

TRAVELING SALESMAN PROBLEM:
HERUSTICS AND EMPIRICAL EVALUATION

AHMET SEDAT KAYA

TRAVELING SALESMAN PROBLEM:
HERUSTICS AND EMPIRICAL EVALUATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF ÇANKAYA UNIVERSITY

BY

AHMET SEDAT KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN
THE DEPARTMENT OF
COMPUTER ENGINEERING

JANUARY 2015

Title of the Thesis: Traveling Salesman Problem: Heuristics and Empirical Evaluation.

Submitted by Ahmet Sedat KAYA

Approval of the Graduate School of Natural and Applied Sciences, Cankaya Uniyersity.

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Prof. Dr. Müslim BOZYİĞİT Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Emre SERMUTLU
Supervisor
Examination Date: 20.01.2015
Examining Committee Members
Assist. Prof. Dr. Emre SERMUTLU
Prof. Dr. Ali Aydın SELÇUK
Assoc. Prof. Dr. Hadi Hakan MARAŞ
(Çankaya University)
(TOBB ETU University)
(Çankaya University)

STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name	$:$
Signature	$:$
Date	$: 20.01 .2015$

ABSTRACT
 TRAVELING SALESMAN PROBLEM:
 HERUSTICS AND EMPIRICAL EVALUATION

KAYA, Ahmet Sedat
M.Sc., Department of Computer Engineering Supervisor: Assist. Prof. Dr. Emre SERMUTLU

January 2015, 48 Pages

In this thesis, three different algorithms with different perspectives (Close Couple, Worm, and Spider Web) has been developed to solve the Symmetric Traveling Salesman (TSP) heuristically. Improved algorithms with different data sets Distance Rate, Target have been tested. The running time and value of the solution have been compared.

In this context, several steps of evaluation were used for the comparison and improvement of algorithms. After each evaluation step, one candidate algorithm is eliminated. Eventually, an improved version of the Spider Web algorithm is the winner of this contest.

Keywords: Traveling Salesman Problem, Heuristics, Algorithm, Close Couple, Worm, Spider Web.

ÖZ

GEZGİN SATICI PROBLEMİ: SEZGiSEL YÖNTEMLER VE AMPİíiK DEĞERLENDİRME

KAYA, Ahmet Sedat
Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı
Tez Yöneticisi: Yrd. Doç. Dr. Emre SERMUTLU
Ocak 2015, 48 Sayfa

Bu tezde Simetrik Gezgin Satıcı Problemine (GSP) probleminin optimum sezgisel çözümüne yönelik olarak farklı bakış açılarıyla 3 farklı algoritma (Yakın Çift, Solucan, Örümcek Ağı) geliştirilmiştir. Geliştirilen algoritmalar farklı veri kümeleri ile Uzaklık Oranı ve Hedef üzerinden test edilmiştir. Çalışma süreleri ve çözümün değerleri karşılaştırılmıştır.

Bu kapsamda algoritmaların geliştirilmesi ve iyileştirmesi için aşamalı bir değerlendirme yöntemi kullanılmıştır. Her bir değerlendirme aşamasında sonuçlar kaydedilerek bir aday algoritma elenmiştir. Sonuçta, iyileştirilmiş Örümcek Ağı algoritması bu yarışın galibi olmuştur.

Anahtar Kelimeler: Gezgin Satıcı Problemi, Sezgisel Yöntemler, Algoritma, Yakın Çift, Solucan, Örümcek Ağı.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Assist. Prof. Dr. Emre SERMUTLU for his supervision, special guidance, suggestions, and encouragement through the development of this thesis.

I would like to express my deep gratitude to my family for their endless and continuous encouragement and support throughout the years.

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM iii
ABSTRACT iv
ÖZ. v
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS vii
LIST OF FIGURES X
LIST OF TABLES xi
LIST OF ABBREVIATIONS xii
CHAPTERS:

1. INTRODUCTION 1
1.1. Traveling Salesman Problem (TSP) 1
1.2. Objectives 2
1.3. Outlines 3
2. BACKGROUND AND RELATED WORKS 4
2.1. TSP-Problem 4
2.2. Asymmetric TSP and Symmetric TSP 5
2.3. TSP Algorithms 6
2.3.1. Exact algorithms 6
2.3.2. Approximate algorithms (Heuristic) 7
2.4. TSP Applications 10
2.4.1. Practical applications 10
3. DEVELOPED ALGORITHMS 12
3.1. Developed Algorithms Information 12
3.2. Close Couple Algorithm 13
3.2.1. Study principle of Close Couple Algorithm 13
3.2.2. Sample analysis 15
3.3. Worm Algorithm 18
3.3.1. Study principle of Worm Algorithm. 18
3.3.2. Sample analysis 20
3.4. Spider Web Algorithm. 24
3.4.1. Study principle of Spider Web Algorithm 24
3.4.2. Sample analysis 26
4. EVALUATION OF THE ALGORITHMS AND THE RESULTS 30
4.1. Testing Environment 30
4.2. Data Set 30
4.2.1. Cities data Set 31
4.2.2. Random data set 32
4.3. The Evaluation Method 33
4.4. Evaluation Results 34
4.4.1. The evaluation of the algorithms according to the brute-force 34method
\qquad
4.4.2 The evaluation of the algorithms with random data set. 38
4.4.3. The development of the Spider Web Algorithm and 41 evaluation of the results
5. CONCLUSION AND FUTURE WORK 46
5.1. Conclusion 46
5.2. Future Work 48
REFERENCES R1
APPENDICES A1
A. CURRICULUM VITAE. A1

LIST OF FIGURES

FIGURES

Figure 1 Spider Web Algorithm reference points 27
Figure 2 Spider Web Algorithm alternative points. 28
Figure 3 Spider Web Algorithm the calculation of the points. 29
Figure 4 Time tick graphical representation of the algorithms 34
Figure 5 Distance rate graphical representation of the algorithms 35
Figure 6 Target values graphical representation of the algorithms 36
Figure 7 Elapsed time graphical representation of the algorithms. 38
Figure 8 Distance values graphical representation of the algorithms 39
Figure 9 Graphical representation of the Spider Web time tick values... 41
Figure 10 Graphical representation of the Spider Web target values 42
Figure 11 Graphical representation of the Spider Web distance rate value. 43
Figure 12 Graphical representation of the Spider Web elapsed tick. 44
Figure 13 Graphical representation of the Spider Web Algorithm distance 45

