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Abstract. This manuscript is involved with a class of second-order impulsive partial functional integro-
differential evolution equations with nonlocal conditions in Banach spaces. Sufficient conditions ensuring
the existence and approximate controllability of mild solutions are established. Theory of cosine family,
Banach contraction principle and Leray-Schauder nonlinear alternative fixed point theorem are employed
for achieving the required results. An example is analyzed to illustrate the effectiveness of the outcome.

1. Introduction

In this manuscript, we initially look at the next second order nonlocal impulsive partial functional
integro-differential evolution systems of the model

t
u’(t) = o (Hu(t) + .7 (t,u(&(t)), . ,u(én(f)),fo ka(t, Sru(ém(S)))dS)

t
+§¢(t, M(Cl(f))/---/M(Cp(f)),f kz(f,SrM(Cpu(S)))dS), (1.1)
0
te 7 =[0b],t#t,k=12,...,m,
u(0) = up +g(u), u'(0) =1up+q(u), (1.2)
Au(ty) = I(u(ty)), Au’(tk) = fk(u(tk)), k=1,2,...,m, (1.3)

where the unknown u(-) takes values in the Banach space X, and &/ (t) : 2(#/(t)) € X — Xis a closed
linear operator ona Banachspace X;0 =ty < t; <ty < -+ <ty < ty41 = b, are prefixed points and the symbol
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Au(ty) = u(t)) —ulty), Au'(tx) = w'(t]) — uw'(t;), where u(t]), u(t,) and u'(t]), u’(t,) are represent the right and
left limits of u(t) and u’(t) at t = #, respectively. .Z(-),4(-), ki(:), k2(-), 9(-), 9(-), Ik (), I(),&,i=1,2,...,n+1
and ¢, [ =1,...,p + 1, are apposite functions to be identified afterwards.

The principle of impulsive differential equations (IDEs) in the discipline of current applied mathematics
has become an dynamic area of research in the past few years, for the reason that several physical systems
and realistic mathematical models are subjects to abrupt change at certain moments. IDEs occur naturally
from a vast range of applications, such as spacecraft control, electrical engineering, medicine biology,
echoing, and so on. For additional aspect on this theory and its applications, we refer to [1, 7, 10, 11,
16, 18, 22, 30, 32, 36, 42, 43] and references therein. In the past few years, impulsive integro-differential
equations have grown to be an important area of research simply because of their applications to diverse
problems coming up in communications, control technology, impact mechanics and electrical engineering.
However, the corresponding theory of impulsive integro-differential equations in abstract spaces is still in
its developing stage and many aspects of the theory remain to be addressed.

The notion of controllability brings to some crucial findings concerning the behavior of linear and
nonlinear dynamical systems. Almost all of the practical systems are nonlinear in nature and for this reason
the study of nonlinear systems is significant. For the fundamental concept on evolution system, the reader
is referred to Tanabe’s book (see [37]). The controllability problem for evolution system consists in driving
the state of the system (the solution of the controlled equation under consideration) to a prescribed final
target in finite time (exactly or in some approximate way). Hence this is a stronger notion of controllability.
For classical nonlinear control system the fixed point methods are widely used as a tool to study the
controllability problem [6, 12, 15, 19, 23, 26, 28, 34, 40, 41]. In the mathematical perspective, the issues
of exact and approximate controllability are to be distinguished. Exact controllability allows to steer
the system to arbitrary final state while approximate controllability signifies that the system is usually
steered to arbitrary small neighborhood of final state. Especially, approximate controllable systems are
more common and frequently approximate controllability is fully acceptable in applications. There are
actually a lot of papers on the exact and approximate controllability of the different kinds of nonlinear
systems under various hypotheses (see for instance [9, 10, 25, 27, 31, 33, 44] and references cited therein).
Second-order differential and integro-differential equations provide as an theoretical formulation of several
integro-differential equations which occur in problems linked with the transverse motion of an extensible
beam, the vibration of hinged bars and various other physical phenomena. So it is very huge to concentrate
the controllability issue for such systems in Banach spaces.

The literary works relevant to existence and controllability of second-order systems with impulses
continues to be restricted. Chang et al. [11] analyzed the existence of mild solutions for a second order
impulsive neutral functional differential equations with state-dependent delay by using a fixed point
theorem for condensing maps combined with theories of a strongly continuous cosine family of bounded
linear operators. Zhang et al. [45] established the sufficient conditions for the controllability of second-
order semilinear impulsive stochastic neutral functional evolution equations by using Sadovskii’s fixed
point theorem. Sakthivel et al. [34] studied the controllability of second-order impulsive systems in
Banach spaces without imposing the compactness condition on the cosine family of operators under Banach
contraction mapping principle. In [1-5], the authors discussed the different types of second-order impulsive
differential systems with different conditions on the given functions. The results are obtained by using the
classical fixed point theorems. Dimplekumar N. Chalishajar [8] analyzed the controllability of a partial
neutral functional differential inclusion of second order with impulse effect and infinite delay without
assuming the compactness conditions of the family of cosine operators and also author introduced a new
phase space axioms to derive the results. Lately, Meili Li and Junling Ma [23] studied the approximate
controllability of second order impulsive functional differential systems with infinite delay in Banach spaces.
Sufficient conditions are formulated and proved for the approximate controllability of such system under
the assumption that the associated linear part of system is approximately controllable. However, it needs
to be pointed out, to the best of our knowledge, the existence and approximate controllability results for
second-order impulsive partial functional integro-differential evolution equations with nonlocal conditions
of the form (1.1)-(1.3) has not been examined yet. According to fixed point techniques, the proposed work
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in this manuscript on the second-order functional integro-differential evolution systems with nonlocal and
impulsive conditions is new in the literature. This fact is the important objective of this work.

The structure of this manuscript is as per the following. In Section 2, some fundamental certainties are
reviewed. Section 3 is dedicated to the existence of mild solutions to problem (1.1)-(1.3). The approximate
controllability result is shown in Section 4. In Section 5, a case is given to delineate our outcomes.

2. Preliminaries

In this section, we review some fundamental concepts, notations, and properties required to establish
our main results.
Nowadays there has been an increasing interest in studying the abstract non-autonomous second order
initial value problem
x(f) =/ (H)x(t) + f(t), 0<s,t<b, (1)
x(s) =xo, ¥'(s) = yo, )
where o7/ (t) : 2(H(t)) C X — X, t € ¢ =[0,b] is a closed densely defined operator and f : ¢ — Xisan
appropriate function. Equations of this type have been considered in many papers. The reader is referred
to [24, 29] and the references mentioned in these works. In the most of works, the existence of solutions

to the problem (2.1)-(2.2) is related to the existence of an evolution operator S(¢,s) for the homogeneous
equation

x'(H) =/ (H)x(t), 0<s,t<b, 3)

Let as assume that the domain of .27(t) is a subspace Z dense in X and independent of ¢, and for each x € ¥
the function ¢t — &/ (t)x is continuous.
Following Kozak [21], in this work we will use the following concept of evolution operator.

Definition 2.1. A family S of bounded linear operators S(t,s) : 7 x ¢ — L(X) is called an evolution operator for
(2.3) if the following conditions are satisfied:

(Z1) For each x € X, the mapping [0,b] X [0,b] 3 (t,5) — S(t,s)x € Xis of class C! and
(i) foreacht e[0,b], S(t,t)=0,
(ii) forallt,s € [0,b], and for each x € X,
d d
;S(t, S)x Y %S(t,s)x =X

The equalities (ii) cannot be true unless x = 0.

