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RESEARCH PAPER

NEW SPECTRAL TECHNIQUES FOR SYSTEMS

OF FRACTIONAL DIFFERENTIAL EQUATIONS

USING FRACTIONAL-ORDER GENERALIZED

LAGUERRE ORTHOGONAL FUNCTIONS

Ali H. Bhrawy 1,2, Yahia A. Alhamed 3,
Dumitru Baleanu 3,4, Abdulrahim A. Al-Zahrani 3

Abstract

Fractional-order generalized Laguerre functions (FGLFs) are proposed
depends on the definition of generalized Laguerre polynomials. In addition,
we derive a new formula expressing explicitly any Caputo fractional-order
derivatives of FGLFs in terms of FGLFs themselves. We also propose
a fractional-order generalized Laguerre tau technique in conjunction with
the derived fractional-order derivative formula of FGLFs for solving Caputo
type fractional differential equations (FDEs) of order ν (0 < ν < 1). The
fractional-order generalized Laguerre pseudo-spectral approximation is in-
vestigated for solving nonlinear initial value problem of fractional order ν.
The extension of the fractional-order generalized Laguerre pseudo-spectral
method is given to solve systems of FDEs. We present the advantages of
using the spectral schemes based on FGLFs and compare them with other
methods. Several numerical example are implemented for FDEs and sys-
tems of FDEs including linear and nonlinear terms. We demonstrate the
high accuracy and the efficiency of the proposed techniques.
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1. Introduction

Fractional calculus is a topic that has challenged researchers in the first
decade of this century and is certain to continue to do so in the next decades
[17, 27, 6, 10, 20], due to their useful applications in many fields of science.
Indeed, we may observe several applications in electrochemistry, viscoelas-
ticity, electromagnetic, control, plasma physics, porous media, fluctuating
environments, dynamical processes and so on. In consequence, fractional
differential equations are gaining much attention from the researchers. For
some recent developments on this subject, see [19, 26, 11, 35, 34, 31, 33].

In the recent years, there has been a great interest to present efficient
numerical methods to find more accurate approximate solution of fractional
differential equations. As is well known, one of the most accurate meth-
ods of discretization for solving numerous differential equations is spec-
tral method. Spectral method employs linear combination from orthogonal
polynomials as basis functions and so often provides accurate approximate
solutions [9, 7, 13]. The spectral methods based on orthogonal systems like
Jacobi polynomials and their special cases are only available for bounded
domains for approximation of FDEs; see [14, 15, 8]. Indeed, several prob-
lems in finance, plasma physics, porous media, dynamical processes and
engineering are set on unbounded domains.

In the last few years, there has been a growing interest in the use of
spectral method for numerical treatments of FDEs in bounded domains.
Doha et al. [16] introduced the fractional derivatives of Jacobi operational
matrix which was applied in combination with the Jacobi tau scheme for
solving linear multi-term FDEs. The authors of [28] presented a Legendre
tau scheme combined with the operational matrix of Legendre polynomials
for the numerical solution of multi-term FDEs. Recently, Kazem et al.
[25] define a new orthogonal functions based on Legendre polynomials to
obtain an efficient spectral technique for multi-term FDEs, the authors
of [32] extended this definition and presented the operational matrix of
fractional derivative and integration for such functions to construct a new
tau technique for solving two-dimensional FDEs. Moreover, the authors
of [1] adopted the operational matrix of fractional derivative for Legendre
polynomials which is applied with tau method for solving a class of fuzzy
FDEs. Indeed, with a few noticeable exceptions, a little work was done
to use spectral methods in unbounded domains to solve such important
classes of FDEs.
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For fractional differential equations in unbounded domains. The opera-
tion matrices of fractional derivatives and fractional integrals of generalized
Laguerre polynomials were investigated for solving multi-term FDEs on a
semi-infinite interval, see [5, 2]. The generalized Laguerre spectral tau and
collocation techniques were given in [2] to solve linear and nonlinear FDEs
on the half line. These spectral techniques were developed and generalized
by using the modified generalized Laguerre polynomials in [3, 4]. Indeed,
the authors of [22, 22] presented a Caputo fractional extension of the clas-
sical Laguerre polynomials and proposed a new C-Laguerre functions.

