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a b s t r a c t

We establish the long-time asymptotic formula of solutions to the (1+α)-order fractional
differential equation i

0O
1+α
t x + a(t)x = 0, t > 0, under some simple restrictions on

the functional coefficient a(t), where i
0O

1+α
t is one of the fractional differential operators

0Dα
t (x

′), (0Dα
t x)

′
= 0D1+α

t x and 0Dα
t (tx

′
− x). Here, 0Dα

t designates the Riemann–Liouville
derivative of order α ∈ (0, 1). The asymptotic formula reads as [b+O(1)] · xsmall + c · xlarge
as t → +∞ for given b, c ∈ R, where xsmall and xlarge represent the eventually small
and eventually large solutions that generate the solution space of the fractional differential
equation i

0O
1+α
t x = 0, t > 0.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The present note continues our recent papers [1–3] devoted to the fractional calculus variants of several fundamental
results from the asymptotic integration theory of ordinary differential equations.

Let us consider the fractional differential equation (FDE) of order 1 + α, with α ∈ (0, 1), below
i
0O

1+α
t x + a(t)x = 0, t > 0, (1)

where the functional coefficient a : [0, +∞) → R is assumed continuous. The differential operator i
0O

1+α
t is a fractional

version of the second order operator d2

dt2
, built by taking into account the decompositions

x′′
= (x′)′, tx′′

= (tx′
− x)′, t > 0,

in the ring of smooth functions over (0, +∞).
To declare the operator i

0O
1+α
t , denote by RLα((0, +∞), R) the real linear space of all the functions f ∈ C((0, +∞), R)

with limt↘0[t1−α f (t)] ∈ R. Recall now the Riemann–Liouville derivative of order α of the function f ∈ RLα((0, +∞), R),
namely

(0Dα
t f )(t) =

1
0(1 − α)

·
d
dt

[∫ t

0

f (s)
(t − s)α

ds
]

, t > 0,

where 0 stands for Euler’s function Gamma; cf. [4, p. 68]. If the function f is at least absolutely continuous (see [5, p. 35,
Lemma 2.2]) then the derivative exists almost everywhere. Now, we introduce the quantities

1
0O

1+α
t = 0Dα

t ◦
d
dt

, 2
0O

1+α
t =

d
dt

◦ 0Dα
t
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and

3
0O

1+α
t = 0Dα

t ◦


t ·

d
dt

− idRLα((0,+∞),R)


.

The different factorisations [6] of a fractional differential operatormight lead to some interestingmodels inmathematical
physics. We can mention that the fractional differential equations [7,8,5] are playing an important role in fluid dynamics,
trafficmodelwith fractional derivative,measurement of viscoelasticmaterial properties,modeling of viscoplasticity, control
theory, economy, nuclear magnetic resonance, mechanics, optics, signal processing and so on. Basically, the fractional
differential equations are used to investigate the dynamics of the complex systems, the models based on these derivatives
have given superior results as those based on the classical derivatives; see [4, p. 305], [9–11].

Notice that the FDE
i
0O

1+α
t x = 0, t > 0, (2)

has a bidimensional solution space in RLα((0, +∞), R) generated by the smooth functions 1 and tα for i = 1, tα−1 and tα
for i = 2, and t and tα−1 for i = 3.

Regarding Eq. (1) as perturbation of (2), one can ask how close a solution x of (1) can get to the solution b ·xsmall+c ·xlarge of
(2), with b, c ∈ R? Some simple restrictions on the functional coefficient a(t)will be given next to ensure that an asymptotic
formula for the general solution of each of the three FDEs exist similarly to the case of classical ordinary differential
equations. In a loose manner, the formula reads as

[b + O(1)] · xsmall + c · xlarge when t → +∞. (3)

Given the fact that the singular integral operators employed in our proofs resemble the integral operators from the two-
point boundary value problems encountered in the theory of second order differential equations (see [12]) we think that
the Landau symbol O(1) in our formula cannot be replaced with its counterpart o(1) in the majority of circumstances.