(Z2) Forallt,s €[0,b], if x € D(F), then S(t,s)x € D(), the mapping [0,b] X [0,b] > (t,5) — S(t,s)x € Xis of
class C? and

(i) Z5S(t,x)x = o/ ()S(t,5)x,
(if) Z5S(t,x)x = S(t,5) (s)x,
(iii) £ 2S(t,x)x =0
(Z3) Forallt,s €[0,b], if x € 2(<), then 2S(t,s)x € D7), then 95 2S(t,5)x, L= 2 S(t,s)x and
(i) Z525(t,s)x = o (H)ZS(t,5)x,
(ii) & 2S(t,s)x = 25(t,5) (s)x,
and the mapping [0,b] x [0,b] > (t,5) — sz(t)g—SS(t,s)x is continuous.
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Throughout this work we assume that there exists an evolution operator 5(t, s) associated to the operator
&/ (t). To abbreviate the text, we introduce the operator C(t,s) = —%. In addition, we set M; and M, for

positive constants such that sup [|S(t,s)|| < ]\712 and sup [|IC(t,s)|| < 2\711. Furthermore, we denote by N;a
0<t,s<b 0<t,s<b
positive constant such that

ISt +1,5) = S(t, )|l < Nah,

foralls,t,t +h € [0,b]. Assuming that f : ¢ — Xis an integrable function, the mild solution x : [0,b] — X
of the problem (2.1)-(2.2) is given by

t
x(t) = C(t,s)xo + S(t,5)y0 + f S(t, T)h(t)dT.
0

In the literature several techniques have been discussed to establish the existence of the evolution
operator S(-,-). In particular, a very studied situation is that <7 (t) is the perturbation of an operator < that
generates a cosine operator function. For this reason, below we briefly review some essential properties
of the theory of cosine functions. Let & : Z(&/) € X — X be the infinitesimal generator of a strongly
continuous cosine family of bounded linear operators (C(t)):cr on a Banach space X. We denote by (5(t))ter
the sine function associated with (C(t));eg which is defined by

t
S(t)x = f C(s)xds, xeX, telR
0

We refer the reader to [14, 38, 39] for the necessary concepts about cosine functions. Next we only
mention a few results and notations about this matter needed to establish our results. It is immediate that

t
ClH)x—x = ng/’f 5(s)xds,
0

for all X. The notation [Z(47)] stands for the domain of the operator &7 endowed with the graph norm
llxller = llxl| + |l x]l, x € Z(&/). Moreover, in this paper the notation E stands for the space formed by the
vectors x € X for which the function C(-)x is a class C! on R. It was proved by Kisynski [20] that the space
E endowed with the norm

llxlle = llxll + sup [l S(H)xll, x € E,

0<t<1

is a Banach space. The operator valued function

_| e SO
G() ‘| S Clt) }

A0
defined on Z(«/) x E. It follows from this that «/S(t) : E — X is a bounded linear operator such that

AS(t)x — 0ast — 0, for each x € E. Furthermore, if x : [0,00) — X is a locally integrable function, then
t

z(t) = S(t, s)x(s)ds defines an E-valued continuous function.

is a strongly continuous group of linear operators on the space ExX generated by the operator A = [ 0 1 ]

0
The existence of solutions for the second order abstract Cauchy problem

x"(H) =Ax(t) + h(t), 0<t<b, 4)
x(0) =xo, '(0) = yo, 5)



M. Nagaraj et al. / Filomat 33:18 (2019), 5887-5912 5891

where 1 : [0,b] — Xis an integrable function, has been discussed in [38]. Similarly, the existence of solutions
of the semilinear second order Cauchy problem it has been treated in [39]. We only mention here that the
function x(-) given by

t
x(t) = C(t —s)xg + S(t — s)yo + f S(t—t)h(t)dt, 0<t<D, (6)
S
is called the mild solution of (2.4)-(2.5) and that when x, € E, x(-) is continuously differentiable and
¢
xX'(t) = S(t - s)xp + C(t —s)yo + f C(t—1h(t)dr, 0<t<b.
S

In addition, if xy € Z(&7), yo € E and f is a continuously differentiable function, then the function x(') is a
solution of the initial value problem (2.4)-(2.5).

Assume now that #7(t) = &/ + B(t) where B(-) : R — L(E, X) is a map such that the function t — E(t)x
is continuously differentiable in X for each x € E. It has been established by Serizawa [35] that for each
(x0, y0) € 2(«/) X E the nonautonomous abstract Cauchy problem

X’(H) =( + B(t)x(t), teR, 7)
x(0) =xo, x’(0) = yo, (8)

has a unique solution x(-) such that the function t - x(t) is continuously differentiable in E. It is clear that
the same argument allows us to conclude that equation (2.7) with the initial condition (2.5) has a unique
solution x(-, s) such that the function ¢ - x(t, s) is continuously differentiable in E. It follows from (2.6) that

x(t,s) = C(t — s)xo + S(t = s)yo + f S(t— ’C)E(T)X(T,S)d’[.

In particular, for xp = 0 we have

x(t,s) = S(t — s)yo + f S(t — 7)B(1)x(7, 5)d.

Consequently,

t
llx(t, )l < IS¢ = $)ll e p)llyoll +f IS = )l £ B IB(ON £ pyllx(s, Tl dT.
and, applying the Gronwall-Bellman lemma we infer that

Ix(t, s)ll < Mllyoll, s, tel

We define the operator S(t,s)yo = x(t,s). 1t follows from the previous estimate that 5(t, s) is a bounded
linear map on E. Since E is dense in X, we can extend 5(t,5) to X. We keep the notation S(t,s) for this
extension. It is well known that, except in the case dim(X) < oo, the cosine function C(t) cannot be compact
for all t € IR. By contrast, for the cosine functions that arise in specific applications, the sine function S(¢) is
very often a compact operator for all t € R.

Theorem 2.2. [17, Theorem 1.2]. Under the preceding conditions, S(-,-) is an evolution operator for (7) — (8).
Moreover, if S(t) is compact for all t € R, then S(t,s) is also compact for all s < t.

To consider the impulsive conditions (1.1)-(1.3), it is convenient to introduce some additional concepts
and notations.

A function u : [o,7] — X is said to be a normalized piecewise continuous function on [o, 7] if u is
piecewise continuous and left continuous on (o, t]. We denote by PC([o, 7], X) the space of normalized
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piecewise continuous functions from [o, 7] into X. In particular, we introduce the space C formed by all
normalized piecewise continuous functions u : [0, b] — X such that u is continuous at t # t, k =1,...,m.
It is clear that PC endowed with the norm || u |lpc= sup || u(s) || is a Banach space. Likewise, PC 1 will be
SE
the space of the functions u(-) € PC such that u(-) is continuously differentiableon ¢ —{t; : k=1,2,...,m}
t+s)—u(t* t+s)—u(t”
and the lateral derivatives up(t) = li%q —u( S)S u ), uy(t) = lir(r)l —u( S)S )
s—0* s—0~

on [t, tke1) and (#, tis1], respectively. Next, for u € PC we represent by u’(t) the left derivative at ¢ € (0, b]
and by u’(0) the right derivative at zero.