The objective of this manuscript is to define new orthogonal functions
on the half line namely, fractional-order generalized Laguerre functions
(FGLFs) based on the definition of the generalized Laguerre polynomi-
als and then the Caputo fractional-order derivatives of FGLFs in terms of
FGLFs themselves is stated and proved. We, therefore, propose a direct
solution technique for solving linear FDEs of fractional order ν (0 < ν < 1)
using the fractional-order generalized Laguerre tau (FGLT) approximation.

We also aim to propose a new fractional-order generalized Laguerre
collocation (FGLC) method, for solving fractional initial value problem of
fractional order ν (0 < ν < 1) with nonlinear terms, in which the the non-
linear FDE is collocated at the N zeros of the new function which defined
on the interval Λ = (0,∞). The resulting algebraic equations together with
one algebraic equation resulted from treating the initial condition constitute
(N + 1) nonlinear algebraic equations which can then be solved by imple-
menting Newton’s iterative technique to find the unknown fractional-order
generalized Laguerre functions coefficients. We extend the application of
FGLC method based on these functions to solve a system of FDEs with
fractional orders less than 1. Several illustrative examples are implemented
to confirm the high accuracy and effectiveness of the present method for
solving FDES of fractional order ν (0 < ν < 1).

What remains of this paper is organized as follows: We start by pre-
senting some definitions of the fractional calculus. In Section 3, we define
the fractional-order generalized Laguerre functions. Section 4 is devoted to
derive the main theorem of the paper which provides explicitly a new for-
mula that expresses the fractional-order derivatives of the fractional-order
generalized Laguerre functions in terms of themselves. In Section 5, we
apply the spectral methods based on FGLFs for solving FDEs and systems
of FDEs including linear and nonlinear terms of fractional order less than
1. Several examples to illustrate the main ideas of this work are presented
in Section 6.
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2. Preliminaries and notations

In this section, we give some basic definitions and properties of frac-
tional calculus theory which are further used in this article.

Definition 2.1. The Riemann-Liouville fractional integral operator
of order ν (ν ≥ 0) is defined as

Jνf(x) =
1

Γ(ν)

∫ x

0
(x− t)ν−1f(t)dt, ν > 0, x > 0,

J0f(x) =f(x).

(2.1)

Definition 2.2. The Riemann-Liouville fractional derivatives of order
ν and the Caputo fractional derivatives of order ν are defined as

Dνf(x) =Jm−νDmf(x) =
1

Γ(m− ν)

∫ x

0
(x− t)m−ν−1 dm

dtm
f(t)dt,

m− 1 < ν ≤ m, x > 0,
(2.2)

where Dm is mth order differential operator.

The Caputo fractional derivative operator satisfies

DνC = 0, (C is a constant), (2.3)

Dνxβ =

⎧⎪⎪⎨
⎪⎪⎩

0, for β ∈ N0 and β < �ν�,
Γ(β + 1)

Γ(β + 1− ν)
xβ−ν , for β ∈ N0 and β ≥ �ν�

or β 	∈ N and β > 
ν�,
(2.4)

where �ν� and 
ν� are the ceiling and floor functions respectively, while
N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}.

The Caputo’s fractional differentiation is a linear operation,

Dν(λf(x) + μg(x)) = λDνf(x) + μDνg(x), (2.5)

where λ and μ are constants.

3. Fractional-order generalized Laguerre functions

We recall below some relevant properties of the generalized Laguerre
polynomials (Szegö [29] and Funaro [18]). Let Λ = (0,∞) and w(α)(x) =
xαe−x be a weight function on Λ in the usual sense. Define

L2
w(α)(Λ) = {v | v is measurable on Λ and ||v||w(α) < ∞},
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equipped with the following inner product and norm

(u, v)w(α) =

∫
Λ
u(x) v(x) w(α)(x) dx, ||v||w(α) = (u, v)

1
2

w(α) .

Next, let L
(α)
i (x) be the generalized Laguerre polynomials of degree i.

