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The discrete wavelet transform via local fractional operators is structured and applied to process the signals on Cantor sets. An
illustrative example of the local fractional discrete wavelet transform is given.

1. Introduction

In recent years, the classical wavelet theory [1–7] has played
an important role in many scientific fields such as signal
processing [8], electrical systems [9], image processing [10],
and differential equations [11]. The continuous wavelet trans-
form is applied to handle the analyzing nonstationary signals,
which have some characteristics of instantaneous peaks or
discontinuities, where the mother wavelet met scaling and
translation operations [3]. Two major categories of wavelet
transforms are continuous and discrete [5].When themother
wavelet functions are orthonormal, the discrete wavelet
transform [12] gives multiresolution algorithm decomposing
signals into scales with different time and frequency resolu-
tion, which leads to finite number of wavelet comparisons of
signals, and improves the computational speeds because of
the functions that are stretched or compressed and placed at
many positions along the signals [13].

Based on the fractional Fourier transform [14–17], the
fractional wavelet transform, which was a good tool for

processing transient signals and compressing images, was
structured in [18, 19]. The fractional wavelet transform
has some applications in various branches of science and
engineering [20–23]. For example, the simultaneous spectral
analysis of a binary mixture system was presented in [20]
by using the fractional wavelet transform. Application of
the fractional wavelet transform to the simultaneous deter-
mination of ampicillin sodium and sulbactam sodium in
a binary mixture was considered in [21]. The fractional
wavelet transform for the quantitative spectral resolution of
the composite signals of the active compounds in a two-
component mixture was suggested in [22]. The optical image
encryption based on fractional wavelet transform was given
in [23]. By discretizing continuous fractional wavelet trans-
form, the discrete fractional wavelet transform was reported
and its application to multiple encryptions was considered in
[24].

The wavelet method and its fractional counterpart have
many applications in various branches of science and engi-
neering. However, they are invalid for solving the signals
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defined on Cantor sets. The local fractional calculus theory
[25–34] was applied to handle the functions defined on
Cantor sets, which are local fractional continuous. A natural
question is to generalize signals concepts on the Cantor set,
which are the nondifferentiable functions defined on Cantor
sets [24, 26] and the Cantor function [35]. The mathematical
theory of the local fractional wavelet transform of the local
fractional continuous signal was structured in [25, 36] based
on the basic idea.

One of the open problems in this area is how to improve
the computational speeds of the local fractional wavelet
theory as in the classical one. The aim of this paper is
to structure the discrete version of the local fractional
wavelet transform based on the generalized inner produc-
tion space. The paper has been organized as follows. In
Section 2, we introduce some basic notations and theorems
of the generalized inner product space. In Section 3, we
propose the local fractional discrete wavelet transform. In
Section 4, one example is presented. Finally, Section 5 is
conclusions.

2. Preliminaries

In this section, we give some basic notations and theorems of
the generalized inner product space.

Let [25]

𝐿
2,𝛼 [𝑅]={𝑓 (𝑥) ∈ 𝐶

𝛼 [𝑅] :(
1

Γ (1+𝛼)
∫

∞

−∞

𝑓 (𝑥)


𝑝

(𝑑𝑥)
𝛼
)

1/𝑝

< ∞, 1 ≤ 𝑝 < ∞} .

(1)

Here, the local fractional integral operator𝑓(𝑥) in the interval
[𝑎, 𝑏] was defined in [25–30] as

𝑎
𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(2)

where a partition of the interval [𝑎, 𝑏] is denoted as Δ𝑡
𝑗
=

𝑡
𝑗+1

− 𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

0
, Δ𝑡
1
, Δ𝑡
𝑗
, . . .} and 𝑗 = 0, . . . , 𝑁 − 1,

𝑡
0
= 𝑎, 𝑡

𝑁
= 𝑏. Local fractional operators were applied to

model some nondifferentiable problems [25–32].
From (1) the generalized inner product space of 𝐿

2,𝛼
[𝑅] is

defined as follows [25]:

⟨𝑓, 𝑔⟩
𝛼
=

1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑥) 𝑔 (𝑥)(𝑑𝑥)
𝛼
. (3)

The two useful theorems are presented as follows.

Theorem 1 (see [25]). Let𝑋 be an inner product space. If {𝑒𝛼
𝑛
}

is an orthonormal system in 𝑋, then one has that

𝑓


2

𝛼
=

∞

∑

𝑖=1

⟨𝑓, 𝑒
𝛼

𝑖
⟩
𝛼



2

, (4)

𝑓 =

∞

∑

𝑖=1

⟨𝑓, 𝑒
𝛼

𝑖
⟩
𝛼
𝑒
𝛼

𝑖
(5)

are equivalent, where ‖𝑓‖2
𝛼
is a norm of the function𝑓 and {𝑒𝛼

𝑛
}

has the following properties:

𝑒
𝛼

𝑛

𝛼
= 1,

⟨𝑒
𝛼

𝑖
, 𝑒
𝛼

𝑗
⟩ = {

0, 𝑖 ̸= 𝑗,

1, 𝑖 = 𝑗.