LIST OF TABLES

TABLES

Table 1 Close Couple Algorithm Sample City Table 15
Table 2 Close Couple Algorithm Iteration Table 17
Table 3 Worm Algorithm Sample City Table 20
Table 4 Worm Algorithm Iteration Table 23
Table 5 Spider Web Algorithm Sample City Table 26
Table 6 Spider Web Algorithm Iteration Table 29
Table 7 Algorithm Evaluation Environment 30
Table 8 General Directorate of Highways Cities Distance Table 31
Table 9 Time Tick Result Table of the Algorithms 34
Table 10 Distance Rate Result Table of the Algorithms 35
Table 11 Result Table of the Algorithms Target Values 36
Table 12 Evaluation Table of the Algorithms With Data Set 37

TABLES

Table 13 Elapsed Time Result Table of the Algorithms. 38
Table 14 Distance Value of the Algorithms Result Table 39
Table 15 Time Tick Result Table of the Spider Web Algorithm. 41
Table 16 Spider Web Algorithm Target Result Table 42
Table 17 Distance Rate Result Table of Spider Web Algorithm. 43
Table 18 Spider Web Algorithm Elapsed Tick Result Table 44
Table 19 Spider Web Algorithm Distance Result Table 45

LIST OF ABBREVIATIONS

TSP	Traveling Salesman Problem
SW1	Spider Web First Version
SW2	Spider Web Second Version
SW3	Spider Web Third Version

TSPLIB Discrete and Combinatorial Optimization Library

CHAPTER 1

INTRODUCTION

1.1. Traveling Salesman Problem (TSP)

TSP is one of the most famous problems in applied mathematics and theoretical computer science Many different methods were tried to solve this problem to achieve an optimum cost (i.e. for time and/or distance). Therefore, it is important to ongoing research and development to improve this success to find the optimum solution for TSP.

A Nondeterministic Polynomial time problem (NP-Problem) is a problem whose solution can be verified by a computer in polynomial time. Moreover, NP- hard problem is when every problem in NP can be reduced in polynomial time, also NP-complete is between both NP and NP-hard as what have in TSP [1]. Therefore try to develop heuristic methods that use experiment-based techniques to find the optimum solution for symmetric TSP. [2]

Three new proposed algorithms are Close Couple, Worm and Spider Web have been developed with different perspectives in this thesis. Different data sets have been used for evaluation and development of algorithms. For small data sets the results are compared to those found by Brute-Force technique. Besides that, results are used for update and optimize algorithms.

Three levels of comparisons and evaluations (based on speed and quality of solution) between algorithms are presented. In each level one algorithm is eliminated according to obtained results.

The results shows Spider Web Algorithm obtained the highest results. After that, second and third enhancements of Spider Web's algorithm have been developed based on the results of evaluations and use other algorithms techniques. Furthermore, the results show improved versions of Spider Web performed better than the original Spider Web Algorithm.

1.2. Objectives

This thesis aimed to propose a new algorithm to find the optimum solution for symmetric TSP, and then enhance these algorithms to achieve an optimum cost. All these algorithm are tested with different data sets.

1.3. Outlines

The reminder of this thesis structured as below.
Chapter two: Background and related works discuss the TSP problem and the previous studies about this problem.

Chapter three: Developed algorithms discuss the study principles of Close Couple, Worm and Spider Web Algorithms, pseudo codes developed within this thesis study have been given. Furthermore, the way those algorithms work have been explained in detail with a sample analysis.

Chapter four: Evaluation of the algorithms and the results discuss the information about the test environment of algorithms and the data sets used the evaluation method has been explained in detail. The evaluation results have also been shown both with tables and graphics and each evaluation step the obtained results have been summarised and detailed information has been given about the results.

Chapter five: Conclusions and future works is the last part the information obtained from the results of the studies within the thesis has been evaluated.

CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1 TSP-Problem

TSP is the most studied discrete optimization problem. Its popularity is due to the facts that TSP is easy to formulate, difficult to solve, and has a large number of applications.
K. Menger [3] was the first researcher to consider the TSP. He observed that the problem can be solved by examining all permutations one by one. Realizing that the complete enumeration of all permutations was not possible for graphs with a large number of vertices, he also looked at the most natural nearest neighbour strategy and pointed out that this heuristic, generally, does not produce the shortest route. (In fact, the nearest neighbour heuristic will generate the worst possible route for some problem instances of each size [4].)
(P) Can be defined as a set of problems which could be solved in polynomial time (i.e. easy to solve). And (NP-hard) is a set of problems not known to be solvable in polynomial time (i.e. hard to solve). A Heuristic Algorithm is not guaranteed to find the optimal solution, but find a solution (i.e. reasonably close) to the optimal solution in reasonable amount of time.

2.2 Asymmetric TSP and Symmetric TSP

A salesman is required to visit each of n given cities once and only once, starting from any city and returning to the original place of departure. We have to find the tour he should choose in order to minimize the total travel distance, assuming the distances between any pair of cities are known. Distance can be replaced by another notion, such as time or money. In the following the term "cost" is used to represent any such notion [5].

Given a cost matrix $C=\left(c_{i j}\right)$ where $c_{i j}$ represents the cost of going from city i to city j, where $i, j=1 \cdots n$ find a permutation $\left(i_{1}, i_{2}, \cdots i_{n}\right)$ of the integers from 1 through n that minimizes the quantity

$$
c_{i_{1} i_{2}}+c_{i_{2} i_{3}}+\cdots+c_{i_{n} i_{1}}
$$

Properties of the cost matrix C are used to classify problems. If $c_{i j}=c_{j i}$ for all i and j, the problem is said to be symmetric otherwise, it is asymmetric.

2.3 TSP Algorithms

The problem is easy to state, but hard to solve. The difficulty becomes apparent when one considers the number of possible tours, an astronomical figure even for a relatively small number of cities. For a symmetric problem with n cities there are $(n-1)$! / 2 possible tours. If n is 20 , there are more than 10^{18} tours. The 13,509 city problem, which is successfully solved by the algorithm described in this paper, contains about $10^{50,000}$ possible tours. In comparison it may be noted that the number of elementary particles in the universe has been estimated to be only 10^{87}. It has been proven that TSP is a member of the set of NP-complete problems. [6]

This is a class of difficult problems whose time complexity is probably exponential. The members of the class are related so that if a polynomial time were found for one problem, polynomial time algorithms would exist for all of them. However, it is commonly believed that no such polynomial algorithm exists. Therefore, any attempt to construct a general algorithm for finding optimal solutions for the TSP in polynomial time must (probably) fail. Algorithms for solving the TSP may be divided into two classes: Exact algorithms and Approximate (or heuristic) algorithms.