In what follows, we set t) = 0, t,,+1 = b, and for u € PC we denote by i, for k = 0,1, ..., m, the function
iy € C([tx, k11, X) given by uk(t) = u(t) for t € (i, tir1] and up(ty) = thrﬂ u(t). Moreover, for a set B C PC, we

b

are continuous functions

denote by Ek, fork=0,1,...,m, the set §k = {il; : u € B}.

Lemma 2.3. A set B C PC is relatively compact in PC if, and only if, each set By, k=0,1,...,m,is relatively
compact in C([t;, tiv1],X).
Now, we are in a position to present the mild solution for the system (1.1)-(1.3).

Definition 2.4. A function u(-) € PC(_#,X) is said to be a mild solution to the problem (1.1) — (1.3) if it satisfies
the following integral equation

u(t) = C(t,0)[uto + ()] + S(t, 0)[iTp + G(0)]
t S
¥ fo 5(,9)] (5, (GO, . 1), fo (s, u(Ena (D))

O[5 uCO GO, [ ol (N
+ ) Cl It + Y, S ut), te 7.

0<t<t 0<f<t
The key tool in our approach is the following fixed point theorem.
Lemma 2.5. (Leray-Schauder Nonlinear Alternative [13]) Let X be a Banach space with Z C X closed and convex.
Assume that U is a relatively open subset of Z with 0 € U and Y : U — Z is a compact map. Then either
(i) Y has a fixed point in U, or
(ii) there is a point v € U such that v € AY(v) for some A € (0,1).

3. Existence Results

In this section, we present and prove the existence results for the problem (1.1) — (1.3). In order to utilize
the Lemma 2.5, we need to list the subsequent hypotheses:
(H1) The functions . : ¢ x X" - Xand ¢4 : ¢ x X/*! — X are continuous and there exist constants

Z>0,%>0949 Zo,zzOsuchthatforallxi,y,-eX,i: 1,...,n+landx,yeX, I=1,...,p+1,
we have

n+1

“ y(tr X1,X2,.. '/x‘rl+1) - y(t/ Yi, Y2, yn+1) “ < g(z “xi - ]/z”)
i=1

and

p+1

193,320 i) = Sy, 2 ) I 2 Y = il
=1
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with 4 = max||.Z(t,0,...,0)| and .4 = max||4(t,0,...,0).
te 7 te

(H2) The functions kq,k; : # X _# xX — Xare continuous and we can find constants .4" > 0, N >0, >
0, .4 > 0such that forallx,y € X,

llk1(t, s, x) = ki(t,s, Il < A |lx =yl
and

llka(t, 5, ) = ka(t, s, Yl < A lx — ]

with 4 = max [ki(t,s,0)]l and A = max [lka(t, s, 0)]].
0<s<t<b 0<s<t<b

(H3) The functions &;: 7 — ¢,i=1,...,n+1land (;: # — ¢#,1=1,...,p+1 are continuous functions
such that &i(f) <t, i=1,...,.n+land G(t) <t I=1,...,p+1.
(H4) () Ik € C(X,X), k=1,---,m are all compact operators, and there exist continuous nondecreasing
functions Wy : [0,00) — (0,00), k=1,---,m, such that

IL(w)l] < Wi(lull), for each u € X.

(ii) fk € C(X,X), k =1,--- ,m are all compact operators, and there exist continuous nondecreasing
functions Wy : [0,0) — (0,0), k =1,--- ,m, such that

L)l < We(llull), for each u € X.

(H5) (i) The functiong(-) : PC(_#,X) — Xis continuous and there exists a 6 € (0, t1) such that g(¢) = g(¢)
for any ¢, p € PC(_#,X) with ¢ = ¢ on [6, b].

(i) The functio~n q():PC(7,X) - X 13 continuous and there exists a 6 € (0, 1) such that g(¢) = ﬁ@)
for any ¢, ¢ € PC(_#,X) with ¢ = ¢ on [6, b].

(iii) There is a continuous nondecreasing function A : [0, c0) — (0, 00) such that
3@l < AdliPlipc), ¢ € PC(7,X).
(iv) There is a continuous nondecreasing function A [0, 00) — (0, ) such that
7@ < Adlllpc), ¢ € PC(I,X).
(H6) There exists a constant M* > 0 such that

M*

> 1, 3.1)

el

M.+ M AGE) + 3. W) + Mo A + X %(Aﬁ*)]]
k=1 k=1

where ) = Myb[(Ln+Lp)+W(L N +LN)], M. = Millugll+Molliol[+Mab [b(L.N, + L) + (£ + A)|.

Theorem 3.1. Let u(0),u'(0) € X. If assumptions (H1) — (H6) are fulfilled, then the impulsive nonlocal Cauchy
problem (1.1) — (1.3) has at least one mild solution on 7.

Proof. Let £ = 2M2 [(.,2” n+ 9}7) + (LN + Z. ﬂb] and we introduce in the space PC(_#, X) the equivalent

norm defined as

9lly = sup e ip ()]l
te 7
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Then, it is easy to see that V = (PC(_Z,X),|| - llv) is a Banach space. Fix v € PC(_#,X) and for
te 7,¢ €V, wenow define an operator

(Yop)(B) = C(t, 0)[uo +q(0)] + S(t, 0)[uo +4(v)]

Z Clt, tl(o(t)) + Z S<t, B)Tk(o(H). (32)

O<tp<t O<t<t

Since C(-,0)(up + g(v)) and S(~,0)@o + q(v)) are belongs to PC(_#,X), it follows from (H1) — (H3) that
(Yop)(t) € Viorall p € V. Let p,p € V, we have

D)) — (L) (D
<o fo (9| #(5 PO, -, 9(En(s), fo ki, 7 Gl (D))

—f(s,&a(s)),...,?6<5n<s>>, fo k1<s,r,?q§<<sn+1<1>>>d1)] ds

+ ¢!

t S
56,95, OO, G0, f ka5, BGy (D))
0 0

- 4[5 HEE), DGO, fo fals, 7 GGyt

—_ t —_— —_—
< szfo 6‘%[[”@(51(5)) = PPN+ -+ + [1P(En(5)) = P(En())]

ds

. ] f K15, T, blEnar (T)dT — f K15, T G(Em (D)
0 0

[—)

—_ —~— t —_— P
Vb7 fo 9GO = HEON + -+ + IHGE) - FGE

ds

[—)

. \ f ka5, 7, (D)) f k(s T A (D))
< Mo f -t foéﬂs)supe-foanb(s) PO+ ..
s€ Z

+ %50 sup e ||i(s) — P(s)I| + A f p(Ensa (7)) — $<5n+1<r>>ndf]ds
s€ ¢ 0

f
L7 e-fof[efow sup e~ (s) - pE) + ..
0 s€ 7

+ %50 sup e D 6(s) — )| + N f 9 (Cpe1 (1) = ?q?(cm(T»HdT]ds
s€ ¢ 0

t
<Mz e-fof[nefos sup &2 (s) — DSl + A b1 sup = b(s) — qb(s)ll]ds
0 s€ 7 s€ ?

