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Abstract: In this paper, our objective is to apply a new approach to establish bounds of sums of left
and right proportional fractional integrals of a general type and obtain some related inequalities.
From the obtained results, we deduce some new inequalities for classical generalized proportional
fractional integrals as corollaries. These inequalities have a connection with some known and existing
inequalities which are mentioned in the literature. In addition, some applications of the main results
are presented.
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1. Introduction

Fractional calculus is an area of mathematics that studies the differentiation and integration of
arbitrary order. This calculus has been attracting many researchers because of the astoishing results
obtained when fractional operators were used in modeling a variety of real world problems. Thus,
these operators have been conisdred as one the most powerful tools in the area of mathematical
modeling. Many engineering, physical, chemical, and biological phenomena can be modeled by
employing differential equations containing fractional derivatives. The applications of fractional
integrals and derivatives can be found in [1–13].

It can be observed from the works in the literature that one of most important pecularities of
the fractional operators is the fact that they are non-local. However, for the last few years, there has
been an interest in the local derivatives with non-integer order. Although these types of derivatives
can be used in modeling too, they are usually not considered as fractional operators. Nevertheless,
these local derivatives succeeded to allure many scientists. There are various definitions of the local
derivatives. One of the most well known local derivatives is the conformable integrals and derivatives,
which were introduced for the first time by Khalil et al. [14]. In [15], Abdeljawad introduced certain
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properties of the fractional conformable derivative operators. Also, he gave the idea of how to employ
the conformable derivative operators to define further more general fractional integral and derivative
operators. The disadvantage of the conformable derivative is that the function is not obtained when the
order of the conformable derivative is zero. In [16], Anderson and Unless introduced the idea of local
proportional derivatives that produce the function when the order of the derivative is zero. Later on,
Jarad et al. [17] introduced non-local fractional derivatives and integrals benefiting from the iteration
of the proportional integrals. Abdeljawad and Baleanu [18] studied certain monotonicity results for
fractional difference operators with discrete exponential kernels. In [19], Abdeljawad and Baleanu
introduced fractional derivative with exponential kernel and their discrete version. Atangana and
Baleanu [20] established certain new fractional derivatives with non-local and non-singular kernels.
In [21], Caputo and Fabrizio defined fractional derivatives without a singular kernel. Losada and
Nieto [22] studied certain properties of fractional derivatives without a singular kernel. A verity
of such type of new definitions of fractional integrals and derivatives promotes future research to
establish more new ideas and fractional integral inequalities by utilizing new fractional derivative and
integral operators.

In [23,24], the authors established certain weighted Grüss type inequalities and some other
inequalities containing Riemann–Liouville fractional integrals. Nisar et al. [25] studied several
inequalities for extended gamma and confluent hypergeometric k-functions. Nisar et al. [26] presented
Gronwall inequalities involving the generalized Riemann–Liouville and Hadamard k-fractional
derivatives with applications. In [27], Rahman et al. proved certain inequalities involving the
generalized fractional integral operators. In [28,29], Grüss type inequalities in the setting of generalized
fractional integrals were found and some applictions were introduced. Liu et al. [30] presented several
interesting integral inequalities. Sarikaya and Budak [31] have presented the generalization of
Riemann–Liouville fractional integrals and their applications. In [32], using some fractional integral
operators, Set et al. established Hermite–Hadamard type inequalities. Meanwhile, Agarwal et al. [33]
employed generalized k-fractional integral operators for the sake of establishing Hermite–Hadamard
type inequalities. Dahmani [34] presented a variety of integral inequalities by using some families
of n positive functions. In [35], Aldhaifallah et al. introduced some integral inequalities for a certain
family of n(n ∈ N) positive continuous and decreasing functions on some intervals employing what is
called generalized (k, s)-fractional integral operators. Recently, some researchers introduced a verity of
certain interesting inequalities, applications, and properties for the conformable integrals [36–40].

2. Preliminaries

In this section, we present some well known results.

Definition 1. Let f : I → R be a real valued function. We say that f is convex on interval I, if for all λ ∈ [0, 1]
and x, y ∈ I, the following inequality is satisfied

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y). (1)

Moreover, we say f is concave if the inequality (1) is reversed.