We know from [29] that for α > −1,

L
(α)
i+1(x) =

1

i+ 1
[(2i + α+ 1− x)L

(α)
i (x)− (i+ α)L

(α)
i−1(x)], i = 1, 2, . . . ,

(3.1)
where L

(α)
0 (x) = 1 and L

(α)
1 (x) = 1 + α− x.

The set of generalized Laguerre polynomials is the L2
w(α)(Λ)-orthogonal

system, namely ∫ ∞

0
L
(α)
j (x)L

(α)
k (x)w(α)(x)dx = hkδjk, (3.2)

where δjk is the Kronecker symbol and hk =
Γ(k + α+ 1)

k!
.

The generalized Laguerre polynomials of degree i on the interval Λ, are
given by [2]

L
(α)
i (x) =

i∑
k=0

(−1)k
Γ(i+ α+ 1)

Γ(k + α+ 1) (i− k)! k!
xk, i = 0, 1, . . . (3.3)

The special value

DqL
(α)
i (0) = (−1)q

i−q∑
j=0

(i− j − 1)!

(q − 1)!(i − j − q)!
L
(α)
j (0), i � q, (3.4)

where L
(α)
j (0) =

Γ(j + α+ 1)

Γ(α+ 1)j!
, will be of important use later.

We define a new “fractional” orthogonal functions based on the gen-
eralized Laguerre polynomials to obtain the solution of some FDEs more
simply and efficiently.

The fractional-order generalized Laguerre functions (FGLFs) can be de-
fined by introducing the change of variable t = xλ and λ > 0 on generalized

Laguerre polynomials. Let the FGLFs L
(α)
i (xλ) be denoted by L

(α,λ)
i (x),

by using (3.1) L
(α,λ)
i (x) may be obtained from the recurrence relation

L
(α,λ)
i+1 (x)=

1

i+ 1
[(2i + α+ 1− xλ)L

(α,λ)
i (x)−(i+α)L

(α,λ)
i−1 (x)], i = 1, 2, . . . ,

(3.5)
with L

(α,λ)
0 (x) = 1 and L

(α,λ)
1 (x) = 1 + α− xλ.

It is clear that the analytic form of L
(α,λ)
i (x) of fractional degree iλ is:
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L
(α,λ)
i (x) =

i∑
k=0

(−1)k
Γ(i+ α+ 1)

Γ(k + α+ 1) (i− k)! k!
xλk, i = 0, 1, . . . (3.6)

Lemma 3.1. The set of fractional-order generalized Laguerre functions
is a L2

w(α,λ)(Λ)-orthogonal system,∫ ∞

0
L
(α,λ)
j (x)L

(α,λ)
k (x)w(α,λ)(x)dx = hk, (3.7)

where w(α,λ)(x) = λ x(α+1)λ−1e−xλ
and hk =

⎧⎨
⎩
Γ(k + α+ 1)

k!
, j = k,

0, j 	= k.

P r o o f. The proof of this lemma can be accomplished directly by
using the definition of FGLFs and the orthogonality condition of generalized
Laguerre polynomials.

A function u(x) ∈ L2
w(α,λ)(Λ) may be expressed in terms of fractional-

order generalized Laguerre functions as

u(x) =

∞∑
j=0

ajL
(α,λ)
j (x), (3.8)

and the coefficients aj are obtained from

ak =
1

hk

∫ ∞

0
u(x)L

(α,λ)
k (x)w(α,λ)(x)dx, k = 0, 1, 2, · · · . (3.9)

In particular applications, only the first (N+1)-terms fractional-order gen-
eralized Laguerre functions are considered. Then we have

uN (x) =
N∑
j=0

ajL
(α,λ)
j (x). (3.10)

Now, we construct the fractional-order generalized Laguerre-Gauss quad-
ratures rule. We may have the privilege of using the generalized Laguerre-

Gauss quadrature rule. We denote by x
(α)
N,j , 0 � j � N, the nodes of

the generalized Laguerre-Gauss interpolation on the interval Λ. Their cor-

responding Christoffel numbers are ω
(α)
N,j , 0 � j � N. The nodes of the

fractional-order generalized Laguerre-Gauss interpolation on the interval

Λ are the zeros of L
(α,λ)
N+1 (x), which we denote by x

(α,λ)
N,j , 0 � j � N.