2. The case of 1
0O

1+α
t

To establish (3), we introduce an integral operator actingwithin a completemetric space and prove that it is a contraction
with respect to the space metric. The existence of its fixed point will follow then from the Contraction Principle and the
solution based on the fixed point will obey the asymptotic formula.

We start with a formal derivation of the integral operator. Given x ∈ C([0, +∞), R) such that x′
∈ RLα((0, +∞), R),

we integrate (1) over [t, +∞) to get

1
0(1 − α)

∫ t

0

x′(s)
(t − s)α

ds = x1 +

∫
+∞

t
(ax)(s)ds, t > 0,

where x1 = limt→+∞
1

0(1−α)

 t
0

x′(s)
(t−s)α ds ∈ R.

Further,

1
0(1 − α)

∫ t

0

1
(t − s)1−α

∫ s

0

x′(u)
(s − u)α

duds = x1 ·
tα

α
+

∫ t

0

1
(t − s)1−α

∫
+∞

s
(ax)(u)duds.

A Fubini–Tonelli argument (see [5, p. 29]) leads to

1
0(1 − α)

∫ t

0

1
(t − s)1−α

∫ s

0

x′(u)
(s − u)α

duds =
1

0(1 − α)

∫ t

0
x′(u)

∫ t

u

ds
(t − s)1−α(s − u)α

du

=
1

0(1 − α)

∫ t

0
x′(u)

∫ 1

0

dv
(1 − v)1−αvα

ds

=
B(α, 1 − α)

0(1 − α)

∫ t

0
x′(u)du,

where B is the Beta function; cf. [4, p. 6]. Since B(q, r) =
0(q)0(r)
0(q+r) and 0(1 + q) = q0(q), with q, r ∈ (0, 1), we obtain that

x(t) = x0 +
x1

0(1 + α)
· tα +

1
0(α)

∫ t

0

1
(t − s)1−α

∫
+∞

s
(ax)(τ )dτds,

with x(0) = x0 ∈ R.
Taking b = x0, c =

x1
0(1+α)

, with a2 + b2 > 0, the integral operator reads as

T (x)(t) = b + ctα +
1

0(α)

∫ t

0

1
(t − s)1−α

∫
+∞

s
(ax)(τ )dτds, t > 0. (4)
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Theorem 1. Assume that there exists T > 0 such that


+∞

T s1+α
|a(s)|ds < +∞ and

max{1, Tα
}

0(1 + α)

[∫ T

0
|a(s)|ds +

∫
+∞

T
sα|a(s)|ds

]
= k < 1.

Then the FDE (1) for i = 1 has a solution x ∈ C([0, +∞), R) with the asymptotic formula

x(t) = b + ctα + O(tα−1) = b + ctα + o(1) when t → +∞. (5)

In particular, O(1) can be replaced with o(1) in (3).

Proof. Let X be the set of all the functions x ∈ C([0, +∞), R) with supt≥T
|x(t)|
tα < +∞ and d the following metric

d(x1, x2) = max

‖x1 − x2‖L∞(0,T ), sup

t≥T

|x1(t) − x2(t)|
tα


, x1, x2 ∈ X .

Obviously, M = (X, d) is a complete metric space.
Notice that∫

+∞

0
sj|ax|(s)ds ≤

[∫ T

0
sj|a(s)|ds +

∫
+∞

T
sj+α

|a(s)|ds
]
d(x, 0)

= C(j) · d(x, 0),

where j ∈ {0, 1}, for every x ∈ M.
Introduce the operator T : M → C([0, +∞), R) with the formula (4). We have the estimates

|T (x)(t)| ≤ |b| + |c|tα +
1

0(α)

∫ t

0

ds
(t − s)1−α

·

∫
+∞

0
|ax|(s)ds

≤ |b| + Tα

[
|c| +

C(0)
0(1 + α)

· d(x, 0)
]

, t ∈ [0, T ],

and

|T (x)(t)| ≤ tα
[

|a| + Tα
|b|

Tα
+

C(0)
0(1 + α)

· d(x, 0)
]

, t ≥ T ,

which imply that T (x) ∈ M and

d(T (x), 0) ≤ max

1,

1
Tα


(|b| + Tα

|c|) + max{1, Tα
}

C(0)
0(1 + α)