T fof[pefos sup & 4(s) — d(s)|| + b0 sup e~ L||r(s) — qb(s)n]
0 se # s€ 7
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f
<My | et S)[n sup &2 (s) — D)l + Ab sup % b(s) cp(s)u]ds
sE/ /

+Mz.$f A s’ PSU/}E;@ ~A(s) - POl +«/Vbsu§€’$"sll¢(5) qb(S)II]

< Mo L(n+ NDb) f eI\ — pllyy + ML (p + N D) f e 2G|l — Pl
0 0
t
< Mz[(gn + Lp)+ (LN + fﬂ)b] f e~ 9gs||p — ¢l
0

Mz[(.,zﬂn L o)+ (LN + Zi)b] ~
< ;% ||¢_¢”(Vl te/l

which implies that
TR - (OIS 3110~ Gk, € 7
Thus

Isp = Yodilhy < 316 = Bllv, 6,6 € V.

Therefore, Y, is a strict contraction. By the Banach contraction principle, we conclude that Y, has a
unique fixed point ¢, € V and the equation (3.2) has a unique mild solution on [0, b].
Set

S CORERCT)
W= 006) iftelo,o].

From (3.2), we have
P3(t) = C(t,0)[uo + g(@)] + S(t, 0)[1to + (V)]
+ jO‘ S(t’ S)[g\(s’ ¢5(£1(S))/ ceey (Pi(én(s))f L kl (S/ T, (P5(5n+1 (T)))dT)

# 95 0oGO - GG, [ s T 9(Cyon (D)
0
+ ) Cl @) + ), S b)T(o(t). (33)

O<tr<t O<te<t

Consider the map I' : PCs = PC([0, b], X) — PC;s defined by
To)(t) = ¢5(t), t € [6,b].

We should demonstrate that I fulfills every one of the states of Lemma 2.5. The proof will be given in a
few stages.

Step 1. I' maps bounded sets into bounded sets in £Cs.
In fact, it is sufficient to demonstrate that there exists a positive constant A, such that for each v €
B,(5) : {q) € PCs; sup |l < r} one has ||[I'tv|lpc < As.

O0<t<b
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Let v € B,(0), then for t € (0,b], we have

5Bl < IC(E, 0)[uo + q@)]1II + [IS(E, 0)[1o + g(@)]II

Z Clt, tTk(o(t)| +

O<te<t

Y S T (t0)

O<ty<t

< Mi[lluo + q@ 1 + Mallto + G@)T + My Y (@t + Mo Y (o)l
k=1 k=1

mzfot[

y(sl %(51 (S))r sy (;Z)E;'(En(s))/ foi kl (S/ T, %(én+1(T)))dT)

~ F(s,0,..., O)H 17,0, 0)||]ds
+ M, fo t[ O GO R ) f fals, 7, bo(Cpa (D))
—9(s,0,..., 0)H+||s¢(s,o,..., II]ds

< M liwoll + lg@ Il + Mallfiroll + IG@I + My Y Widllo(ell) + Ma Y | Pe(llotol)
k=1 k=1

- t
+ Mo fo {] sup 16501+ + sup g5

s€(0,] s€(0,b]

+f[IIk1(S,T,¢>5(c§n+1(T)))—k1(S,T,0)II+IIkl(S,T,O)H]dT]+$1}dS
0

+ M fo {2 sup 6z + - + sup 90

s€(0,b] s€(0,b]

+f[||k2(s,7,¢;(cp+1(7)))—kz(s,T,O)ll+||k2(s,r,0)||]d1]+Z}ds
0

< Mi[lluoll + AdRllpc)] + Malllioll + AQRllec)] + My ) Wello(tl) + Mo Y Willlo(t)l)
k=1 k=1

t
+Z\712f { [n sup |lpz(s)Il + b(JV sup |lpz(s)Il + Jl/l]] + ﬁ}ds

5€(0,b] s€(0,b]

+M2 {,?[p sup |lpz(s)Il + b(/ sup |lpz(s)Il + /V] + :?”T} ds

se(0,b] s€(0,b]

< M, + MiA®F) + MoA(r) +M12\Pk(r)+MZZ\I/k(r)
k=1 k=1

t
; Mz[(zn D)+ W LN + .,s&/V)] f sup Ila(s)llds,
0 se(0b]

whereAZ=A711||u0||+A712||50||+A712b[b($m+§ N+ (A4 +Z)].
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Utilizing the Gronwall’s inequality, we obtain

sup [lps(s)ll < e

Mzb[($n+%)+b($W+§ﬂ] [
s€(0,0]

M.+ M| AG) + i i) + Ma| A0) + i \Tfk(r)”.
k=1 k=1
Thus

IFolpe < [M c R [A0 + Y o]« FafAn + Y %(r)]]

k=1 k=1

Step 2. I' is continuous on B,(0).
From (3.2) and (H1) — (H5), we deduce that for v{,v, € B,(9), t € (0, 1],

llp3, () = dg, (Dl

< |IC(t, 0)[g(v1) — q(@)]Il + 11S(, 0)[g(v1) — q(o2)1ll + Z C(t, ti)I(v1(t)

O<t<t
= Y Cl @) + || Y St Tt = Y, S, b)Toa(t)
O<ty<t O<ty<t O<ty<t

t
+f
0

5,9 7(5, 95 €. %(@(s)) f K15, 6 (s (D)

=4[5 9a GO, .G, [ el g G o) o

< Millg(@1) = q@)ll + Mal[g(@n) - Gl + My ) (o1 (t) = Tz (b))l
k=1

+ M, kxml (01 () — T2t + Mo fo t [ucpa (&) = PGl + ..

+ 195, (En(s)) = b, (EaI + fo Ty 5,7 65 (st () — a5,y € (O [
+NLT fo t [nqba(cl(s)) — P GO+ + 1195 (G (6) — D5 (G 6]

al Wt 05, Gpoa () — ols 9 Gpra (D

< Millg(@1) - q@)ll + Mallg(@1) - (o)l + M Z 11 () = T8I

+M2Z||1k (©1(t0) ~ T2t + o Z f sup Iig (5) — 9 @ + ..

s€[0,b]

+ sup [P, (s) = ¢z, (s)I| + e/VfO 5, (Ens1(T)) = %z(énn(f))lldf]ds

s€[0,b]
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P f
a7 fo [ sup 11656 = G5+ -+ sup 166) = G50

s€[0,b] s€[0,b]

7 fo 165, G () = 65, G ()]s

< Millg(@) - q@)ll + Mallgen) - @)l + My Y @1(t0)) = I@a(t)

82 Y lor (1) = Toa + 5122 [ [ sup 1159 = g6
k=1

5€[0,b]

+ Nb sup |65 (5) - %(s)n]ds

s€[0,b]

Va7 f p sup 65,0) =05, 0N+ 7% sup I 9~ Gm Ol

s€[0,b s€[0,b

< Vlg@) - @)l + Z o1 (60) et | + M @) - FE@)
+ Y i) - (el
k=1

t
+ Mz[(.zn L D)+ ULN + Ei)] f sup [l (5) — s, (5)ds.
0 se[0,b]

Using Gronwall’s inequality again, for ¢, v1, v, as above

sup 95, 0) = 05, )
< [Ml[uq(z?i) ~g@N+ Y Wi(er () = x| + Me| 176D - @)
k=1
+ Z 1Tk (o1(t)) — Tk(UZ(tk))”]]enr
k=1

for all t € [0, b], which implies that

ITor ~ Toallpe < [ﬁl[nq(ﬁa ~g@I+ Y er () ~ Teoa(tll| + M 1@ - G@)
k=1

+ ) Mo (8) - Tk<v2<tk>>||]]e",

k=1

for all t € [6,b], v1, v, € B,(). Therefore, I is continuous.
Step 3. I' is a compact operator.