Clearly x
(α,λ)
N,j = (x

(α)
N,j)

1
λ , and their corresponding Christoffel numbers are

ω
(α,λ)
N,j , 0 � j � N ,



NEW SPECTRAL TECHNIQUES FOR SYSTEMS . . . 1143

∫
Λ
φ(x)w(α,λ)(x)dx =

∫
Λ
φ(x

1
λ )w(α)(x)dx =

N∑
j=0

ω
(α)
N,jφ((x

(α)
N,j)

1
λ )

=

N∑
j=0

ω
(α,λ)
N,j φ(x

(α,λ)
N,j ),

(3.11)

and from the previous relation, we have

ω
(α,λ)
N,j = − Γ(i+ α+ 1)

(i+ 1)!L
(α,λ)
i (x

(α,λ)
N,j )∂xL

(α,λ)
i+1 (x

(α,λ)
N,j )

=
Γ(i+ α+ 1) x

(α,λ)
N,j

(i+ α+ 1)(i+ 1)![L
(α,λ)
i (x

(α,λ)
N,j )]2

, 0 ≤ j ≤ i.

(3.12)

4. The fractional derivatives of FGLFs (L
(α,λ)
i (x))

The main objective of this section is to prove the following theorem
for the fractional derivatives of the fractional-order generalized Laguerre
functions. This theorem will be of fundamental importance in what follows.

Theorem 4.1. The fractional derivative of order ν, 0 < ν < 1 in
the Caputo sense for the fractional-order generalized Laguerre functions is
given by

DνL
(α,λ)
i (x) =

N∑
j=0

Ψν(i, j) L
(α,λ)
j (x), i = �ν�, · · · , N, (4.1)

where

Ψν(i, j)=
i∑

k=1

j∑
s=0

(−1)k+s j!Γ(i + α+ 1)Γ(λk + 1)Γ(k − ν
λ + α+ s+ 1)

s!k!(i−k)!(j−s)!Γ(λk − ν + 1)Γ(k + α+ 1)Γ(α+ s+ 1)
.

P r o o f. The analytic form of the fractional-order generalized Laguerre

functions L
(α,λ)
i (x) of degree iλ is given by (3.6). Using Eqs. (2.4)-(2.5)

and (3.6), we have

DνL
(α,λ)
i (x) =

i∑
k=0

(−1)k
Γ(i+ α+ 1)

(i− k)! k! Γ(k + α+ 1)
Dνxλk

=
i∑

k=1

(−1)k
Γ(i+ α+ 1)Γ(λk + 1)

(i− k)! k!Γ(λk − ν + 1) Γ(k + α+ 1)
xλk−ν , i = 1, . . . , N.

(4.2)
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The approximation of xλk−ν by N + 1 terms of fractional-order gener-
alized Laguerre series yields

xk−ν =
N∑
j=0

bjL
(α,λ)
j (x), (4.3)

where bj is given by

bj =

j∑
s=0

(−1)s
j! Γ(k − ν

λ + α+ s+ 1)

(j − s)! (s)! Γ(s+ α+ 1)
. (4.4)

Thanks to (4.2)-(4.4) we can write

DνL
(α,λ)
i (x) =

N∑
j=0

Ψν(i, j)L
(α,λ)
j (x), i = �ν�, · · · , N, (4.5)

where

Ψν(i, j)=
i∑

k=1

j∑
s=0

(−1)k+s j! Γ(i+ α+ 1) Γ(λk + 1) Γ(k − ν
λ + α+ s+ 1)

s!k!(i− k)!(j − s)!Γ(λk − ν + 1)Γ(k + α+ 1)Γ(α+ s+ 1)
.

(4.6)

5. Spectral methods for FDEs

In this section, we consider spectral tau and collocation methods based
on the fractional derivative of FGLFs to solve numerically the linear and
nonlinear FDEs of order ν.