2.3.1 Exact algorithms

The exact algorithms are guaranteed to find the optimal solution in a bounded number of steps. The most effective exact algorithms are cutting-plane or facet-finding algorithms [7, 8]. These algorithms are quite complex, with codes on the order of 10,000 lines. In addition, the algorithms are very demanding of computer power. The previously mentioned 13,509 -city problem was solved over a period of three months using a cluster of 3 servers, a total of 12 processors, and 32 PCs [8].

2.3.2 Approximate algorithms (Heuristic)

Nearest Neighbour

This is perhaps the simplest and most straightforward TSP heuristic. The key to this algorithm is to always visit the nearest city. Nearest Neighbour, $O\left(n^{2}\right)$

1. Select a random city.
2. Find the nearest unvisited city and go there.
3. Are there any unvisited cities left? If yes, repeat step 2 .
4. Return to the first city.

The Nearest Neighbour algorithm will often keep its tours within \% 25 of the Held-Karp lower bound [9].

Greedy

The Greedy heuristic gradually constructs a tour by repeatedly selecting the shortest edge and adding it to the tour as long as it doesn't create a cycle with less than N edges, or increases the degree of any node to more than 2 . We must not add the same edge twice of course.

Greedy, $O\left(n^{2} \log n\right)$

1. Sort all edges.
2. Select the shortest edge and add it to our tour if it doesn't violate any of the above constraints.
3. Do we have N edges in our tour? If not, repeat step 2 .

The Greedy algorithm normally keeps within 15-20\% of the Held-Karp lower bound [9].

Insertion Heuristics

Insertion heuristics are quite straightforward, and there are many variants to choose from. The basics of insertion heuristics is to start with a tour of a subset of all cities, and then inserting the rest by some heuristic. The initial sub tour is often a triangle or the convex hull. One can also start with a single edge as sub tour.

Nearest Insertion, $O\left(n^{2}\right)$

1. Select the shortest edge, and make a sub tour of it.
2. Select a city not in the sub tour, having the shortest distance to any one of the cities in the sub tour.
3. Find an edge in the sub tour such that the cost of inserting the selected city between the edge's cities will be minimal.
4. Repeat step 2 until no more cities remain. [10]

Christofides

Most heuristics can only guarantee a worst-case ratio of 2 (i.e. a tour with twice the length of the optimal tour). Professor Nicos Christofides extended one of these algorithms and concluded that the worst-case ratio of that extended algorithm was $3 / 2$. This algorithm is commonly known as Christofides heuristic.

Original Algorithm (Double Minimum Spanning Tree), worst-case ratio 2, $O\left(n^{2} \log 2(n)\right)$

1. Build a minimal spanning tree (MST) from the set of all cities.
2. Duplicate all edges, we can now easily construct an Euler cycle.
3. Traverse the cycle, but do not visit any node more than once, taking shortcuts when a node has been visited. [10]

Two-opt exchange

Euclidean problems observed by this improvement approach. It can be easily shortened if a Hamiltonian cycle crosses itself. Namely, erase two edges that cross and reconnect the resulting two paths by edges that do not cross (this is always possible). The new cycle is shorter than the old one. [11]

2.4. TSP Applications

2.4.1 Practical applications

The algorithm aim to develop and heuristics for practical traveling to solve the salesman problem, give a survey on some of the possible applications. It covers some important cases but not complete. [12]

Drilling of printed circuit boards

TSP direct application is the drilling problem it plays an important solution role in economical manufacturing of printed circuit boards (PCBs). In an industry application a computational study of a large electronics company can be found in Gr'otschel, J'unger and Reinelt (1991). [11]

X-Ray crystallography

The TSP important application occurs in the analysis of the structure of crystals (Bland and Shallcross (1987), Dreissig and Uebach (1990). To obtain information about the structure of crystalline material X-ray diffract meter is used. Detector measures the intensity of X-ray reflections of the crystal from various positions. Whereas the measurement itself can be accomplished quite fast, there is a considerable overhead in positioning time since up to hundreds of thousands positions have to be realized for some experiments. [11]

The order-picking problem in warehouses

This problem is associated with material handling in a warehouse (Ratliff and Rosenthal (1981). Assuming a warehouse an order arrives for a certain subset of the items stored in the warehouse. This order to ship collected by some vehicle and all items of them to the customer. The relation to the TSP is immediately seen. The storage locations of the items correspond to the nodes of the graph. The distance between two nodes is given by the time needed to move the vehicle from one location to the other. Finding a shortest route for the vehicle with minimum pickup time can now be solved as a TSP. [11]

Scheduling with sequence dependent process times

If we are given n jobs that have to be performed on some machine. The time to process job j is $t i j$ if i the job is performed immediately before j. The task is to find an execution sequence for the jobs such that the total processing time is as short as possible. And also, this problem can be modelled as a directed Hamiltonian path problem. [11]

Vehicle routing

Suppose that in a city n mail boxes have to be emptied every day within a certain period of time, say 1 hour. The problem is to find the minimum number of trucks to do this and the shortest time to do the collections using this number of trucks. As another example, suppose that n customers require certain amounts of some commodities and a supplier has to satisfy all demands with a fleet of trucks. The problem is to find an assignment of customers to the trucks and a delivery schedule for each truck so that the capacity of each truck is not exceeded and the total travel distance is minimized. [11]

CHAPTER 3

DEVELOPED ALGORITHMS

3.1. Developed Algorithms Information

Three different algorithms have been developed to find optimum solution of symmetric TSP problem. These are respectively;

- Close Couple
- Worm
- Spider Web Algorithms.

Symmetric TSP problem is in this context the connection of provinces (nodes/points) with each other has been presumed as undirected graph.

$$
\text { Distance }(A \rightarrow B)=\text { Distance }(B \rightarrow A)
$$

Close Couple and Worm Algorithms have been developed similar to each other. These algorithms have been formed with the hypothesis of the solution of TSP problem's formation is between the closest points to each other.

The Spider Web Algorithm, has been created with the assumption that starting from the farthest point to each other in order to find the solution, the optimal solution can be found with the addition of another point close to remote locations. The developed algorithms find the optimal solution in the shortest time. Thus, focuses on the most important part of TSP which is increased points that are lead to more computation time.

3.2. Close Couple Algorithm

3.2.1. Study principle of Close Couple Algorithm

Close Couple Algorithm starts with the hypothesis that the most optimum solution in TSP problem occurs between two closest points.

In this context algorithm tries to extrapolate to optimum result by practising the steps below.