5898

To this end, we consider the decomposition I' = I'y + I';, where I'; and I'; are the operators on B,(0)

defined respectively by

([1)(#) = C(t, 0)[uo + ()] + S(t, 0)[uo + q(©)]
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t S
+ fo tS)/( P5(E1(5)), - - -, P(En(s)), fo k1(s,T,¢a(én+1(T)))dT)ds

" fo 5, 99(5, OGO, -, OG0, fo koo, T, bo(Cpua (DD s, £ € [5,D],

(o)t = Y Clt (o)) + ), S(t t)k(o(t), ¢ € [5,b],

O<te<t O<t<t

We first show that I'; is a compact operator.
(i) I'1(B/(0)) is equicontinuous.
Let 0 <11 < 7 £b,and € > 0 be small, note that

Hf (Sr P5(E109)), - -, P5(En(s)), f(; S k(s, T, p5(Ensa(1)))dT )

sz[n@(él(s)m--+||<z>a<én(s>)||+ fo K15, T, (G (D))dT ]+.$1

< f[ sup [lgs(s)ll + - - + sup [Ip5(s)l| +j; [llk1(s, T, p5(Ens1(T))) = Ka(s, 7, O)|

se[6,b] se[6,b]

k(s T, 0>||1df] L4

se[o,b] se[6,b]

< E{n sup |lgz(s)Il + b | A sup llpz(s)I| + Jﬁ}} +.A4

<Z

(n+ Ab) sup llpz(s)ll + b-M
s€[6,b]

+4

< Lln+ Nb)yr+b M+ L4 =M

and

s§[||¢;<c1(s»n+-~+||q>;(cp<s)>||+ s T OrEpm (O ]+Z

< 037[ sup [|@5(s)Il + - - - + sup |lgz(s)I| + f [llk2(s, T, P5(Cpr1(7))) — ka(s, T, 0)]]
s€[o,b] s€[6,b]
T llka(s, 7, O)II]dT] 7

< -f{p sup |l¢5(s)l| + b[w sup [lpz(s)ll + %1} + 4

s€[6,b] s€[o,b]

< 9{(}? + . Ab) sup [lpz(s)ll + be/d + A

s€[o,b]
< Ll(p + Nb)yr +bM]+ L = M7

<|[#(s 01, ortcaton, fo b5, Ge{Ena (DT = Z(5,0, ..., 0)H+||ff<s,o ..... o)l
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From the above estimations, we have

IT10(72) — T1o(T1)l|
< |I[C(t2,0) = C(t1, 0)1[1o + g(@)]Il + I[S(T2, 0) = S(71, 0)][140 + g()]ll

+ f S(ta, S)J(s G(ELS)), - ., Do(EnS)), f ks, T, ¢~(én+1(7)))d1)ds
- fo " 50,97 (5, 06, .. 0o, f 15,7 GolEnsa (D) s
q f (02, 95, 6@, . Br(G5), f fals, 7 Gy ()i s

- fo (a1, 95, 0G0, . 3G, fo fals 7, 9(Cpra ()t s
< [C(z2, 0) — C(zr, O)l[tto + g@) + (2, 0) — S(r, )0 + F@I

+ f st 9 - st (s s srenon, f 65,7, 9l (D) s

1—€

I
A
o)
J.

[5(2,9) = S(21, 9175, 1), -, 065D, f k15,7, ol () s

512,92 (5, 9619, PolEn), fo 165,79 ()i s

T1—€

[5(t2,9) = S(T1, NI 5, OO, ., DGO, f k(s 5(Cpr (DT s

[5(2,9) = S(21, N[5, G 5N, ., Be(G,6), f fals, 7, Gy (e s

1—€

+f
T1

< I[C(t2,0) = C(71, 0)][uo + g@)]Il + I[S(72, 0) — S(71, 0)][140 + q(@)]I|

+M” f 1S(z2, 5) = S(71,5)llds + M f IS(z2,5) = S(11, 5)llds
0 T1—€

- T2 - T1—€
+ M f 15(72, s)llds + My’ f 15(72, 5) = S(11, 5)llds
T1 0

+ Z\’/\IT f 1S(T2,5) — S(71, 5)||ds + ]\’/\I]*f 1S(T2, s)l|ds.
T1—€ 1

We see that ||[I'19(72)—T'v(71)|| tends to zero independently of v € B,(5) as T,—71 — 0, since the compactness
of the operator S(¢,s) for t —s > 0, implies the continuity in the uniform operator topology. Thus, I'1 maps
B,(6) into an equicontinuous family of the functions.

(ii) The set I'1 (B,(0))(t) is precompact in X.
Let 6 < t < s < bbe fixed and € a real number satisfying 0 < € < t. For v € B,(0), we define

([1ev)(t) = Ct, 0) ug + (@)1 + S(t, 0)[uo + q(0)]

+g(s,qbﬁcl(s)),...,%(C,,(s)), fo kz(s,f,mcpﬂ(f)))w)]ds.

Using the compactness of S(¢,s) for t — s > 0, we deduce that the set {(I'1 cv)(f) : v € B,(0)} is precompact
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v € B,(0) for €,0 < € < t. Moreover, for every v € B,(0) we have
IT10)(f) — T,e0) (D)l
t S
< [ [saof#(sonon..oneon, [ s nosnm@n)

+ g(sr ¢5(Cl (S))/ teey ¢5(Cp(5))/ L kZ(S/ T, ¢5(Cp+1(T)))dT)]

—_ t —_ —_
<M, ft (M + My )ds

—€

ds

< Ry + R Je

Therefore, there are precompact sets arbitrarily close to the set {(I'1v) : v € B,(6)}. Hence the set
{(T'1v) : v € B,(0)} is a precompact in X. It is easy to see that I';(B,(0)) is uniformly bounded. Since we have
shown that I'1(B/(6)) is an equicontinuous collection, by the Arzela-Ascoli theorem, we conclude that I'; is
compact operator.

Next, it stays to check that I'; is also a compact operator. From [11, Theorem 3.2], we observe that I'; is
compact operator and hence I' is a compact operator.

Step 4. We now show that there exists an open set U € PCs with v ¢ AT'v for A € (0,1) and v € JU. Let
A €(0,1) and let v € PC; be a possible solution of v = AI'(v) for some 0 < A < 1. Thus, for each t € (0, 0],

o(t) = Aga(t) = AC(t, 0o +4@)] + AS(t, 0)[1ky + (0)]

o1 [ st 7o 060, [ s m )

S8 A6 55, [ s pe(Cpm 0 s
+A Y Cl k@) +A Y, St k@(®)).