5.1. Tau Method for Linear FDEs

We are interested in using the FGLT method to solve the linear multi-
order FDE

Dνu(x) + γu(x) = f(x), in Λ, (5.1)

with initial condition

u(0) = u0, (5.2)

where γ is constant and 0 < ν ≤ 1 . Moreover, Dνu(x) denotes the Caputo
fractional derivative of order ν for u(x), and f(x) is a source function. It

is known that {L(α,λ)
i (x) : i ≥ 0} forms a complete orthogonal system in

L2
w(α,λ)(Λ). Hence, if we define

SN (Λ) = span
{
L
(α,λ)
0 (x), L

(α,λ)
1 (x), · · · , L(α,λ)

N (x)
}
, (5.3)

then the standard fractional-order generalized Laguerre-tau approximation
to (5.1) is to find uN ∈ SN (Λ) such that
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(DνuN , L
(α,λ)
k (x))w(α,λ) + γ(uN , L

(α,λ)
k (x))w(α,λ)

= ((f, L
(α,λ)
k (x))w(α,λ) , k = 0, 1, · · · , N − 1,

uN (0) = u0.

(5.4)

Let us denote

uN (x) =

N∑
j=0

ajL
(α,λ)
j (x), a = (a0, a1, · · · , aN )T ,

fk = (f, L
(α,λ)
k (x))w(α,λ) , k = 0, 1, · · · , N − 1,

f = (f0, f1, · · · , fN−1, d0)
T .

(5.5)

It is now clear that the variational formulation of Eq. (5.4) is equivalent to

N∑
j=0

aj

[
(DνL

(α,λ)
j (x), L

(α,λ)
k (x))w(α,λ) + γ(L

(α,λ)
j (x), L

(α,λ)
k (x))w(α,λ)

]

= (f, L
(α,λ)
k (x))w(α,λ) , k = 0, 1, · · · , N − 1,

N∑
j=0

ajD
k−NL

(α,λ)
j (0) = uk−N , k = N.

(5.6)

Let us also denote

A = (akj)0<k,j<N , B = (bkj)0<k,j<N .

Then equation (5.6) is equivalent to the following matrix equation

(A+ γ B)a = f, (5.7)

where the nonzero elements of the matrices A, and B are given explicitly
in the following theorem.

Theorem 5.1. If we denote akj = (DνL
(α,λ)
j (x), L

(α,λ)
k (x))w(α,λ) (0 ≤

k ≤ N − 1, 0 ≤ j ≤ N), akj = L
(α,λ)
j (0) (k = N, 0 ≤ j ≤ N) and

bkj = (L
(α,λ)
j (x), L

(α,λ)
k (x))w(α,λ) (0 ≤ k ≤ N − 1, 0 ≤ j ≤ N). Then the

nonzero elements of akj and bkj are given as follows:

akj =

⎧⎨
⎩
hk Ψν(j, k), 0 ≤ k ≤ N − 1, 1 ≤ j ≤ N,
Γ(j + α+ 1)

Γ(α+ 1) j!
, k = N, 0 ≤ j ≤ N.

bkj = hk, 0 ≤ k = j ≤ N − 1.
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5.2. Collocation Method for Nonlinear FDEs

We use the FGLC method to numerically solve the nonlinear FDE,
namely

Dνu(x) = f
(
x, u(x)

)
, x ∈ Λ, (5.8)

with initial conditions

u(0) = u0, (5.9)

where 0 < ν ≤ 1.

Let

uN (x) =

N∑
j=0

ajL
(α,λ)
j (x), (5.10)

then, making use of formula (4.1) enables one to express explicitly the
derivatives Dνu(x), in terms of the expansion coefficients aj . The crite-
rion of spectral fractional-order generalized Laguerre collocation method
for solving approximately (5.14)-(5.15) is to find uN (x) ∈ SN (Λ) such that

DνuN (x) = F
(
x, uN (x)

)
, (5.11)

is satisfied exactly at the collocation points x
(α,λ)
N,k , k = 0, 1, · · · , N − 1.