The closest couple sets are formed according to the distance between the points. Then if possible elimination process is carried out on specified couple sets. Within this context with the hypothesis $A \rightarrow B, B \rightarrow A$ couple, if the closest point to A is point B and the closest point to B is point A then $B \rightarrow A$ couple is eliminated. Among the rest of the couple sets the least distant couple set is chosen. The first chosen couple is evaluated as the start and end point. The acquisitions of the rest of the couple sets are estimated according to their distance to start and end points and it is decided whether to start from start point or end point. According to the decision the most suitable couple is chosen and start and end points are updated according to this selection. The process continues until the couple sets to be estimated finish.

```
Procedure CloseCouple ()
{
Set CloseCoupleList [ ] = Create Close Couple List according to distances
Eliminate Close Couple List
Set ShortestCloseCouple=Select Shortest Close Couple in CloseCoupleList
Set Start City=ShortestCloseCouple.FromCity
Set End City=ShortestCloseCouple.ToCity
While CloseCoupleList. Length>0
Begin
    Set StartCityGain=Calculate Gain (Start City, CloseCoupleList)
    Set EndCityGain=Calculate Gain (End City, CloseCoupleList)
    IF (StartCityGain > EndCityGain)
        THEN
            Set Gain City=Start City
        ELSE
        Set Gain City=End City
        Set FindCloseCouple=GetCloseCouple (Gain City)
        IF (Gain City= Start City)
        THEN
            Set Start City=FindCloseCouple.ToCity
        ELSE
            Set End City=FindCloseCouple.ToCity
CloseCoupleList. Remove (FindCloseCouple)
End
}
```


3.2.2. Sample analysis

For the sample analysis of Close Couple Algorithm Ankara, Istanbul, Izmir and Antalya cities and the distance between them has been based by using the Turkey highway map distance table between provinces.

Cities	Ankara	Istanbul	Izmir	Antalya
Ankara	0	453	585	537
Istanbul	453	0	563	723
Izmir	585	563	0	465
Antalya	537	723	465	0

Table 1 Close Couple Algorithm Sample City Table

According to distance the closest couple sets

Ankara / Istanbul

Istanbul / Ankara

Izmir / Antalya

Antalya / Izmir

The couple sets after the elimination
Ankara $/$ Istanbul $=453 \mathrm{Km}$

Izmir $/$ Antalya $=465 \mathrm{Km}$

Ankara / Istanbul is chosen as the start couple set.

Start Point: Ankara

End Point: Istanbul

Start / End points are determined according to the acquisitions

Start Point = Ankara

The distance of the rest couple to Ankara

Ankara $/$ Izmir $=585$ Ankara $/$ Antalya $=537$ the gain $=585-537=48 \mathrm{~km}$

End Point $=$ Istanbul

The distance of the rest couple to Istanbul

Istanbul $/$ Izmir $=563$ Istanbul $/$ Antalya $=723$ the gain $=723-563=160 \mathrm{~km}$

The most suitable couple is calculated according to the determined point and the process is finished.

As Istanbul is the most profitable End point, Istanbul is chosen.

Then choosing the closest couple to Istanbul, the closest province of the couple is chosen.
The closest couple to Istanbul is Izmir / Antalya and the closest province is Izmir. Then according to the selection the couple can change direction (If the closest provinces were Izmir, the direction would change to Antalya / Izmir instead of Izmir / Antalya).

The list is updated as Ankara Antalya Izmir Istanbul. End point is updated as Antalya. If there are other couples, the process continues until all the couples are operated.

Iteration Number	Formation of Points	Explanation	
$\# 1$	Ankara	Istanbul	Start and end points are determined according to the closest couple set
$\# 2$	Ankara Antalya Izmir Istanbul	Start and end points are decided according to the acquisition calculation	

Table 2 Close Couple Algorithm Iteration Table

3.3. Worm Algorithm

3.3.1. Study principle of Worm Algorithm

Worm Algorithm uses the distance between points for the solution of TSP problem. In this context algorithm tries to reach the optimum result by applying the steps below.

The distance which has the least interval is determined from the list of distance between points. Afterwards the cities in the distance list are determined as the start and end points. Average value is calculated finding the distances including start and end points, after this point which has the farthest average value is chosen, the closest distance list to the chosen point is found. Start and end points are updated. The distances which include the defined point are removed from the distance list. The process continues until the distance length equal to 1 .

```
Procedure Worm ( )
{
Set Shortest Distance = Select Shortest Distance from Distance List
Set Start City=ShortestDistance.FromCity
Set End City=ShortestDistance.ToCity
While DistanceList.Length>1
Begin
    Set StartCityGain=Calculate Gain (Start City, DistanceList. Where
(FromCity|ToCity=Start City))
    Set EndCityGain=Calculate Gain (End City, DistanceList.Where
(FromCity|ToCity=End City))
    IF (StartCityGain > EndCityGain)
        THEN
                        Set Gain City=Start City
        ELSE
        Set Gain City=End City
    Set FindShortestDistance=GetShortestDistance (Gain City)
    DistanceList.RemoveAll.Where (FromCity|ToCity=Gain City)
    IF (Gain City= Start City)
        THEN
                    Set Start City=FindShortestDistance.ToCity
        ELSE
            Set End City=FindShortestDistance.ToCity
End
}
```


3.3.2 Sample analysis

Table 3 shows the same Close Couple Algorithm that used for the sample analysis of Worm Algorithm.

Cities	Distance
Ankara-Istanbul	453
Ankara-Izmir	585
Ankara-Antalya	537
Istanbul-Izmir	563
Istanbul-Antalya	723
Izmir-Antalya	465

Table 3 Worm Algorithm Sample City Table

Distance list is formed.
Ankara $/$ Istanbul $=453$
Ankara $/$ Izmir $=585$
Ankara $/$ Antalya $=537$
Istanbul $/$ Izmir $=563$
Istanbul $/$ Antalya $=723$
Izmir $/$ Antalya $=465$

The closest distance Ankara / Istanbul is determined as the start and end point.

Start Point: Ankara

Finish Point: Istanbul

The acquisitions of the values in the distance list are calculated according to start and finish points.

Start point = Ankara
The distance of the rest of the couples according to Ankara

Ankara $/$ Izmir $=585 \quad$ Ankara/Antalya $=537 \quad$ Profit $=585-537=48$ km

End Point $=$ Istanbul

The distance of the rest of the couples according to Istanbul
Istanbul $/$ Izmir $=563$ Istanbul $/$ Antalya $=723$ Profit $=723-563=160$ km

The point which has the most profit is chosen. Start and finish points are updated by choosing the closest other point to the chosen one before.

$$
\text { Istanbul }=160 \mathrm{Km}
$$

Izmir is chosen as the closest province to the finish point. Finish point is updated according to the choice.