· d(x, 0),

where x ∈ M.
We also have

d(T (x1), T (x2)) ≤
max{1, Tα

}

0(1 + α)
C(0) · d(x1, x2), x1, x2 ∈ M,

which means that T : M → M is a contraction of coefficient k.
Let x0 ∈ M be its fixed point. Following verbatim the computations from [2, Eqs. (10), (16)], we have the estimates∫ t

0

1
(t − s)1−α

∫
+∞

s
|ax0|(τ )dτds =

∫ t

0
|ax0|(τ )

tα − (t − τ)α

α
dτ +

tα

α

∫
+∞

t
|ax0|ds

≤
tα

α

[∫ t

0
|ax0|(τ ) ·

τ

t
dτ +

1
t

∫
+∞

t
s|ax0|(s)ds

]
≤

2C(1)
α

d(x0, 0) · tα−1
= O(tα−1) when t → +∞.

Finally,

x0(t) = T (x0)(t) = b + ctα + O(tα−1) when t → +∞.

The proof is complete. �

A particular case of (5) has been undertaken in [1], namely the casewhen b = 1, c = 0.We asked there if, similarly to the
circumstances of ordinary differential equations [12, Section 7], the solution x0 from Theorem 1 would have the (powerful)
asymptotic behavior

x0(t) = 1 + o(1) as t → +∞, x′
∈ (L1 ∩ L∞)((0, +∞), R).
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We also noticed that, most probably, to get such a result one must look for a sign-changing functional coefficient a(t); see
[1, Section 3].

In the remaining of the present section we shall discuss the issue of ‘‘x′
∈ L1’’ and conclude that this can happen

(eventually) in very restricted conditions.

Lemma 1. Assume that a ∈ (C ∩ L∞)([0, +∞), R) verifies the hypotheses from [1]: it has a unique zero t0 > 0,


+∞

0 a(s)ds =

0,


+∞

0 s|a(s)|ds < +∞ and B ∈ (L1 ∩ L∞)([0, +∞), R), where B(t) = tα‖a‖L∞(t,+∞) for all t ≥ 0. Then, introducing the
quantity C(t) =

 t
0

a(s)
(t−s)1−α ds, t ≥ 0, we have∫

+∞

0
|C(t)|dt + sup

t≥0
|C(t)| < +∞. (6)

If B∗
∈ L1([0, +∞), R), where B∗(t) = sups≥t B(s) for all t ≥ 0, then∫

+∞

0
C∗(t)dt < +∞, C∗(t) = sup

s≥t
|C(s)|, t ≥ 0. (7)

If


+∞

0 s1+α
|a(s)|ds +


+∞

0 ‖B‖L2(t,+∞)dt < +∞ then we also have∫
+∞

0
‖C‖L2(u,+∞)du =

∫
+∞

0

∫
+∞

u
|C(t)|2dt

 1
2

du < +∞. (8)

Proof. As in [1], for t > 0, the following estimates are valid

|C(2t)| ≤
B(t)
α

+

∫ t

0

a(s)
(2t − s)1−α

ds
 (9)

and ∫ t

0

a(s)
(2t − s)1−α

ds = tα−1
∫ t

0
a(s)ds − (1 − α)

∫ t

0

1
(2t − s)2−α

∫ s

0
a(τ )dτds (10)

= −tα−1
∫

+∞

t
a(s)ds + (1 − α)

∫ t

0

1
(2t − s)2−α

∫
+∞

s
a(τ )dτds. (11)

Since B ∈ L1 ∩ L∞, it is obvious that B ∈ L2, so we shall focus on the second member from the right part of (9). By means
of (10), we gettα−1

∫ t

0
a(s)ds

 +

∫ t

0

1
(2t − s)2−α

∫ s

0
a(τ )dτds

 ≤ tα‖a‖L∞ +
1

t2−α

∫ t

0
(s · ‖a‖L∞)ds =

3
2
‖a‖L∞ · tα,

which leads to C ∈ (L1 ∩ L∞)([0, T0], R), where T0 = max{1, t0}. Further, via (11),