O<tp<t O<tp<t

This suggests by (H1) — (H5) and for each t € (0, b], we have [[o(t)|| < ||p5(f)|| and
llpz(t)ll < IC(E, 0)[uo + q(@)]Il + [IS(t, 0)[14o + ()]l
« [ stz (soseon .. oo [ o)

t
+f
0

()95, G513, -, 9a(Go(5), fo fals, 7, G5(Cprn (D))
Y Ct ()

O<tr<t ’

< M. + M| ABllrc) + ), Wellottl)] + Ma| A(Rlec) + ) Fidlogeol)|

k=1 k=1

ds

ds

+

Y St T (t0)

\ "
O<te<t

t
n Mz[(gn TP A b(LN + .Z/'V“)] f sup [loa(s)llds,

0 se(0,0]
where M, = M|[uo|| + Ma|[io|| + Mab [b(ﬁm + PN+ (A + 9{)].

Utilizing the Gronwall’s inequality, we obtain

sup [l¢5(s)l < e’ [M + M| ABllo) + ), Wellollpe) | + Mol A(llo) + Y Cﬁk(nvnm)”.
k=1

s€(0,b] =
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and the previous inequality holds. Consequently,

m

lollpe < ¢ [M + My ABllo) + ), Willollre) | + Me| (e +
k=1 k=1

\E(anpc)”,
and therefore
lollpc

<1
en [M # M| AGRlo) + & Wilolo)| + M AQRllc) + £ \Tfk(nvupc)]]

Then, by (H6), there exists M such that [lollpe # M. Set

U= {v € PC([6,b],X); sup ()] < 1\71} :

b<t<b
As an outcome of Steps 1-3 in Theorem 3.1, it suffices to demonstrate that T : U — PCj is a compact
map.
From the choice of U, there is no u € JU such that v € AT'v for A € (0,1). As a consequence of Lemma
2.5, we deduce that I has a fixed point v, € U. Then, we have

u(t) = C(t, 0)[uo + q(@.)] + S(t,0)[uo + 4(@.)]

+ fo t S(t, s)[gz(s, u(&1(5)), . .., u(En(s)), fo S ki(s, T, u(én+1(7)))d7)

95, uCO) -, 1GHE), fo fals, T (G () ds
+ ) Cl ) + Y, S To(t). (34)

O<ty<t O<ty<t

Noting that u = ¢z = (T0.)(t) = ., t € [6,b]. By (H5)(i)(ii), we obtain g(u) = g(v.) and q(u) = g(v.). This
suggests, joined with (3.4), that u(t) is a mild solution of problem (1.1)-(1.3). This completes the proof of
this theorem. [

4. Approximate Results

As an application of Theorem 3.1, we shall consider the system (1.1) with control parameters such as:

t
u’(t) = o (Hu(t) + F (t, u(&1(t)),. --,M(én(f)),fo ki(t,s, H(5n+1(5)))d5)

t
+9 (tr M(Cl(t)), ceny u(Cp(t))/ L k2(tl 5, u(Cp+1(s)))dS) + B?I(t),

te 7 =10b], t#t, k=12,...,m, (4.1)

with the conditions (1.2) and (1.3). The functions .Z (-), 4(-), k1(-), k2(-), 4(-), 9(), Ik (), (), &, i=1,2,...,n+1
and (;, I = 1,...,p + 1, are same as defined in (1.1)-(1.3). The control function u(-) € .#*(_#,U), a Banach

space of admissible control function with U as a Banach space and B is a bounded linear operator from U
to X.



M. Nagaraj et al. / Filomat 33:18 (2019), 5887-5912 5903

Definition 4.1. A function u(-) € PC(_7,X) is said to be a mild solution of problem (4.1) with the conditions (1.2)
and (1.3) if it satisfies the following integral equation

u(t) = C(t, 0)[uo + q(u)] + S(t, 0)[uo + q(w)]

v [[saa# (s ueon o, [ hn o)

951G, 1 GO, fo oo, T (G (D)) ) + B[
+ ) Cl L) + ) Stk te 7.

O<t<t O<t<t

Definition 4.2. The control system (4.1) with the conditions (1.2) and (1.3) is said to be approximately controllable

on g if for all ug € X,, there is some control ue L Z, U), the closure of the reachable set, R(b, uo) is dense in X,
ie., R(b, ug) =X, where R(b, up) = {u(b,u) : u € L*(_7,U),u(0,u) = uo} is a mild solution of the system (4.1) with
the conditions (1.2) and (1.3).

In order to address the problem, it is helpful now to present two significant operators and essential
hypotheses on these operators:

b
T(b) = f S(b,s)BB*S*(b,s)ds : X = X,
0
R(, Y = I+ 1) X=X, 0<y<],

where B* denotes the adjoint of B and S*(f) is the adjoint of S(f). It is straightforward that the operator

—b
Y, is a linear bounded operator.

To investigate the approximate controllability of system (4.1) with the conditions (1.2) and (1.3), we
impose the following condition:

(HO) yR(y, Y‘Z) — 0 asy — 0% in the strong operator topology.
In view of [27], hypothesis (HO) holds if and only if the linear system

uw'(t) = o/ (Hu(t) + Bu(t), te][0,b], 4.2)
u(0) = ugy (4.3)

is approximate controllability on _¢#.
It will be shown that the system (1.4) with the conditions (1.2) and (1.3) is approximately controllable, if
for all y > 0, there exists a function u(-) € £C and u; € X such that
u(t) = C(t, 0)[uo + g(u)] + S(t, 0)[uo + q(u)]
t S
+ f S(t/ S)I:y(sr u(él(s))/ ceey u(én(s))/ f kl (S/ T/ u(£n+1(T)))dT)
0 0

+ 95w, uG6), fo fals % (D)) + B, )]s
+ ) Cl LB + Y St Tk,

O<tr<t O<tr<t

Wt 1) = B'S' (b, HR(y, To)plu(),
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where

() =y, — C(b, )ty + q(uu)] — S(b, 0)[o + (1]
b S
- fo S(b,s)[ﬁ(s,u(&(s)),...,u(£n<s)>, fo kl(s,r,u(ém(r)))tiz)
95 uGO) UG ), fo Kol % ()|

= ), Cl tICut)) = Y, S(b, t)Tx(u(te).
k=1 k=1

Remark 4.3. In view of equations (3.2), (3.3) and Step 1 of Theorem 3.1, if v € PCs, we calculate the following
estimate:

t

H f S(t, s)Bu(s, v)ds

0

t
< f(; S(t,s)BB*S"(b, HR(y, T(b))[ub — C(b, 0)[uo + g(©)] = S(b, 0)[ug + q(0v)]
b s
—f S(b, S)[«?(S, %(51(5))/-..,(?5(5”(5)),[ ki(s, T, ¢5(5n+1(T)))dT)
0 0

0[5 9GO, 9GO, [ el T G (D[ = Y Clb (00
k=1

IR OFL

k=1

(%Miﬁéb) [l + ¥ ol + A + Y W) + M Il + ) + ) B0
k=1

k=1

IA

+ Mzb[b(.zm + L)+ (A + Z)H

b
; (%MgMﬁb) Mz[(.i”n - Tp)+ b LN + .z/)] f sup lls(s)llds.
0 se(0]

Theorem 4.4. Suppose that the hypotheses (H0)-(H5) are satisfied. Then the system (4.1) with the conditions (1.2)
and (1.3) has at least one mild solution on ¢ provided

—

M.