Distance list is cleared according to the changed list.
The distance list is cleared as the finish point Istanbul has changed.
The remaining Distance List

$$
\begin{aligned}
& \text { Ankara } / \text { Izmir }=585 \\
& \text { Ankara } / \text { Antalya }=537 \\
& \text { Izmir } / \text { Antalya }=465
\end{aligned}
$$

The process continues as the distance list is bigger than 1 .
Start Point according to Ankara
Ankara $/$ Antalya $=537$
Average value $=537 / 1=537$
End point according to Izmir
Izmir $/$ Antalya $=465$
Average value $=465 / 1=465$

In this case Ankara is chosen.
Ankara, Antalya, Izmir, Istanbul
Start Point =Antalya End Point = Izmir

Remaining Distance list
Izmir / Antalya

The algorithm ends as the length of the distance list is 1.
At the end of the process the result is as it is below.

Iteration Number	Formation of Points	Explanation
$\# 1$	Ankara Istanbul	The determination of the start and finish point according to the distance
$\# 2$	Ankara Izmir Istanbul	The determination of the most suitable point according to the start and End points
$\# 3$	Ankara Antalya Izmir Istanbul	Other points are determined according to the remaining points

Table 4 Worm Algorithm Iteration Table

3.4. Spider Web Algorithm

3.4.1. Study principle of Spider Web Algorithm

Spider Web Algorithm starts with the hypothesis that the most optimum solution in TSP problem occurs between two farthest points. In this context algorithm tries to extrapolate to optimum result by practising the steps below.

The first step creates an average list formed by using the distances between points, the point which has the least average is determined. Second step by determined three reference points according to the distance by using this point. Afterwards, reference points are removed from the list. Third step starting from the point which has the highest average it is decided between which references points it will be added by using cost calculation. The addition is done according to the suitable reference point. The process continues until there is no point to calculate.

Procedure Spider Web ()
 \{

Set CityAverageList [] = Calculate Average for Each City from Distance List CityAverageList. Sort (Descending Average)

Set Reference City=Select Shortest Average City from CityAverageList
Set First City=Farthest City according to Reference City
Set Second City=Farthest City according to First City
Set Third City=Select Longest City from CityAverageList except First City and Second City

CityLinkList.AddAll (FirstCity-SecondCity, SecondCity-ThirdCity, ThirdCity-FirstCity)
CityAverageList.RemoveAll (FirstCity|SecondCity|ThirdCity)
While CityAverageList. Length>0
Begin
Set City=CityAverageList [0]
Set Calculate City=Select Shortest City from CityLinkList according to City
Set Link City=GetLinkCityWithMinimumCost (Calculate City, CityLinkList)
CityLinkList. Add (LinkCity.FromCity-City)
CityLinkList. Add (City-LinkCity.ToCity)
CityLinkList. Remove (Link City)
CityAveragelist.Remove (City)
End
\}

3.4.2. Sample analysis

The list used in Close Couple and Worm Algorithms before is used as an example. Average list is formed by using the list determined as an example.

Cities	Ankara	Istanbul	Izmir	Antalya	Average
Ankara	0	453	585	537	$1575 / 3=525$
Istanbul	453	0	563	723	$1739 / 3=579$
Izmir	585	563	0	465	$1613 / 3=537$
Antalya	537	723	465	0	$1725 / 3=575$

Table 5 Spider Web Algorithm Sample City Table

Reference point is determined according to the average value and other point is determined according to the reference point.

Reference point: Ankara
Izmir which is the farthest point to the reference point is start point
Istanbul which is the farthest point to start point is finish point
Out of reference, start and finish points Antalya which has the highest average point is determined as the middle point.

The imaginative picture is as it is below.

Figure 1 Spider Web Algorithm reference points

As Ankara is the remaining city, the calculation is done for Ankara.
Istanbul is determined as the closest city to Ankara.
The places to add are determined according to Istanbul.
Istanbul / Antalya or Istanbul / Izmir.

Figure 2 Spider Web Algorithm the determination of the alternative points

The cost of the roads to add is calculated.

Here the cost of two roads s calculated.
Addition cost of Istanbul/Antalya

$$
\text { Istanbul } \rightarrow \text { Ankara } \rightarrow \text { Antalya }- \text { Istanbul } \rightarrow \text { Antalya }=(453+537)-723=267
$$

The cost of Istanbul / Izmir

$$
\text { Istanbul } \rightarrow \text { Ankara } \rightarrow \text { Izmir }- \text { Istanbul } \rightarrow \text { Izmir }=(453+585)-563=475
$$

According to the cost calculation, addition of Ankara between Istanbul \rightarrow Antalya effects the distance less. In this case new situation is as it is below.

Figure 3 Spider Web Algorithm the calculation of the points

Algorithm is completed as there is no other city.

The most optimum way is determined like this:

Iteration Number	Formation of Points		Explanation		
$\# 1$	Izmir	Istanbul	Determination of the start and finish points according to the reference		
$\# 2$	Izmir	Antalya	Istanbul		Determination of the
:---					
middle point					

Table 6 Spider Web Algorithm Iteration Table

CHAPTER 4

EVALUATION OF THE ALGORITHMS AND THE RESULTS

4.1. Testing Environment

For the evaluation of the algorithms developed within this thesis the computer which has the hardware and software features below is used.

Operating System	Windows 7
CPU	Intel Core I3-2.5 GHz
RAM	4 GB
HDD	500 GB

Table 7 Algorithm Evaluation Environment

4.2. Data Set

Two data sets have been formed during the evaluation of the algorithms.

4.2.1. Cities data set

It has been used to calculate the Distance Rate of the values acquired from the algorithms via Brute-Force Method.

In this context the provinces of Turkey and the distance list of them has been used as the points. The values in The Map of Turkish Republic General Directorate of Highways are used as the reference data set for this.

Table 8 General Directorate of Highways the Distance Table between Cities

Afterwards on the determined cities in different combinations 1000 data have been formed. Besides as the Brute-Force Method is going to be used, the perspective of data formed has been increased by using the highest city number $(4,5,6,7,8,9,10)$ to be calculated.

4.2.2. Random data set

It has been used to speed values are compared by using more points for comparison of algorithms with each other. Within this context a runtime $n \times n$ matrix has been formed by the preparation of an application and values between 1-1000 have been assigned to the matrix. It has been tried to reach the top level value with the values $8,16,32,64,128$ until reaching this matrix value.