D(t) =

∫ t

0

a(s)
(2t − s)1−α

ds


≤ tα−1
∫

+∞

t
|a(s)|ds + tα−2

∫
+∞

t
s|a(s)|ds

≤
2

t2−α

∫
+∞

t
s|a(s)|ds, t ≥ T0,

and so C ∈ (L1 ∩ L∞)([T0, +∞), R). The estimate (6) has been obtained. As a byproduct, C ∈ L2([0, +∞), R).
To prove (7), introduce D∗(t) = sups≥t D(s) for all t ≥ 0. We rely on the estimates

D∗(t) ≤
3
2
‖a‖L∞ · tα, t ∈ [0, T0],

and ∫
+∞

T0
D∗(t)dt ≤ 2

∫
+∞

T0

ds
s2−α

·

∫
+∞

T0
τ |a(τ )|dτ

=
2Tα−1

0

(1 − α)

∫
+∞

T0
τ |a(τ )|dτ ,

since the mapping t → tα−2


+∞

t s|a(s)|ds is monotone non-increasing in [T0, +∞).



1496 D. Băleanu et al. / Computers and Mathematics with Applications 62 (2011) 1492–1500

For the third part, notice that

D(t) ≤
2
t2

∫
+∞

t
s1+α

|a(s)|ds, t ≥ T0,

and ∫
+∞

2u
|C(2t)|2dt

 1
2

≤
1
α

· ‖B‖L2(2u,+∞) +

∫
+∞

2u

dt
t4

 1
2

· 2
∫

+∞

2u
s1+α

|a(s)|ds

≤ α−1
‖B‖L2(2u,+∞) +

u−
3
2

√
6

∫
+∞

0
s1+α

|a(s)|ds, u ≥ T0.

We have obtained that


+∞

T0


+∞

2u |C(2t)|2dt
 1

2
du < +∞.

Finally,∫ T0

0

∫
+∞

2u
|C(2t)|2dt

 1
2

du =
1

√
2

∫ T0

0

∫
+∞

4u
|C(v)|2dv

 1
2

du

≤
T0
√
2
‖C‖L2(0,+∞).

The proof is complete. �

Lemma 2. Assume that the function C from Lemma 1 satisfies the restrictions (6)–(8) and either

‖C‖L∞ + 2‖C∗
‖L1 = k1 < 1

or

2‖C∗
‖L1 < 1, max


‖C‖L∞ + ‖C‖L2 , ‖C‖L1 + ‖E‖L1


= k2 < 1,

where E(t) = ‖C‖L2(t,+∞) for all t ≥ 0. Then there exists a function y ∈ (C ∩ L1 ∩ L∞)([0, +∞), R) such that

y(t) = −C(t)

1 −

∫
+∞

t
y(s)ds


−

∫
+∞

t
(Cy)(s)ds, t ≥ 0. (12)

Proof. Set the number γ > 1 such that

1 + 2γ
∫

+∞

0
C∗(s)ds < γ .

Introduce the set Y of all the functions y ∈ C([0, +∞), R) such that |y(t)| ≤ γ · C∗(t), t ≥ 0, and the metric d with the
formula

d(y1, y2) = max{‖y1 − y2‖L∞(0,+∞), ‖y1 − y2‖L1(0,+∞)}, y1, y2 ∈ Y .

Using the Dominated Convergence Theorem, we deduce that the metric space N = (Y , d) is complete.
Consider the integral operatorT : N → C([0, +∞), R) given by the right-handmember of (12). The following estimates

|T (y)(t)| ≤ |C(t)|(1 + ‖y‖L1) + C∗(t)
∫

+∞

t
|y(s)|ds

≤ C∗(t)(1 + 2‖y‖L1) ≤ C∗(t) ·


1 + 2γ

∫
+∞

0
C∗(s)ds


≤ γ · C∗(t), t ≥ 0,

show that T : N → N is well-defined.
Now, we have

|T (y1)(t) − T (y2)(t)| ≤ C∗(t)‖y1 − y2‖L1 +

∫
+∞

0
|C(s)|ds · ‖y1 − y2‖L∞

≤ (‖C‖L∞ + ‖C‖L1) · d(y1, y2),
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by noticing that C∗(0) = ‖C‖L∞(0,+∞), and also∫
+∞

t
|T (y1)(s) − T (y2)(s)|ds ≤

∫
+∞

t
(|C(s)| · ‖y1 − y2‖L1)ds +

∫
+∞

t
C∗(s)