(6)

Proof. See [25].

Theorem 2 (see [25]). Let 𝑋 be an inner product space and
{𝑒
𝛼

𝑛
} be an orthonormal system in 𝑋. If 𝑥𝛼 ∈ span{𝑒𝛼

1
, . . . , 𝑒

𝛼

𝑛
},

then for all 𝑥𝛼 ∈ 𝑋 one has

𝑥
𝛼
=

𝑛

∑

𝑖=1

⟨𝑥
𝛼
, 𝑒
𝛼

𝑖
⟩
𝛼
𝑒
𝛼

𝑖
, (7)

where span{𝑥𝛼
1
, . . . , 𝑥

𝛼

𝑛
} is the linear subspace of𝑋 of the linear

span of the local fractional vectors [25], namely,

span {𝑥
𝛼

1
, . . . , 𝑥

𝛼

𝑛
} = {𝑥

𝛼
=

𝑛

∑

𝑖=1

𝑎
𝑖
𝑥
𝛼

𝑖
: 𝑎
𝑖
∈ 𝐸} . (8)

Proof. See [25].

3. Local Fractional Discrete Wavelet
Transform for Signals on Cantor Sets

3.1. Local Fractional Continuous Wavelet Transformation
for Signals on Cantor Sets. The local fractional continuous
wavelet transform of the local fractional continuous signal
𝑓(𝑡) was presented in [25, 26, 36] as

𝑊
𝜑,𝛼

𝑓 (𝑎, 𝑏) =
𝑎
−(𝛼/2)

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼
,

0 < 𝛼 ≤ 1,

(9)

where the local fractional daughter’s wavelets were suggested
in [25, 26, 36] by

𝜑
𝑎,𝑏,𝛼

(𝑡) =
1

𝑎𝛼/2
𝜑(

𝑡 − 𝑏

𝑎
) , (10)

where 𝑎 is the dyadic dilation, 𝑏 is the dyadic position,
and 𝑎

−(𝛼/2) is the normalization Cantor factor. The inverse
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Figure 1: The graph of the local fractional mother wavelet.

formula of local fractional wavelet transform was given in
[25, 36] by

𝑓 (𝑥) =

𝐶
𝜑,𝛼

Γ2 (1 + 𝛼)

× ∫

∞

−∞

∫

∞

−∞

𝑎
−2𝛼

𝑊
𝜑,𝛼

𝑓(𝑎, 𝑏) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑎)
𝛼
(𝑑𝑏)
𝛼
,

0 < 𝛼 ≤ 1,

(11)

where the parameter is [25, 36]

𝐶
𝜑,𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑥)


2

|𝑥|
𝛼

(𝑑𝑥)
𝛼
, 0 < 𝛼 ≤ 1. (12)

We notice that the classical continuous wavelet transform is
the local fractional one in case of fractal dimension 𝛼 = 1.

3.2. Local Fractional Discrete Wavelet Transform for Signals
on Cantor Sets. Let us structure the local fractional daughter
wavelet in the form

𝜑
𝑎,𝑏,𝛼

(𝑡) =
1

𝑎𝛼/2
𝜑(

𝑡 − 𝑏

𝑎
) , (13)

where 𝜑 ∈ 𝐿
2,𝛼

[𝑅].
When 𝑎 = 2

−𝑗 and 𝑏 = 𝑘2
−𝑗, we get

𝜑
𝑎,𝑏,𝛼

(𝑡) = 𝜑
𝑗,𝑘,𝛼

(𝑡) = 𝜑
2
−𝑗

,𝑘2
−𝑗

,𝛼
(𝑡) = 2

𝑗𝛼/2
𝜑 (2
𝑗
𝑡 − 𝑘)

(14)

for integers 𝑗, 𝑘 ∈ Ζ.
Let 𝜑
𝑗,𝑘,𝛼

(𝑡) = 2
𝑗𝛼/2

𝜑(2
𝑗
𝑡 − 𝑘) be orthogonal set of local

fractional wavelets. Then we can obtain

⟨𝜑
𝑗,𝑘,𝛼

, 𝜑
𝑚,𝑛,𝛼

⟩
𝛼
= 𝛿
𝛼

𝑗,𝑚
𝛿
𝛼

𝑘,𝑛
, 𝑗, 𝑘, 𝑚, 𝑛 ∈ Ζ, (15)

where 𝛿𝛼
𝑗,𝑚

and 𝛿
𝛼

𝑘,𝑛
are local fractional Kronecker delta [27].
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Figure 2:The graph of the local fractional integral of local fractional
mother wavelet.