An interface has been prepared to form random data set. The parameters and the explanations used in the interface are indicated below.

Matrix Size: The size of the matrix to be formed is entered. For example when 2050 value is entered 2050×2050 matrix forms.

Random Start Value: is the value to be assigned to the entered matrix.
Random Stop Value: is value of random finished value to be assigned to the matrix. For example when Random Start Value equal to 1 and Random Stop Value is equal to 1000, the values of the elements in the matrix form random values are between 1-1000.

Sample Rate Value: Algorithm repeat value. After that this value using for calculation of average time.

Combination Value: 8, 16, 32, 64, 128, 256, 1024, 2048 according to the given matrix value the combination list is formed starting from 8 and increasing it twice each time up to the matrix size.

Total Duration (ms): It indicates the passing time according to the given Sample Rate value.

Average Duration (ms): Average time which is found by dividing total time by Sample Rate.

The durations which occur are tested for each algorithm and their speed values are recorded. Finally the algorithms chosen from the application are compared in terms of result and speed in the same matrix values and the distance values are recorded.

4.3. The Evaluation Method

The algorithms developed within the thesis have been evaluated passing through the methods and processes below.

A- Algorithms have been compared with Brute-Force method by using Cities Data Set. In this context the algorithms results and Brute-Force Method results have been compared and Distance Accept Rate values have been calculated.

B- Algorithms have been exposed to speed test in high point numbers by using Random Data Set. Then the speeds of the algorithms have been identified.
C- The algorithms which have been studied according to Distance Rate and Speed Values have been evaluated again and the number of the algorithms has been reduced to 2.

D- Determined two algorithms have been evaluated with more point numbers with each other in terms of both speed and result. After the evaluation the number of the algorithm is reduced to 1 .
E- Revisions on the determined algorithms with various modifications have been made in terms of speed and result .Then the former and the latter versions have been evaluated and the development has been recorded.

4.4. Evaluation Results

The obtained results according to the evaluation method above are given in this section.

4.4.1 The evaluation of the algorithms according to the brute-force method The Measurement of the Algorithms Time Tick Values

Satır Etiketleri \mathbf{T} Ortalama Spider_Web_Elapsed_Tick	Ortalama Warm_Elapsed_Tick	Ortalama Close_Couple_Elapsed_Tick	
4	61,655	47,407	546,507
5	112,756	104,45	640,802
6	64,289	62,652	1050,475
7	70,487	81,207	1460,881
8	81,037	102,295	1754,367
9	96,862	130,646	2278,851
10	106,358	140,191	3180,848
Genel Toplam	$\mathbf{8 4 , 7 7 7 7 1 4 2 9}$	$\mathbf{9 5 , 5 4 9 7 1 4 2 9}$	$\mathbf{1 5 5 8 , 9 6 1 5 7 1}$

Table 9 Time Tick Result Table of the Algorithms
The average durations of the Algorithms on data set have been measured through Time Tick values.

Figure 4 Time tick graphical representation of the algorithms
Spider Web Algorithm has been observed faster than other algorithms according to the Cities Data Set.

The Measurement of the Algorithms Distance Values

Satır Etiketleri	ute_Force	Ortalama Result_Distance_Rate_Warm_Brute_Force	Ortalama Result_Distance_Rate_Close_Couple_Brute_Force
4	1,0027943	1,0225237	1,003988
5	1,0163799	1,0501504	1,0140388
6	1,0282154	1,0696755	1,02313
7	1,0424771	1,0890806	1,0305808
8	1,0552811	1,1065926	1,0410604
9	1,0604559	1,1226016	1,0535207
10	1,0692467	1,1264102	1,0581866
Genel Toplam	1,039264343	1,083862086	1,032072186

Table 10 Distance Rate Result Table of the Algorithms

The distances that the algorithms produced have been measured according to Brute Force Distances. Within this context Distance Rate has been calculated.

$$
\text { Distance Rate }=\text { Algorithm Distance } / \text { Brute }- \text { Force Distance }
$$

Figure 5 Distance rate graphical representation of the algorithms

When Distance Rate values compared, the values that the Close Couple Algorithm produced it has been observed that they are better than the other algorithms.

The Measurement of the Algorithms Target Values

4	945	571	914
5	736	384	757
6	601	287	627
7	513	206	520
8	443	155	470
9	393	127	351
10	330	96	293
Genel Toplam	3961	1826	3932

Table 11 Result Table of the Algorithms Target Values

The Target values produced by algorithms have been calculated. For every point number the distance values produced by Brute Force have been compared with the values produced by algorithms and for the values that are same Target Value has been increased by 1 . The value of being the same has been found for 1000 sample.

Target Value $=$ COUNT $($ IF $($ Algorithm Distance $=$ Brute Force Distance $))$

Figure 6 Target values graphical representation of the algorithms
According to the Target Values it has been observed that the values of Spider Web Algorithm are better than other algorithms.

The Evaluation of the Algorithms According to the Brute-Force Method

Algorithm Name	Time_Tick	Difference	Target
Spider Web	$\underline{1}$	$\underline{2}$	$\underline{1}$
Worm	$\underline{2}$	$\underline{3}$	$\underline{3}$
Close Couple	$\underline{3}$	$\underline{1}$	$\underline{2}$

Table 12 The Table of the Evaluation of the Algorithms With Data Set

When the values obtained by algorithms are compared with the values obtained by Brute Force Method;
A. In terms of Distance Values, it has been observed that Close Couple Algorithm produced better result when compared with other algorithms,
B. In terms of Target and Speed Values, it has been observed that Spider Web Algorithm produced better result when compared with other algorithms.

Within the scope of these results it has been decided to work through Spider Web and Close Couple Algorithms for the evaluation process via Random data set.

4.4.2 The evaluation of the algorithms with random data set

The duration and the results of Spider Web and Close Couple Algorithms have been compared using random matrix that has been produced.

The Comparison of the Algorithms Durations

Satır Etiketleri	$\boldsymbol{\gamma}$	Ortalama Spider_Web_Elapsed_Time	Ortalama Close_Couple_Elapsed_Time
4	0,144	0,479	
8	0,031	0,179	
16	0,034	8,318	
32	0,005	113,723	
64	0,322	1757,434	
128	4,292	25490,964	
Genel Toplam	$\mathbf{0 , 8 0 4 6 6 6 6 6 7}$	$\mathbf{4 5 6 1 , 8 4 9 5}$	

Table 13 Elapsed Time Result Table of the Algorithms
Spider Web and Close Couple Algorithms have been compared in terms of the passing time. The average duration of the Close Couple Algorithm has been identified as $O\left(n^{4}\right)$ according to the values obtained as a result of the comparison.