In other words, we have to collocate Eq. (5.17) at the N fractional-order

generalized Laguerre roots x
(α,λ)
N,k , which immediately yields

N∑
j=0

ajD
νL

(α,λ)
j (x

(α,λ)
N,k ) = P

(
x
(α,λ)
N,k ,

N∑
j=0

ajL
(α,λ)
j (x

(α,λ)
N,k )

)
, (5.12)

with (5.15) written in the form
N∑
j=0

ajL
(α,λ)
j (0) = u0. (5.13)

This constitute a system of (N+1) nonlinear algebraic equations in the
unknown expansion coefficients aj (j = 0, 1, · · · , N), which can be solved
by using any standard iteration technique, like Newton’s iteration method.

5.3. FGLC method for solving systems of FDEs

We use the FGLC method to numerically solve the general form of
systems of nonlinear FDE, namely

Dνiui(x) = fi
(
x, u1(x), u2(x), . . . , un(x)

)
, x ∈ Λ, i = 1, . . . , n, (5.14)

with initial conditions

ui(0) = ui0, i = 1, . . . , n, (5.15)
where 0 < νi ≤ 1.
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Let

uiN (x) =
N∑
j=0

aijL
(α,λ)
j (x). (5.16)

The fractional derivatives Dνiu(x) can be expressed in terms of the
expansion coefficients aij using (4.1). The implementation of fractional-
order generalized Laguerre collocation method to solve (5.14)-(5.15) is to
find uiN (x) ∈ SN (Λ) such that

DνiuiN (x) = Fi

(
x, u1N (x), u2N (x), ..., unN (x)

)
, x ∈ Λ, (5.17)

is satisfied exactly at the collocation points x
(α,λ)
i,N,k, k = 0, 1, · · · , N − 1,i =

1, · · · , n, which immediately yields

N∑
j=0

aijD
νiL

(α,λ)
j (x

(α,λ)
i,N,k)=Pi

(
x
(α,λ)
i,N,k,

N∑
j=0

a1jL
(α,λ)
j (x

(α,λ)
1,N,k),

N∑
j=0

a2jL
(α,λ)
j (x

(α,λ)
2,N,k),

. . . ,

N∑
j=0

anjL
(α,λ)
j (x

(α,λ)
n,N,k)

)
,

(5.18)
with (5.15) written in the form

N∑
j=0

aijL
(α,λ)
j (0) = ui0, i = 1, · · · , n. (5.19)

This means the system (5.14) with its initial conditions has been reduced
to a system of n(N + 1) nonlinear algebraic equations (5.18)-(5.19), which
may be solved by using any standard iteration technique.

Corollary 5.1. In particular, the special case for fractional Laguerre
polynomials may be obtained directly by taking λ = 0, which are used in [2].
However, the classical Laguerre polynomials may be achieved by replacing
λ = 1 and α = 0, which are used most frequently in practice for solving
ordinary/partial differential equations and often denoted by Li(x).

6. Applications and numerical results

In this section, we give some numerical results obtained by using the
algorithms presented in the previous sections. Comparisons of our results
with those obtained by other methods reveal that our methods is very
effective and convenient.
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N η ζ = λ α = 0 α = 2 η = ζ = λ α = 0 α = 2
8 0.9 0.5 3.56.10−3 9.34.10−3 0.75 5.55.10−17 4.37.10−16

16 9.38.10−4 2.42.10−3 5.55.10−17 4.44.10−16

24 3.98.10−4 1.31.10−3 5.55.10−17 4.51.10−16

32 2.31.10−4 7.35.10−4 5.55.10−17 4.44.10−16

40 1.49.10−4 4.38.10−4 5.55.10−17 4.44.10−16

48 1.12.10−4 2.69.10−4 5.55.10−17 4.51.10−16

8 0.8 0.6 8.69.10−3 2.30.10−2 0.999 5.55.10−17 3.33.10−16

16 2.90.10−3 9.69.10−3 5.55.10−17 3.33.10−16

24 1.61.10−3 5.85.10−3 5.55.10−17 3.12.10−16

32 1.08.10−3 4.11.10−3 5.55.10−17 3.33.10−16

40 7.90.10−4 3.09.10−3 5.55.10−17 3.33.10−16

48 6.16.10−4 2.37.10−3 5.55.10−17 3.12.10−16

Table 1. Maximum absolute error with various choices of
η, ζ, ν and N in x ∈ [0, 1]

Example 6.1. Consider the equation, see [5]

Dζu(x) + u(x) =
Γ(η + 1)

Γ(η − ζ + 1)
xη−ζ + xη, 0 < ζ ≤ η < 1, x ∈ Λ,

the exact solution is given by u(x) = xη.