Making use of (7), for 𝑗, 𝑘, 𝑚 ∈ Ζ we have

𝑓 (𝑥) =

∞

∑

𝑗=−∞

∞

∑

𝑚=−∞

𝑎
𝑗,𝑘,𝛼

𝑒
𝛼

𝑗,𝑘
, (16)

where its coefficients are

𝑎
𝑗,𝑘

= ⟨𝑓 (𝑥) , 𝑒
𝛼

𝑗,𝑘
⟩
𝛼
= 𝑊
𝜑,𝛼

𝑓 (2
−𝑗
, 𝑘2
−𝑗
) . (17)

Here, 𝑎
𝑗,𝑘

is called as the local fractional discrete wavelet
transform of the signal 𝑓(𝑥).

4. An Illustrative Example

Local fractional mother wavelet is defined in [26] as

𝜑
𝐻(𝛼)

(𝑡) = 𝑀 (𝑡) =

{{{{

{{{{

{

1, 0 ≤ 𝑡 <
1

2

−1,
1

2
≤ 𝑡 < 1

0, else

(18)

and local fractional integral of local fractionalmother wavelet
reads as

𝜙
𝐻(𝛼)

(𝑡) = 𝑁 (𝑡) =

{{{{{{

{{{{{{

{

𝑡
𝛼

Γ (1 + 𝛼)
, 0 ≤ 𝑡 <

1

2

(1 − 𝑡)
𝛼

Γ (1 + 𝛼)
,

1

2
≤ 𝑡 < 1

0, else.

(19)

Figure 1 shows the graph of the local fractional mother
wavelet and Figure 2 shows the graph of the local fractional
integral of local fractional mother wavelet.

When fractal dimension 𝛼 = 1, we have

𝜑
𝐻(1)

(𝑡) = 𝑀 (𝑡) (20)
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Figure 3: The graph of the integral of the mother wavelet.

so that

𝜙
𝐻(1)

(𝑡) = 𝐿 (𝑡) =

{{{{

{{{{

{

𝑡, 0 ≤ 𝑡 <
1

2

1 − 𝑡,
1

2
≤ 𝑡 < 1

0, else.

(21)

Figure 3 shows the graph of the integral of mother wavelet
𝜑
𝐻(1)

(𝑡).
For integers 𝑗, 𝑘 ∈ Ζ, we have [26]

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) = 2

𝑗𝛼/2
𝜑
𝐻(𝛼)

(2
𝑗
𝑡 − 𝑘) , (22)

where

𝜑
𝐻(𝛼)

(𝑡) =

{{{{

{{{{

{

1, 0 ≤ 𝑡 <
1

2
,

−1,
1

2
≤ 𝑡 < 1,

0, else.

(23)

Hence, we have

⟨𝜑
𝑗,𝑘

𝐻(𝛼)
, 𝜑
𝑚,𝑛

𝐻(𝛼)
⟩
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) 𝜑
𝑚,𝑛

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼

=
1

Γ (1 + 𝛼)

× ∫

∞

−∞

2
𝑗𝛼/2

𝜑
𝐻(𝛼)

(2
𝑗
𝑡 − 𝑘) 2

𝑚𝛼/2
𝜑
𝐻(𝛼)

× (2
𝑚
𝑡 − 𝑛) (𝑑𝑡)

𝛼

= 2
(𝑗+𝑚)𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(2
𝑗
𝑡 − 𝑘) 𝜑

𝐻(𝛼)
(2
𝑚
𝑡 − 𝑛) (𝑑𝑡)

𝛼

= 2
(𝑚−𝑗)𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑚−𝑗

(𝑠 + 𝑘) − 𝑛) (𝑑𝑠)
𝛼
,

(24)

where 𝑠 = 2
𝑗
𝑡 − 𝑘.

In view of (24), we obtain [15]

1

Γ (1 + 𝛼)
∫

∞

−∞

[𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡)]
2

(𝑑𝑡)
𝛼
= 1,

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼
= 0,

(25)

where 𝑗 = 𝑚 and 𝑘 = 𝑛, 𝑗, 𝑘 ∈ Ζ.
When 𝑗 = 𝑚, 𝑗, 𝑘, 𝑚 ∈ Ζ, from (24) we obtain

⟨𝜑
𝑗,𝑘

𝐻(𝛼)
, 𝜑
𝑗,𝑛

𝐻(𝛼)
⟩
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) 𝜑
𝑚,𝑛

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼

= 2
(𝑗+𝑚)𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(2
𝑗
𝑡 − 𝑘) 𝜑

𝐻(𝛼)
(2
𝑚
𝑡 − 𝑛) (𝑑𝑡)

𝛼

= 2
(𝑚−𝑗)𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑚−𝑗

(𝑠 + 𝑘) − 𝑛) (𝑑𝑠)
𝛼

=
1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(𝑠 + 𝑘 − 𝑛) (𝑑𝑠)
𝛼

= 𝛿
𝛼

0,𝑘−𝑛

= 𝛿
𝛼

𝑘,𝑛
,

(26)

where 𝑠 = 2
𝑗
𝑡 − 𝑘.