Figure 7 Elapsed time graphical representation of the algorithms
When it is evaluated in terms of the passing time, it has been observed that Spider Web Algorithm is faster than Close Couple Algorithm.

The Comparison of Algorithms Distances

Satır Etiketleri		
7	Ortalama Spider_Web_Distance	Ortalama Close_Couple_Distance
4	1890,832	1890,965
8	2773,508	2760,974
16	3867,129	3814,249
32	5545,529	5444,902
64	8194,974	7822,868
128	12094,782	11290,398
Genel Toplam	$\mathbf{5 7 2 7 , 7 9 2 3 3 3}$	$\mathbf{5 5 0 4 , 0 5 9 3 3 3}$

Table 14 Distance Value of the Algorithms Result Table
Algorithms have been compared according to the distance values which have been obtained according to the point numbers.

Figure 8 Distance values graphical representation of the algorithms

According to the distance that has been obtained, it has been observed that Close Couple Algorithm has produced better results.

The Evaluation of the Algorithms with Random Data Set

When the values obtained by algorithms compared with each other on Random Data Set, it has been observed that;

A- In terms of speed values Spider Web Algorithm was 5700 times faster,
B- In terms of distance values that have been produced, Close Couple Algorithm \% 4 better values than Spider Algorithm.

According to these results for development and revision of the algorithm it has been decided to work on Spider Web Algorithm.

4.4.3 The development of the Spider Web Algorithm and evaluation of the results

Spider Web Algorithm has been evaluated again in terms of speed and values and algorithm has been improved by various changes and updates. Within this context Spider Web Second edition (SW2) and Spider Web third edition (SW3) algorithms have been developed. The newly developed algorithms have been compared.

The Comparison of the Algorithms Duration with Brute - Force Method

Satır Etiketleri	Ortalama Spider_Web_Elapsed_Tick	Ortalama Spider_Web_Second_Elapsed_Tick	Ortalama Spider_Web_Third_Elapsed_Tick
4	61,655	127,589	159,139
5	112,756	58,749	71,678
6	64,289	61,97	79,918
7	70,487	66,82	90,121
8	81,037	86,091	102,275
9	96,862	85,46	126,771
10	106,358	108,01	123,703
Genel Toplam	$\mathbf{8 4 , 7 7 7 7 1 4 2 9}$	$\mathbf{8 4 , 9 5 5 5 7 1 4 3}$	$\mathbf{1 0 7 , 6 5 7 8 5 7 1}$

Table 15 Time Tick Result Table of the Spider Web Algorithm The passing time Spider Web Algorithm has been compared via Time Tick values.

Figure 9 Graphical representations of the Spider Web Algorithm time tick values According to Bruce Force Data Set it has been observed that Spider Web Algorithm is faster than other algorithms. It has been observed that the developed Spider Web third edition algorithm is \% 27 slower.

The Comparison of the Algorithms Target Values via Brute - Force Method

Satır Etiketleri	Toplam Result_Target_Spider_Web	Toplam Result_Target_Spider_Web_Second	Toplam Result_Target_Spider_Web_Third
4	945	1000	1000
5	736	819	985
6	601	665	952
7	513	545	872
8	443	468	807
9	393	372	739
10	330	317	659
Genel Toplam	3961	4186	6014

Table 16 Spider Web Algorithm Target Resut Table

The developed agorithms have been compared according to Target values.

Figure 10 Graphical representation of the Spider Web Algorithm target values
\% 51 improvement has been observed on the Target values of the developed Spider Web Third Edition Algorithm.

The Comparison of the Algorithms Distance Rate Values via Brute - Force Method

Satır Etiketleri	Ortalama Result_Distance_Rate_Ortalama Result_Distance_Rate_Spider_Web_Second_Ortalama Result_Distance_Rate_Spider_Web_Third_Brute_Force		
	1,0027943	1	1
5	1,0163799	1,0055671	1,0000562
6	1,0282154	1,0096207	1,0008291
7	1,0424771	1,0154497	1,0037574
8	1,0552811	1,0204048	1,0063955
9	1,0604559	1,0229865	1,0089291
10	1,0692467	1,0273579	1,0121528
Genel Toplam	1,039264343	1,014483814	1,004588586

Table 17 Distance Rate Result Table of Spider Web Algorithm

The developed algorithms have been compared according to the Distance Rate values.

Figure 11 Graphical representation of the Spider Web Algorithm distance rate values

It has been observed that Spider Web Third Edition Distance Rate Value has reached 1.004 over the average values.

The Comparison of the Algorithms Duration

Satır Etiketleri			
\boldsymbol{T}	Ortalama Spider_Web_Elapsed_Tick	Ortalama Spider_Web_Second_Elapsed_Tick	Ortalama Spider_Web_Third_Elapsed_Tick
4	115,632	22474,135	86,201
8	73,141	71,399	123,562
16	169,981	158,074	270,909
32	517,775	491,42	792,18
64	1808,381	1444,248	2392,525
128	7192,05	6201,322	9440,814
256	39332,755	31111,618	41171,021
512	182187,708	153119,128	180938,472
Genel Toplam	$\mathbf{2 8 9 2 4 , 6 7 7 8 8}$	$\mathbf{2 6 8 8 3}$	$\mathbf{2 9 4 0 1 8}$

Table 18 Spider Web Algorithm Elapsed Tick Result Table

The developed algorithms have been compared with Time Tick values via Random Data Set. The average duration of the Spider Web Algorithms has been identified as $O\left(n^{2}\right)$ as a result of the comparison according to the acquired values.

Figure 12 Graphical representation of the Spider Web Algorithm elapsed tick

It has been observed that Spider Web Third Edition algorithm is $\% 1$ slower than other algorithms.

The Comparison of the Algorithms Distance

Satır Etiketleri	$\boldsymbol{\Psi}$	Ortalama Spider_Web_Distance	Ortalama Spider_Web_Second_Distance	Ortalama Spider_Web_Third_Distance
4	1903,332	1897,721	1897,721	
8	2761,663	2684,935	2651,372	
16	3877,568	3647,464	3596,938	
32	5560,671	5101,214	5067,72	
64	8203,218	7454,534	7353,034	
128	12108,01	10995,582	10855,728	
256	17647,098	16135,74	16070,393	
512	25653,768	23665,85	23685,303	
Genel Toplam	$\mathbf{9 7 1 4 , 4 1 6}$	$\mathbf{8 9 4 7 , 8 8}$	$\mathbf{8 8 9 7 , 2 7 6 1 2 5}$	

Table 19 Spider Web Algorithm Distance Result Table

The algorithms developed have been compared according to the distances that they have produced.