In [41], Jarad et al. defined the following left and right sided generalized proportional fractional
integrals.

Definition 2. The left and right fractional proportional integrals in their general forms are defined by(
rIη,δ f

)
(ρ)

=
1

δηΓ(η)

∫ ρ

r
exp[

δ− 1
δ

(ρ− θ)](ρ− θ)η−1 f (θ)dθ, r < ρ (2)
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and (
Iη,δ

s f
)
(ρ)

=
1

δηΓ(η)

∫ s

ρ
exp[

δ− 1
δ

(θ − ρ)](θ − ρ)η−1 f (θ)dθ, ρ < s, (3)

where the proportional index δ ∈ (0, 1] and η ∈ C and <(η) > 0 and Γ is the complete gamma function.

Remark 1. Setting δ = 1 in (2) and (3), then the following left and right Riemann–Liouville integrals are
respectively obtained as:

( rIη f ) (ρ) =
1

Γ(η)

∫ ρ

r
(ρ− θ)η−1 f (θ)dθ, r < ρ (4)

and (
Iη

s f
)
(ρ) =

1
Γ(η)

∫ s

ρ
(θ − ρ)η−1 f (θ)dθ, ρ < s (5)

where η ∈ C and <(η) > 0.

The Gronwall inequalities which involve the proportional fractional integral operator can be
found in work of Alzabut et al. [42]. Rahman et al. [43] established the Minkowski inequality and
other types of inequalities in the frame of the proportional fractional integrals. In [44], Rahman et al.
discussed some specific new types of integral inequalities for a class of n (n ∈ N) positive continuous
and decreasing functions on [r, b]. Rahman et al. [45] defined the generalized proportional Hadamard
fractional integrals and established certain new integral inequalities for convex functions. In [46–50],
certain remarkable inequalities, properties, and applications can be found.

In [51], general forms of the proportional fractional integrals (4) and (5) were given as

Definition 3. Let f : [r, s]→ R be an integrable function and let g ∈ C1[r, s] such that g′ > 0 on [r, s]. Then,
the left (forword) and right (backward) proportional fractional integrals of the function f with respect to the
function g are respectively defined by(

g
r Iη,δ f

)
(ρ)

=
1

δηΓ(η)

∫ ρ

r
exp[

δ− 1
δ

(g(ρ)− g(θ))]

× (g(ρ)− g(θ))η−1 g′(θ) f (θ)dθ, r < ρ (6)

and (
gIη,δ

s f
)
(ρ)

=
1

δηΓ(η)

∫ s

ρ
exp[

δ− 1
δ

(g(θ)− g(ρ))]

× (g(θ)− g(ρ))η−1 g′(θ) f (θ)dθ, ρ < s, (7)

where the proportional index δ ∈ (0, 1] and η ∈ C and <(η) > 0 and Γ is the well-known gamma function.

Remark 2. The generalized proportional fractional integrals defined in (6) and (7) are the generalization of the
following fractional integrals respectively:
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i. if we take g(τ) = τ, one obtains the left and right sided generalized proportional fractional integral defined
in (2) and (3),

ii. if we take g(ρ) = ρη

η , η > 0 and δ = 1, we get the left and right sided Katugampola fractional integral
operators,

iii. if we take δ = 1, then it reduces to the general form of Riemann–Liouville fractional integral given in [52],
iv. if we take g(ρ) = ρ and δ = 1, then it reduces to the left and right Riemann–Liouville fractional integrals

(4) and (5),
v. if we take g(ρ) = ρδ+λ

δ+λ and δ = 1 (where δ ∈ (0, 1], λ ∈ R+ and δ + λ 6= 0), then it reduces to the
generalized fractional conformable integrals given in [53].

3. Main Results

In this section, we first obtain a bound for the sum of the left and right-sided generalized
proportional fractional integrals in their general forms. For this sake, we use convexity and
monotonicity of the functions.