When 𝑔 = 𝑚 − 𝑗 > 0, 𝑗, 𝑘, 𝑚, 𝑛 ∈ Ζ, from (24) we have

⟨𝜑
𝑗,𝑘

𝐻(𝛼)
, 𝜑
𝑚,𝑛

𝐻(𝛼)
⟩
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) 𝜑
𝑚,𝑛

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼

= 2
𝑔𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑔
(𝑠 + 𝑘) − 𝑛) (𝑑𝑠)

𝛼

= 2
𝑔𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑔
𝑠 + 𝜂) (𝑑𝑠)

𝛼
,

(27)
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where 𝑠 = 2
𝑗
𝑡 − 𝑘 and 𝜂 = 2

𝑔
𝑘 − 𝑛. Consider

⟨𝜑
𝑗,𝑘

𝐻(𝛼)
, 𝜑
𝑚,𝑛

𝐻(𝛼)
⟩
𝛼

= 2
𝑔𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑔
𝑠 + 𝜂) (𝑑𝑠)

𝛼

= 2
𝑔𝛼/2 1

Γ (1 + 𝛼)

× ∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑠) 𝜑
𝐻(𝛼)

(2
𝑔
𝑠 + 𝜂) (𝑑𝑠)

𝛼

= 2
𝑔𝛼/2

[
1

Γ (1 + 𝛼)
∫

1/2

0

𝜑
𝐻(𝛼)

(2
𝑔
𝑠 + 𝜂) (𝑑𝑠)

𝛼

−
1

Γ (1 + 𝛼)
∫

1

1/2

𝜑
𝐻(𝛼)

(2
𝑔
𝑠 + 𝜂) (𝑑𝑠)

𝛼
]

= 2
−𝑔𝛼/2

[
1

Γ (1 + 𝛼)
∫

2
𝑔−1

+𝜂

𝜂

𝜑
𝐻(𝛼)

(𝑞) (𝑑𝑞)
𝛼

−
1

Γ (1 + 𝛼)
∫

2
𝑔

+𝜂

2
𝑔−1

+𝜂

𝜑
𝐻(𝛼)

(𝑞) (𝑑𝑞)
𝛼

] ,

(28)

where
𝑞 = 2
𝑔
𝑠 + 𝜂,

1

Γ (1 + 𝛼)
∫

2
𝑔−1

+𝜂

𝜂

𝜑
𝐻(𝛼)

(𝑞) (𝑑𝑞)
𝛼

= 0,

1

Γ (1 + 𝛼)
∫

2
𝑔

+𝜂

2
𝑔−1

+𝜂

𝜑
𝐻(𝛼)

(𝑞) (𝑑𝑞)
𝛼

= 0,

(29)

with 𝜂 > 1, 2𝑔−1 + 𝜂 > 1, and 2
𝑔
+ 𝜂 > 1.

Hence, taking 𝑒𝛼
𝑗,𝑘

= 𝜑
𝑗,𝑘

𝐻(𝛼)
gives

𝑓 (𝑥) =

∞

∑

𝑗=−∞

∞

∑

𝑚=−∞

𝑎
𝑗,𝑘,𝛼

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑥) , (30)

where

𝑎
𝑗,𝑘

= ⟨𝑓 (𝑥) , 𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑥)⟩
𝛼

= 𝑊
𝜑,𝛼

𝑓 (2
−𝑗
, 𝑘2
−𝑗
)

= 2
𝑗𝛼/2 1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑥) 𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑥) (𝑑𝑥)

𝛼
.

(31)

Appling (4), we have

𝑓
2
(𝑥) =

∞

∑

𝑖=1


𝑎
𝑗,𝑘



2

(32)

with

𝑎
𝑗,𝑘

= 2
𝑗𝛼/2 1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑥) 𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑥) (𝑑𝑥)

𝛼
. (33)

Hence, from (32) we find that the energy is conserved.

5. Conclusions

In this work the local fractional discrete wavelet transform
based on the local fractional calculus theory was proposed.
By using the basic theorems of generalized inner product
space, the local fractional discrete wavelet transform and
its reconstruction formula were discussed. We find that
the energy of the signal on Cantor sets is conserved. An
illustrative example for the local fractional wavelet transform
of the signal on Cantor sets was given. It is shown that the
classical discrete wavelet transform is the local fractional one
in case of fractal dimension 𝛼 = 1.
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