Figure 13 Graphical representation of the Spider Web Algorithm distance

It has been observed that $\% 9$ better results have been acquired with Spider Web Third Edition algorithm over distance values.

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis aimed to find the optimum solution of TSP problem. Three different algorithms are proposed and developed with different perspectives. Both Close Couple and Worm Algorithms search the optimum solution, starting from the closest points. Spider Web Algorithm tries to reach the optimum solution with the reference data that it has acquired from the farthest points.

The developed algorithms have been evaluated with two different data sets. In the first data set (cities in Turkey) the distances between them have been used as database. The second data set has been formed by using random value intervals within identified matrix size and the speeds of the algorithms and the quality of the results that produced have been compared. Also finding the optimum and the fastest result of the symmetrical TSP problem are achieved.

A progressive evaluation has been used for improvement and revision of the algorithms. In the first stage, the results of all algorithms have been compared by using City Data Set and Brute-Force Method. As a result of this comparison, in terms of Distance Rate Close Couple algorithm and in terms of speed Spider Web Algorithm gained better score than Worm Algorithm. After this stage Worm Algorithm has been eliminated.

In the second stage, using Random Data Set. The performance of Close Couple and Spider Web Algorithms has been measured via high matrix and point numbers.Within this context while Close Coupe produces $\% 4$ better result, Spider Web Algorithm has been produced 5700 times faster than Close Couple Algorithm. After this stage Close Couple Algorithm has been eliminated.

In the third stage optimization of Spider Web Algorithm (SW1) has been done. Within this context (SW2) and (SW3) algorithms have been tested with Spider Web algorithms. In this stage the developed Spider Web algorithms have been evaluated through both Cites Data Set and Random Data Set. At this point, Spider Web Third Edition (SW3) with its low distance rate and high Target Value on the Random Data Set has given better results than other versions.

According to the Random Data Set results Spider Web Third Edition Algorithm (SW3) has produced 9\% better results compared with Spider Web First Edition Algorithm (SW1) but only 1% slower than Spider Web First Edition Algorithm (SW1). Spider Web Third Edition algorithm has been formed with different data sets and gradual evaluation.

5.2. Future Work

We plan to:

- Use the algorithm in a Discrete and Combinatorial Optimization Library (TSPLIB).
- Implement same algorithm on Asymmetric TSP.
- Adopt for the Time-Dependent-Distance problems in order to be use for the purpose of solving the problems like day time deliveries and traffic jam in transportation sector.

REFERENCES

1. Renaud J., Boctor F. F., Ouenniche J., (2000), "A Heuristic for the Pickup and Delivery Traveling Salesman Problem", Computers \& Operations Research vol 27, pp. 905-916.
2. Lin S., Kernighan B. W., (1973), "An Effective Heuristic Algorithm for the Traveling-Salesman Problem", Operation Research., vol 52, pp. 498-516.
3. Menger K., (1932), "Das Botenproblem", Ergebnisse Eines Mathematischen Kolloquiums. Teubner, Leipzig, pp.11-12.
4. G. Gutin Yeo A., Zverovich A., (2002), "Traveling Salesman should not be Greedy: Domination Analysis of Greedy-type Heuristics for the TSP", Discrete Applied Mathematics, pp. 81-86.
5. Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G., Shmoys D.B., (1985), "The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization", Wiley, New York, pp. 87-143.
6. Helsagun K., (2000), "Theory and Methodology An Efective Implementation of the Lin-Kernighan Traveling Salesman Heuristic", European Journal of Operational Resarch, vol 126, pp. 106-130.
7. Padberg, M.W., Rinaldi G., (1991), "A Branch-and-cut Algorithm for the Resolution of Large-scale Symmetric Traveling Salesman Problems", SIAM Review 33, pp. 60-100.
8. Applegate D., Bixby R. Chvatal V., Cook W., (1995), "Finding cuts in the TSP (A preliminary report)", DIMACS, Tech. Report 95-05, pp. 15-26.
9. Bentley J.L., (1990), "Experiments on Traveling Salesman Herustics", SIAM Philadelphia, PA, pp. 91-99.
10. Nilsson C., (2003), "Heuristics for the Traveling Salesman Problem", Techical Report, Linköping University, Sweden, pp. 2-4.
11. Jünger M., Reinelt G., Rinaldi G., (1994), "The Traveling Salesman Problem",Wiley,New York, pp 199-221.
12. Hoffman K. L., Padberg M., Rinaldi G., (2001), "Traveling Salesman Problem", Kluwer Academic Publishers, pp. 5-6.

APPENDICES A

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kaya, Ahmet Sedat
Date and Place of Birth: 23 March 1978, Ankara
Marital Status: Married

Phone: +90 5332054189
Email: ahmetsedatkaya@gmail.com

EDUCATION

Degree	Institution	Year of Graduation
M.Sc.	Çankaya University, Computer Engineering	$2013-\ldots$
B.A.	Anadolu University, Public Administration	2005
Two Year Degree	Kırıkkale University, Computer Programming	1998

WORK EXPERIENCE

Year	Place	Enrollment
2014- Present	TÜBİTAK.	Specialist
$2011-2014$	Natek	Software and Quality Manager
$2009-2011$	Stratek	Software Engineer
$2007-2009$	BDI-Erkom.	Software Manager
$2004-2007$	Siemens Business Services.	Software Specialist
$1999-2004$		

FOREIN LANGUAGES

English

PROJECTS

1. Common Criteria EAL Level 3 for Natek NAC Product, 2014.
2. CMMI-Dev v.1.3 Maturity Level 3 for Natek, 2012.
3. Ext JS Framework, 2011.
4. Management Project, (Ministry of Finance), 2010
5. SGB.Net, (Ministry of Finance), 2010
6. Seed Project, (European Union Project, Ministry of Agriculture), 2009
7. E-Sign Implementation (EJBCA Enterprise class PKI Certificate Authority), 2008
8. Data Center Project (Ministry of Industry), 2006
9. BI2PRS (Business Intelligence for Product Related Services), 2004
10. WRS(Web Reporting System), 2003
11. RMS(Request Management System), 2002
12. Halkbank VOIP Project, 2000

HOBBIES

Reading, Research, Travel