The solution of this problem is obtained by applying FGLT method. In
Table 1, The maximum absolute errors of u(x)−uN (x) using FGLT method
based on treating the right hand side of this problem by Gauss quadrature
of fractional order generalized Laguerre functions, with various choices of
η, ζ, α and N are compared with the results of the improved generalized
Laguerre tau (GLT) method (see [5]) with various choices of η, ζ, α and N.
From Table 1, we see that we can achieve a good approximation with the
exact solution by using fractional-order generalized Laguerre functions and
our method is more accurate than (GLT) [5]). Fig. 1 displays comparisons
between the curves of exact solutions and approximate solutions at N = 10,
α = 3 and variable choices of η, ζ, and λ. Meanwhile, maximum absolute
errors (MAE) for N = 10 and different values of η = ζ = λ and α are
shown in Fig. 2 and Fig. 3.

Example 6.2. Consider the following nonlinear initial value problem

Dνu(x) + u2(x) = x+
( xν+1

Γ(ν + 2)

)2
, 0 < ν ≤ 2,

whose exact solution is given by u(x) =
1

Γ(ν + 2)
xν+1.
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Figure 1. Comparing the exact and approximate solutions
at N = 10, α = 3 and η = ζ = λ = {0.2, 0.4, 0.6, 0.8}.

Figure 2. Graph of maximum absolute error functions at
N = 10, α = 3 and η = ζ = λ = 0.85 for Example 6.1.

In Tables 2 and 3, we list maximum absolute errors using FGLC method
in Section 5.2 with various choices of the fractional-order ν and λ for
the fractional-order generalized Laguerre parameter α = {1, 2} and N =
4, 8, 12, 16 in the interval [0, 10]. Moreover, Fig. 4 displays comparisons be-
tween the curves of exact and approximate solutions at α = 0 of proposed
problem subject to u(0) = 0 in case of N = 10 and two different fractional
orders ν = 0.5, 0.8.
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Figure 3. Graph of maximum absolute error functions at
N = 10, α = 0 and η = ζ = λ = 0.25 for Example 6.1.

N ν λ FGLC ν λ FGLC ν λ FGLC
4 0.8 0.8 1.00.10−1 0.7 0.6 2.83.10−2 0.5 0.5 1.77.10−14

8 6.08.10−3 4.28.10−3 1.42.10−14

12 1.87.10−3 1.74.10−3 1.42.10−14

16 9.51.10−4 8.19.10−4 1.06.10−14

Table 2. Maximum absolute error for α = {1} with various
choices of ν, λ and N in x ∈ [0, 10]

N ν λ FGLC ν λ FGLC ν λ FGLC
4 0.8 0.8 3.50.10−2 0.7 0.6 3.46.10−2 0.5 0.5 7.10.10−15

8 9.15.10−3 7.99.10−3 1.51.10−14

12 4.73.10−3 3.79.10−3 2.84.10−14

16 2.30.10−3 2.07.10−3 2.13.10−14

Table 3. Maximum absolute error for α = 2 with various
choices of ν, λ and N in x ∈ [0, 10]
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Figure 4. Comparing the exact and approximate solutions
at N = 15, α = 0 and ν = λ = 0.5 for Example 6.2.

Example 6.3. Consider the following system of fractional differential
equations, see [24]:

D
1
2X1 (x) = X1 (x)− x

1
2X3 (x) +

2
Γ( 1

2)
x

1
2

D
1
2X2 (x) = −xX1 (x) +X2 (x) +

3
3Γ( 1

2)
x

3
2

D
1
2X3 (x) = xX1 (x)−X2 (x) +X3 (x)− x

1
2 +

Γ( 1
2)
2

(6.1)

with initial conditions

X1(0) = 0, X2(0) = 0, X3(0) = 0, x ∈ [0, 10]. (6.2)

The above system has a unique solution given by X1(x) = x,X2(x) =

x2,X3(x) = x
1
2 .