∫
+∞

s
|y1(τ ) − y2(τ )|dτds

≤ 2
∫

+∞

0
C∗(s)ds · d(y1, y2), t ≥ 0,

which lead to

d(T (y1), T (y2)) ≤ max

‖C‖L∞ + ‖C‖L1 , 2‖C

∗
‖L1


· d(y1, y2)

≤ k1d(y1, y2),

where y1, y2 ∈ N .
Notice that we have not employed (8). To do so, let us use different estimates, namely

|T (y1)(t) − T (y2)(t)| ≤ |C(t)| · ‖y1 − y2‖L1 +

[∫
+∞

t
|C(s)|2ds

] 1
2

·

[∫
+∞

t
|y1(s) − y2(s)|2ds

] 1
2

and ∫
+∞

t
|y1(s) − y2(s)|2ds ≤ sup

τ≥0
|y1(τ ) − y2(τ )| ·

∫
+∞

t
|y1(s) − y2(s)|ds

≤ [d(y1, y2)]2, t ≥ 0.

They imply

|T (y1)(t) − T (y2)(t)| ≤


|C(t)| +

∫
+∞

t
|C(s)|2ds

 1
2


· d(y1, y2)

≤ (‖C‖L∞ + ‖C‖L2)d(y1, y2)

and ∫
+∞

t
|T (y1)(s) − T (y2)(s)|ds ≤


‖C‖L1 +

∫
+∞

0

∫
+∞

t
|C(s)|2ds

 1
2

dt


d(y1, y2),

thus leading to

d(T (y1), T (y2)) ≤ max

‖C‖L∞ + ‖C‖L2 , ‖C‖L1 + ‖E‖L1


· d(y1, y2)

≤ k2d(y1, y2),

where y1, y2 ∈ N .
The operator T : N → N being a contraction, its fixed point y0 is the solution of (12) we are looking for. The proof is

complete. �

Proposition 1. Let y ∈ C([0, +∞), R) be the solution of (12) from Lemma 2. If y(0) = 0 then the function x ∈ C1([0, +∞), R)

with the formula x(t) = 1 −


+∞

t y(s)ds for all t ≥ 0 is a solution of the FDE (1) for i = 1 which satisfies the restrictions

x(t) = 1 + o(1) as t → +∞, x′
∈ (L1 ∩ L∞)([0, +∞), R).

Proof. Following [1], the function x verifies the identity

y(t) = −
1

0(α)

∫ t

0

a(s)x(s)
(t − s)1−α

ds = −
1

0(α)

∫ t

0

a(s)
(t − s)1−α

ds +
1

0(α)

∫ t

0

a(s)
(t − s)1−α

∫ t

s
+

∫
+∞

t


y(τ )dτds

= −C(t) +

∫ t

0
y(τ )C(τ )dτ + C(t)

∫
+∞

t
y(τ )dτ

= −C(t)

1 −

∫
+∞

t
y(s)ds


+

∫ t

0
(Cy)(s)ds, t ≥ 0. (13)

We have rescaled C as C(t) =
1

0(α)

 t
0

a(s)
(t−s)1−α ds, t ≥ 0.
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Let t = 0 in (12). Then, 0 = y(0) = −


+∞

0 (Cy)(s)ds. This means that we can recast the integral expression from (13) as

y(t) = −C(t)

1 −

∫
+∞

t
y(s)ds


−

∫
+∞

t
(Cy)(s)ds, t ≥ 0,

which is exactly (12).
The proof is complete. �

To give some insight to the (still unsettled) issue of ‘‘x′
∈ L1’’, notice that the condition y(0) = 0 from Proposition 1 reads

as ∫
+∞

0
x′(s)

∫ s

0

a(τ )

(s − τ)1−α
dτds = 0,

which is really difficult to handle. A further intricacy is provided by the fact that, given a ∈ C([0, +∞), R), the quantity
F(t) =

 t
0

|a(s)|
(t−s)1−α ds, t ≥ 0, does not belong to L1([0, +∞), R). This follows from∫ t

T
F(2s)ds ≥

∫ t

T

∫ 2s

T
2

|a(τ )|

(2s − τ)1−α
dτds ≥

∫ t

T

ds
2s −

T
2

1−α
·

∫ 2T

T
2

|a(τ )|dτ

→ +∞ when t → +∞,

where T > 0 is chosen large enough for a to be non-trivial in
 T
2 , 2T


.