>1,
[M + (14 LAEAED) [ﬁ (3G + £ wilFh | 12 (R + £ i) ”

where My = Bl M... = (VM) lual+(1 + LVEMED) | Mol + Mool + Mob| (245 + 2270

(G + Z)” and 77 = (1+ LNBNEY) Mal(Zn + Zp) + WL N + TN,
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Proof. By thinking of Theorem 3.1, we define
¢5(t) = C(t,0)[uo + q(0)] + S(t, 0)[110 + q(0)]

+ jo‘ S(tr S)[y(sr (va'(él(s))/ ey (Pi(én(s))/ L‘ kl (S/ T, ¢5(5n+1 (T)))dT)

+ (5,0, 55, fo ka5 7 9o(Gon ()i s
t

+ f) S(t,s)BB*S*(b — HR(y, Tg)[ub — C(b,0)[up + q@] — S(b, 0)[50 +a@]
b S

- f 50,9[ 7 (5,061, 0ntn9), f 15,7 9 ()

0 0
+ (50O 0G0, fo ka5 7 9n(Cpra (D)) s
- ) C I - Y S(b, )Tk (ot |
k=1 k=1
+ ) Cl @) + ) S b)T(o(t).

O<tp<t O<ty<t

Consider the map T: PCs = PC([6,b], X) = PCs defined by
(To)(t) = Ps(t), t € [6,b].

We might demonstrate that T fulfills every one of the states of Lemma 2.5. The proof will be given in
two stages.

Step 1*. I' maps bounded sets into bounded sets in $Cs.
Indeed, it is enough to show that there exists a positive constant A, such that for each v € B,(8) :=
{qb € PCs; sup llp@)ll < r} one has IIFUIIPC < Xz.

O0<t<b
Let v € B,(0), then for t € (0,b], we have

lps(t)ll < M. + (1 + %A?Igzﬁgb) M,

A+ Y \I/k(r)] + M,

k=1

NGEDY \Tfkm]]

k=1

b
n (1 N %M%M@b) MZ[(zn L TP+ W LN + zw)] f sup lloa(s)llds,
0 se(0,b]

where M.. = (AMEVED) lull+(1 + SNBAERD) [Mhluoll + Ml + Mab [b(2 A5 + ZA0) + (24 + )] |

Utilizing the Gronwall’s inequality, we receive

s€(0,b]

+ (1 + %Z\//\Igl\’/\%b) M,

A+ Y \I’k(r)] + M,

k=1

Ar) + Z \Ifk(r)]] .

k=1
Thus

— |~ 1~ —
ICollpe < e’i[Mﬂ + (1 + ;MgMﬁb)

M, [A(r) Y \I/k(r)] +M, [K(r) Y Tffk(r)) ;
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By implementing the techniques applied in Theorem 3.1 ( Step 2 & Step 3), we deduce that the operator
T is continuous and compact with simple modifications.
Step 4*. We now show that there exists an open set U C PC; with v ¢ AT for A € (0,1) and v € JU. Let
A €(0,1) and let v € PC; be a possible solution of v = )Lf(v) for some 0 < A < 1. Thus, for each t € (0, b],

o(t) = Ads(t) = AC(, O)[uo + 4@)] + AS(t, 0)[io + G@)]
t S
+A fo S(t, s)[f(s, $5(E1(5)), - - -, P3(En(S)), fo ki(s, T, cbg(ém(f)))dT)
(5, OO G, f Kol Gy () s
0
+ /\f S(t,s)BB*S*(b, t)R(y, Tg)[ub - C(b,0)[ug + q@] - S(b,0)[ug + 7(5)]
0
b
- fo 0,9[ 75 6s(E10) - 03L&, fo 1657 Ge(Enn (D))
GO ) f fals, 7, Gy ()i [
0
= ) CO (o) ~ Y S(b, t)Tx(o(te) |
k=1 k=1
+A Y ClHEI@E) +A ) S To(t).

O<ty<t O<ty<t

This implies by (H1) — (H5) and for each t € (0, b] we have |[o(t)|| < [l¢p5(t)]l and

—~ 1~ — —
llpz(HIl < M. + (1 + ;MﬁMﬁb) [M1

ARlpe) + ), \Pk(nvnm)]

k=1

+]/\/\Iz

ARllpe) + Y %(anm)”

k=1

b
+ (1 n % Mgmgb) MZ[(.,Z”n + Lp)+ (LN + zm)] f sup |lp5(s)llds.
0 se(0,b]

Utilizing the Gronwall’s inequality, we receive

sup llps()l < eﬁ[ﬁw + (1 " 11?451?4;;,) [@
se(0,b] Y

ARllpe) + Y| \Ifk<||v||pc)]

k=1

+M2

AlRllec) + ), ﬁ“fkmvnpc)] ”
k=1

and the previous inequality holds. Consequently,

[ollpe < e’ﬁ[MM + (1 + %1\7@1\7{;17) [th

A(Rllpc) + ) | \Pk(nvnpc)]
k=1

+M2

ARllpe) + ) fffk<||vupc>] ”
k=1
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and therefore

llollpc

<1
eﬁ[ﬁﬂ +(1+ 1ABMED) [Ml (A(||a|@c) +3 \Ifk(nvnpc)) + M (K(n‘zmpc) +3 \Tfkmvnpc)) H

There exists a constant M,.. > 0 such that [lo]lpc # M.... Set

U= {v € PC([6,b], X); sup |[o(t)]] < M} .

b<t<b
As a consequence of Step 1* and Step 4* in Theorem 4.4, it suffices to show thatT : U — PCyisa compact
map. _
From the choice of U, there is no u € JU such that v € AT'v for A € (0,1). As a consequence of Lemma

2.5, we deduce that I has a fixed point 7, € U. From the equation (3.4), we infer that u(f) is a mild solution
of the system (4.1) with the conditions (1.2). The proof is now completed. [

Theorem 4.5. Assume that the conditions (HO)-(H5) hold and linear system (4.2)-(4.3) is approximately controllable
on ¥. The functions F : | x X" — Xand & : | x XP*1 — X are continuous and uniformly bounded and there
exist constants A > 0, 4™ > 0 such that |7 (t,uy, uz, ..., ups1)lla < A" and |G, u, u, ..., ups)lla < A,
then the system (4.1) with the conditions (1.2) and (1.3) is approximately controllable on ¢ .

Proof. Let u”(-) be a fixed point of T. By Theorem 4.1, any fixed point of T is a mild solution of (4.1) with the
conditions (1.2) and (1.3) under the control

(t) = B'S(b, R (y, To)plu”)
and satisfies the inequality
—b
w'(0) = up + yR(y, Yo)pu”). (4.2)

Moreover by assumptions on .# and ¢ with Dunford-Pettis theorem, we have that {7 (s)} and {g7(s)} are
weakly compact in £1(_#,X), so there is a subsequence, still denoted by {f7(s)} and {g”(s)}, that converges
weakly to say f(s) and g(s) in £1(_#, X) respectively.

