-
known χ2-distribution.

(c) The β-distribution:
In the papers [9, 10] it has been proved that the cumulative inte-

gral for the strongly-correlated detrended sequences can be described by
β-distribution. How to find the fractal (scaling properties) of any two ran-
dom sequences compared if their β-distributions are remained invariant
relatively some linear transformations?

x
′
= ax + b. (64)

If we subject the initial β-distribution to the linear transformation then
one obtains

y = A(x − x0)α(xN − x)β + B → A(ax − (x0 − b))α
′
(xN − b − ax)β

′
+ B̃

= Ã(x − x̃0)α(x̃N − x)β + B̃, (65)

where

Ã = Aaa
′
+β

′
, x̃0 =

x0 − b

a
, x̃N =

xN − b

a
, B̃ = B. (66)

As one can see from (65) the β-distribution keeps its invariant properties
relatively linear transformations if the power-law exponents of two distri-
butions compared satisfy to the condition

α + β = α
′
+ β

′
= const = inv. (67)

If the power-law exponents and the final points of location of two distribu-
tion are known from the fitting procedure (the linear fit of this function is
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shown in [10]) then the unknown values of linear transformation (a, b) from
(64) can be found easily from the relationships (66)

a =
xn − x0

x̃N − x̃0
, b =

x0x̃N − x̃0xN

x̃N − x̃0
. (68)

So, we obtain new possibilities for comparison of two random sequences
having scaling properties in terms of the invariant properties of β-distribution.
If we present this distribution in another form

P (z1, z2) = Azα
1 zβ

2 , z1 = x − x0, z2 = xN − x, (69)

then one can obtain easily the scaling equation relatively two variables for
(68). It has the following form

L(z1ξ − z2ξ) − L(z1ξ, z2) − L(z1, z2ξ) + L(z1, z2) = 0,
L(z1, z2) = ln[P (z1, z2)], z1 + z2 = xn − x = const. (70)

So, the functional equations formally containing two variables can be
used for investigation of the scaling properties of different fractal systems
that cannot be described only in the frame of approach developed above.
In conclusion, we want to stress the basic results of the suggested approach:

1. This approach is applicable only in the cases when the structure-
factor can be factorized and expressed in the form (55). For other cases,
some other approaches can be necessary to apply.

2. This approach is applicable when a current generation of the fractal
considered can be expressed in the form of a set of star-vectors in k-space.
Not all fractals can be expressed in this manner. For random fractals, for
example, it is necessary to develop other methods to consider them, in order
to establish the desired relationship between some class of fractals and the
conventional fractional integrals in space.

3. From this consideration it follows also that the fractal dimension can-
not coincide with the power-law exponent figuring in the fractional integral.
The log-periodic corrections (expressions (21) and (22)) that follow from
the solutions of the functional equations are also possible. They appear in
the case when the scaling parameter ξ is distributed over the denumerable
set.

6. Mathematical Appendix

The solutions of the functional equation (17).
(See also some results obtained in paper [9]).
1. The solutions of this functional equation are closely related to the

well-known solutions of the difference equation of the k-th order with con-
stant coefficients

Yk = ak−1Yk−1 + ak−2Yk−2 + · · · + a0Y0. (71)
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The solution of this equation (when all roots are different) can be written
as

Yk = K1λ
k
1 + · · · + Kkλ

k
k. (72)

If one of the roots is degenerate, then the solution is written as (the
integer value g defines the order of degeneracy)

Yk =

[
g∑

s=1

(Csk
s−1)

]
λk

g . (73)

For both cases the desired roots are found from the polynomial

P (λ) = λk − ak−1λ
k−1 − ak−1λ

k−2 − · · · − a0 = 0. (74)

In complete analogy with these solutions, one can write the general
solution of the functional equation (17) for the nondegenerate case (making
the formal replacement Ks → PRs(lnz), k → ln(z)/ln(ξ),

L(z) =
k∑

s=1
PRs(lnz)(λs)

lnz
lnξ =

k∑
s=1

PRs(lnz) exp
(

lnλs
lnξ lnz

)
=

k∑
s=1

PRs(lnz)zνs , νs =
lnλs

lnξ
, (75)

and for the case, when one of the roots is g-fold degenerated:

Lg(z) =
[
Σg

r=1PRr(lnz)(lnz)r−1
]
zνg , νg =

lnλq

lnξ
. (76)

In expressions (75) and (76) the constants Ks are replaced by the log-
periodic functions PRr(lnz ± lnξ) = PRr(lnz), which can be presented by
the following decomposition to the Fourier series

PRr(z) = Ar
0 +

∞∑
k=1

[
Ac

(r)
k cos

(
2πk lnz

lnξ

)
+ As

(r)
k sin

(
2πk lnz

lnξ

)]
,

r = 1, 2, . . . , k, . . . . (77)

If one of the roots in (76) is negative, then this root is replaced by its
modulus value and the periodic function can be changed for anti-periodic
function having the following decomposition

PR
(a)
r (z) =

∞∑
k=1

[
Ac

(r)
k cos

(
πk lnz

lnξ

)
+ As

(r)
k sin

(
πk lnz

lnξ

)]
,

r = 1, 2, . . . , k, PR
(a)
r (lnz ± klnξ) = (−1)kPR

(a)
r (lnz). (78)

The solution for the complex-conjugated roots is given by expression (22).
Other similar functional equations that are reduced to this form are con-
sidered in paper [9].
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