3. The case of 3
0O

1+α
t

Introduce the relations

y(t) = tx′(t) − x(t), x(t) = ct − t
∫

+∞

t

y(τ )

τ 2
dτ , t > 0, (14)

with c ≠ 0 and y ∈ RLα((0, +∞), R); see [3].
As before,

1
0(1 − α)

∫ t

0

y(s)
(t − s)α

ds = x1 +

∫
+∞

t
(ax)(s)ds, t > 0,

where x1 = limt→+∞
1

0(1−α)

 t
0

y(s)
(t−s)α ds ∈ R, and∫ t

0
y(s)ds =

x1tα

0(1 + α)
+

1
0(α)

∫ t

0

1
(t − s)1−α

∫
+∞

s
(ax)(τ )dτds

=
x1tα

0(1 + α)
+

1
0(α)

∫ t

0

1
(t − s)1−α

∫
+∞

0
−

∫ s

0


(ax)(τ )dτds

=
tα

0(1 + α)

[
x1 +

∫
+∞

0
(ax)(τ )dτ

]
−

1
0(α)

∫ t

0

∫ s

0

(ax)(u)
(s − u)1−α

duds;

see [5, p. 32, Eq. (2.13)].
By differentiation, we get

y(t) =
tα−1

0(α)

[
x1 +

∫
+∞

0
(ax)(τ )dτ

]
−

1
0(α)

∫ t

0

(ax)(s)
(t − s)1−α

ds,

where t > 0.
Taking b = −

x1
(2−α)0(α)

and recalling (14), our integral operator reads as

T (y)(t) = tα−1
[
b +

c
0(α)

∫
+∞

0
sa(s)ds

]
−

c
0(α)

∫ t

0

sa(s)
(t − s)1−α

ds

−
tα−1

0(α)

∫
+∞

0
τa(τ )

∫
+∞

τ

y(u)
u2

dudτ +
1

0(α)

∫ t

0

τa(τ )

(t − τ)1−α

∫
+∞

τ

y(u)
u2

dudτ , t > 0.

Theorem 2. Assume that


+∞

0 t|a(t)|dt + supt>0 t1−α
 t
0

s|a(s)|
(t−s)1−α ds < +∞ and

1
0(α)

∫
+∞

0

|a(s)|
s1−α

ds + χ


= k3 < 1,
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where χ = supt>0 t1−α
 t
0

|a(s)|
(t−s)1−α s1−α ds. Then the FDE (1) for i = 3 has a solution x ∈ C1((0, +∞), R) with the asymptotic

formula

x(t) = [b + O(1)]tα−1
+ ct = ct + O(tα−1) when t → +∞. (15)

Proof. Let us start by giving a simple example of χ . If the functional coefficient a ∈ (C ∩ L1)([0, +∞), R) verifies the
restriction

|a(t)| ≤
A
tα

, t > 0,

then

t1−α

∫ 2t

0

|a(s)|
(2t − s)1−αs1−α

ds = t1−α

∫ t

0
+

∫ 2t

t


|a(s)|

(2t − s)1−αs1−α
ds

≤ t1−α

∫ t

0

|a(s)|
t1−αs1−α

ds + t1−α

∫ 2t

t

A
(2t − s)1−αs

ds

≤

∫ 1

0

|a(s)|
s1−α

ds +

∫ 1+t

1

|a(s)|
s1−α

ds


+ A
∫ 1

1
2

dv
(1 − v)1−αv

≤

∫ 1

0

ds
s1−α

· ‖a‖L∞(0,1) +

∫
+∞

1
|a(s)|ds


+ 2A

∫ 1

1
2

dv
(1 − v)1−α

≤
1
α

‖a‖L∞(0,1) + ‖a‖L1(1,+∞) + A
21−α

α
< +∞, t > 0.