Define

b m
w = up, — C(b, 0)[uo + q(w)] = S(b, 0)[ug + q(1)] - f S(b,s)[f(s) + g(s)lds — Z C(b, t) Ik (u(ty))
0 k=1

= ) S, t)Te(u(t)).
k=1

Now, we have

b
P’ — wl| = |j(; S, s)[f(s, ui’(s),uz(s),...,u’n/ﬂ(s)) — f(s)lds
b )
+ j(; S(b,5)[g(s, ul(s), u’z'(s),...,uzﬂ(s))—g(s)]ds
< sup [ f S(t, ) f (s, 1 (s), ul(s), ..., ul ,(s)) — f(5))ds
tefo,61 L | Jo
+ j(;S(t,s)[g(s,u?(s),u’z/(s),...,uzﬂ(s))—g(s)]ds ] (4.3)
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By using infinite-dimensional version of the Ascoli-Arzela theorem, one can show that an operator
() — f S(-,9)l(s)ds : 31(/)() — ¢(_7,X) is compact. Consequently, we obtain that |[p(u”) — w|| — 0 as

0
y — 07. Moreover, from (4.2), we obtain

1 (8) = wpll < llyRGy, To)ple )
< IR, To)pur) - w + w)]
< IlyRG, To)a)ll + IRy, TolllFas) - wl
< IlyRQy, Yoywll + [Fw) — wll

It follows from assumption (H0) and the estimation (4.3) that ||u”(b) — uy|| — 0 as y — 0*. This proves
the approximate controllability of (4.1) with the conditions (1.2) and (1.3). O

5. Example

In this section, we apply our abstract results on a concrete impulsive partial differential equation. In

order to establish our results, we need to introduce the required technical tools. From the equations (2.7)-
(2.8), here we consider 7 (t) = &/ + B(t) where </ is the infinitesimal generator of a cosine function C(t)

with associated sine function 5(t), and B(t) : 2(B(t)) — X s a closed linear operator with 2 C Z(B(t)) for

allte 7.

We model this problem in the space X = L*(T, C), where the group T is defined as the quotient R/27Z.
We will use the identification between functions on T and 27-periodic functions on IR. Specifically, in what
follows we denote by L*(T,C) the space of 27m-periodic 2-integrable functions from R into C. Similarly,
H(T, C) denotes the Sobolev space of 2-periodic functions x : R — C such that x”” € L*(T, C).

We consider the operator @x(&) = x”(&) with domain 2(&) = H*(T,C). It is well known that A is
the infinitesimal generator of a strongly continuous cosine function C(f) on X. Moreover, &/ has discrete
spectrum, the spectrum of &7 consists of eigenvalues —n? for n € Z, with associated eigenvectors

l $17
wy(&) = ——=€", nez,

V2n

the set {w,, : n € Z} is an orthonormal basis of X. In particular,

(o)

Ax = — Z n?(x, wy)Yw,

n=1
for x € Z(«/). The cosine function C(t) is given by

(o8]

C(tx = Z cos(nt)(x, w,)w,, teR,

n=1

with associated sine function

Sthr=Y smr(l" ) v, w,yw,, teR.
n=1

It is clear that ||C(t)|| < 1 for all t € R. Thus, C(:) is uniformly bounded on R.
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Consider the following impulsive partial functional integro-differential equation of the form:

5; z(t, x) = 32 S2(t, %) + b(t) z(t x) + a1 (t)z(sin t, x) + ay(t) sin z(t, x) + G(t, x)
R fo t a3(s)z(sins, X)ds + a1 (t)z(sin £, x) + ay(t) sin z(t, x)
e fot%(s)z(sms' x)ds, (5.1)
Az(ty, x) = f ' pe(x, Yz, ydy  and - AZ'(t,x) = f n;;k(x, Yzte dy,k=1,---,m, (.2)
z(t,0) = z(?f, ) =0; z(0,x) =z(); z(0x)= zl(jc), te 7 =10,1,0<x<m, (5.3)
2(0,x) = zo(x) + Zm: Prz(te,x), and - z(0,x) = z1(x) + Zm“ bzt x), 0<x < 71, (5.4)

where we assume thatb: R - R, ii: _# X [0, 1] — [0, ] are continuous functions, and
(a) the functions 4;(-) and a;(-),i = 1,2,3, are continuous on [0,1], n; = sup la;(s)| < 1,i = 1,2,3; and

—_ 0<s<1
n; = sup [ai(s) <1,i=1,2,3.

0<s<1

(b) the functions py, px : [0, 7] X [0, 1] - R,k =1,2,--- ,m, are continuously differentiable and

Yk = ff( Pr(x, y)) dxdy);<oo, and i = ff( ——pr(x, y)) dxdy);<oo

foreveryk=1,2,--- ,m
(c) The functions ¢, (gk eR, k=1,2,...,m
(d) Denote g = SUpy. [b(t)|.

We take E(t)u(x) = b(t)u’ (x) defined on H'(T, C). It is easy to see that &/(t) = & + E(t) is a closed linear
operator. Initially we will show that &/ + B(t) generates an evolution operator. It is well known that the
solution of the scalar initial value problem

q"(t) = — n*q(t) + p(t),
q(s) =0, 4'(s) = q1,

is given by
q1 1 [
q(t) = —sinn(t —s) + — f sinn(t — 7)p(t)dT.
n n J,
Therefore, the solution of the scalar initial value problem

q"(t) = = n?q(t) + inb(£)q(t), (5.5)
qs) =0, 4'(s) = q1, (5.6)

satisfies the integral equation

¢
q(t) = %1 sinn(t —s) + if sinn(t — 7)b(7)g(T)dT.
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Applying the Gronwall-Bellman lemma, we can affirm that

la(t)l < @eﬁ“‘” (5.7)

for s < t. We denote by g,(t, s) the solution of (5.5)-(5.6). We define
S(t,s)x = Z Gn(t, S)(X, Wy )Wy,
n=1

It follows from the estimate (5.7) that S(t,s) : X — X is well defined and satisfies the conditions of
Definition 2.1.

To treat this system, we define the operators respectively 7 : # xXxX =X, 9 : 7 xXXXX — X k; :
IX IXxX->Xhk: Fx FxX—=X I, :X>X k=1,2,...,m4q,q:PC_Z,X) = Xby

t t
ﬂ*(t,z(é(t)), f kl(t,s,z(é(s)))ds)(x):al(t)z(sint,x)+a2(t)sinz(t,x)+ f a5(s)z(sin s, x)ds,
0 0

1412

t t
%(t,z((:(t)),fo‘ ko(t, s, Z(C(s)))ds)(x) =1 (H)z(sint, x) + a,(t) sin z(t, x) + ﬁ L 3(s)z(sin s, x)ds,

1+

t t
[ utes o = 1 [ azsins o
0 0

t t
f ka(t,s, C(z(s)))(x)ds = f 13(s)z(sin s, x)ds,
0 0

1+1#2

L(z)(x) = f pr(e, Yz, ydy, k=1,---,m,
0

I(z)(x) = f pe(x, )zt v)dy, k=1,--- ,m,
0

7)) = ) bzt ),
k=1

T = Y delt, ).
k=1

Further : ¢ — U be defined as

Bu(h)(x) =u(t,x), x€[0,m],

where 1i: _# x [0, 7] — [0, ] is continuous.

Then equations (5.1) — (5.4) takes the abstract form (1.1) — (1.3). It is easy to see that with the choices
of the above functions, assumptions (HO) — (H5) of Theorem 4.4 are satisfied. Hence by Theorem 4.4, we
deduce that nonlocal impulsive Cauchy problem (5.1) — (5.4) is approximately controllable on #.
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