The solution of this problem is obtained by applying the FGLC method.
The maximum absolute error for N = 4 and various choice of α is shown in
Table 4. Moreover, Fig. 5 displays the maximum absolute error at α = 1

2
for X1(x), X2(x) and X3(x) in the interval [0, 100].
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α E for X1(x) E for X2(x) E for X3(x)

−1
2 7.37.10−15 5.02.10−14 5.02.10−14

0 1.13.10−14 2.06.10−13 2.06.10−13

1
2 9.69.10−15 4.74.10−14 2.0.10−14

1 6.98.10−14 1.45.10−13 1.45.10−13

2 1.49.10−13 1.99.10−13 1.99.10−13

Table 4. Maximum absolute error for N = 4 with various
choices of ν = λ = 0.5, and α

Figure 5. Graph of maximum absolute error functions at
N = 4 and α = 1

2 for X1(x), X2(x) and X3(x) for Example
6.3.

Example 6.4. We next consider the following initial value problem
for the inhomogeneous Bagley-Torvik equation [12]

d2y (x)

dx2
+

d
3
2 y (x)

dx
3
2

+ y (x) = x+ 1, y(0) = 1, y′(0) = 1. (6.3)

The exact solution is given by y(x) = x+ 1.

Before coming to the description of our numerical scheme, we find it
convenient to rewrite the original Bagley-Torvik equation (6.3) in the form
of a system of fractional differential equations of order 1/2, that will later
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α E

−1
2 0
0 2.22.10−16

1
2 1.77.10−15

1 8.88.10−16

2 0
3 3.55.10−15

Table 5. MAE using FGLC method with various choices
of α for Example 6.4.

Figure 6. Graph of maximum absolute error functions at
α = 1

2 in the interval [0, 10000] for Example 6.4.

be solved numerically. In particular, let y(x) = y1(x), the system that we
shall consider is of the form [12]

D
1
2 y1 (x) = y2 (x) ,

D
1
2 y2 (x) = y3 (x) ,

D
1
2 y3 (x) = y4 (x) ,

D
1
2 y4 (x) = −y1 (x)− y4 (x) + x+ 1,

(6.4)

with initial conditions

y1(0) = y(0), qy2(0) = 0, y3(0) = y′(0), y4(0) = 0. (6.5)

The maximum absolute error for y(x) = y1(x) using FGLC method
at various choices of α are shown in Table 5. Moreover, Fig. 6 plots the
maximum absolute error at α = 1

2 in the interval [0, 10000].
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Conclusions

In this article, we have defined a fractional-order generalized Laguerre
function depends on generalized Laguerre polynomials to obtain. In addi-
tion, we have stated and proved a new formula expressing explicitly any Ca-
puto fractional-order derivatives of FGLFs in terms of FGLFs themselves.
This formula was employed in the construction of spectral tau technique to
obtain an accurate solution of FDEs with leading order ν (0 < ν < 1).

The Gauss quadrature rule for this new function was constructed. We
have proposed the fractional-order generalized Laguerre pseudo-spectral
approximation for solving nonlinear initial value problem of fractional or-
der ν. Moreover, we have extended the application of the fractional-order
generalized Laguerre pseudo-spectral method for solving systems of FDEs.
The main advantages of using the spectral schemes based on FGLFs and
compare them with other methods. Several numerical example are im-
plemented for FDEs and systems of FDEs including linear and nonlinear
terms. We demonstrate the high accuracy and the efficiency of the proposed
techniques.

Numerical examples were given to test the applicability and validity of
the proposed algorithms. During several numerical examples, it is observed
that the proposed methods are simple and accurate. Indeed, while a lim-
ited number of fractional-order generalized Laguerre collocation nodes is
utilized, very accurate numerical results are obtained.
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