Notice also that
 t
0

|a(s)|
(t−s)1−α ds ≤ t1−α

 t
0

|a(s)|
(t−s)1−α s1−α ds ≤ χ and

t1−α

∫ t

0

s|a(s)|
(t − s)1−α

ds = t1−α

∫ t

0

s2−α
|a(s)|

(t − s)1−αs1−α
ds, t > 0,

which leads to the ‘‘χ ’’ of the mapping t → t2−αa(t) in [0, +∞).
Introduce now the set Z of all the functions y ∈ C((0, +∞), R) such that supt>0 t1−α

|y(t)| < +∞ and the metric

d(y1, y2) = sup
t>0

t1−α
|y1(t) − y2(t)|, y1, y2 ∈ Z .

Observe also that

sup
t>0

t2−α

∫
+∞

t

|y1(u) − y2(u)|
u2

du ≤
1

2 − α
· sup

t>0
t1−α

|y1(t) − y2(t)|

≤ d(y1, y2). (16)

The metric space P = (Z, d) is complete. Given y ∈ P , we have the estimates

t1−α
|T (y)(t)| ≤ |b| +

|c|
0(α)

∫
+∞

0
s|a(s)|ds +

|c|
0(α)

· sup
t>0

t1−α

∫ t

0

s|a(s)|
(t − s)1−α

ds

+
1

0(α)

∫
+∞

0

|a(s)|
s1−α

ds · sup
s>0

s2−α

∫
+∞

s

|y(u)|
u2

du

+
1

0(α)
· sup

t>0
t1−α

∫ t

0

|a(τ )|

(t − τ)1−ατ 1−α
dτ · sup

τ>0
τ 2−α

∫
+∞

τ

|y(u)|
u2

du, t > 0,

which imply that T (P ) ⊆ P .
Further, we have

t1−α
|T (y1)(t) − T (y2)(t)| ≤

[
1

0(α)

∫
+∞

0

|a(s)|
s1−α

ds +
1

0(α)
sup
t>0

t1−α

∫ t

0

|a(τ )|

(t − τ)1−ατ 1−α
dτ

]
d(y1, y2)

=
1

0(α)

∫
+∞

0

|a(s)|
s1−α

ds + χ


d(y1, y2), t > 0,

by means of (16), where y1, y2 ∈ P .
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The operator T : P → P being a contraction of coefficient k3, it has a fixed point y0. Thus, since y0(t) = O(tα−1) for
large values of t , we conclude the validity of the asymptotic expansion (15) for the solution x given by (14). Notice also that

lim
t↘0

t1−αy0(t) = lim
t↘0

t1−αT (y0)(t) = a +
b

0(α)

∫
+∞

0
sa(s)ds.

The proof is complete. �

4. The case of 2
0O

1+α
t

The asymptotic formula (3) has been already discussed in [2], however, it is worthy to be recalled for reasons of
completeness.

Theorem 3 ([2, Theorem 1]). Assume that there exists T > 0 such that

max{1, T }

0(1 + α)

∫ T

0

|a(s)|
s1−α

ds +

∫
+∞

T
sα|a(s)|ds


= k4 < 1

and


+∞

T s1+α
|a(s)|ds < +∞. Then, given b, c ∈ R, with b2 + c2 > 0, the FDE (1) for i = 2 has a solution x ∈ C((0, +∞), R)

with the asymptotic formula

x(t) = [b + O(1)]tα−1
+ ctα = ctα + O(tα−1) when t → +∞.

The formula of the integral operator reads in this case as

T (x)(t) = btα−1
+ ctα +

1
0(α)

∫ t

0

1
(t − s)1−α

∫
+∞

s
(ax)(τ )dτds, t > 0,

and its fixed point x0 satisfies also the conditions

lim
t↘0

t1−αx0(t) = b, lim
t→+∞

(0Dα
t x0)(t) = 0(1 + α)c.
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