Theorem 1. Let f , g : [r, s]→ R be the functions such that f is convex and positive and g is increasing and
differentiable with g′ ∈ L[r, s]. Then, for η, ξ ≥ 1 and ρ ∈ [r, s] and δ ∈ (0, 1], we have

Γ(η)δη g
r Iη,δ f (ρ) + Γ(ξ)δξ gIξ,δ

s f (ρ)

≤
exp[ δ−1

δ (g(ρ)− g(r))] (g(ρ)− g(r))η−1

ρ− r

×
[
(ρ− r) f (ρ)g(ρ)− (ρ− r) f (r)g(r)

− ( f (ρ)− f (r))
∫ ρ

r
g(θ)dθ

]
+

exp[ δ−1
δ (g(s)− g(ρ))] (g(s)− g(ρ))ξ−1

s− ρ

×
[
(s− ρ) f (s)g(s)− (s− ρ) f (ρ)g(ρ)

− ( f (s)− f (ρ))
∫ s

ρ
g(θ)dθ

]
. (8)

Proof. Since g is differentiable and increasing, we obtain

exp
[ δ− 1

δ
(g(ρ)− g(θ))

]
(g(ρ)− g(θ))η−1

≤ exp
[ δ− 1

δ
(g(ρ)− g(r))

]
(g(ρ)− g(r))η−1 ,

where ρ ∈ [r, s], θ ∈ [r, ρ], η ≥ 1, δ ∈ (0, 1] and g′(θ) > 0. Hence, the following inequality holds true

g′(θ) exp
[ δ− 1

δ
(g(ρ)− g(θ))

]
(g(ρ)− g(θ))η−1

≤ g′(θ) exp
[ δ− 1

δ
(g(ρ)− g(r))

]
(g(ρ)− g(r))η−1 . (9)

From the convexity of f , we have

f (θ) ≤ ρ− θ

ρ− r
f (r) +

θ − r
ρ− r

f (ρ). (10)
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From (9) and (10), we can write∫ ρ

r
exp[

δ− 1
δ

(g(ρ)− g(θ))] (g(ρ)− g(θ))η−1 g′(θ) f (θ)dθ

≤
exp[ δ−1

δ (g(ρ)− g(r))] (g(ρ)− g(r))η−1

ρ− r

×
[

f (r)
∫ ρ

r
(ρ− θ)g′(θ)dθ + f (ρ)

∫ ρ

r
(θ − r)g′(θ)dθ

]
.

By using (6), we get

Γ(η)δη g
r Iη,δ f (ρ)

≤
exp[ δ−1

δ (g(ρ)− g(r))] (g(ρ)− g(r))η−1

ρ− r

×
[
(ρ− r) f (ρ)g(ρ)− (ρ− r) f (r)g(r)

− ( f (ρ)− f (r))
∫ ρ

r
g(θ)dθ

]
. (11)

Now, for ρ ∈ [r, s], θ ∈ [r, ρ], ξ ≥ 1, δ ∈ (0, 1] and g′(θ) > 0, the following inequality holds true

g′(θ) exp
[ δ− 1

δ
(g(θ)− g(ρ))

]
(g(θ)− g(ρ))ξ−1

≤ g′(θ) exp
[ δ− 1

δ
(g(s)− g(ρ))

]
(g(s)− g(ρ))ξ−1 . (12)

Again, from the convexity of f , we have

f (θ) ≤ θ − ρ

s− ρ
f (s) +

s− θ

s− ρ
f (ρ). (13)

From (12) and (13), the following can be written

g′(θ) exp
[ δ− 1

δ
(g(θ)− g(ρ))

]
(g(θ)− g(ρ))ξ−1 f (θ)

≤
exp

[
δ−1

δ (g(s)− g(ρ))
]
(g(s)− g(ρ))ξ−1

s− ρ

×
[
(θ − ρ) f (s)g′(θ) + (s− θ)g′(θ) f (ρ)

]
. (14)

Integrating (14) with respect to θ over [ρ, s] and then applying (7), we get

Γ(ξ)δξ gIη,δ
s f (ρ)

≤
exp

[
δ−1

δ (g(s)− g(ρ))
]
(g(s)− g(ρ))ξ−1

s− ρ

×
[
(s− ρ) f (s)g(s)− (s− ρ) f (ρ)g(ρ)− ( f (s)

− f (ρ))
∫ s

ρ
g(θ)dθ

]
. (15)

Hence, from (11) and (15), we get the desired result.
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Corollary 1. Let f , g : [r, s]→ R be functions such that f is convex and positive and let g be increasing and
differentiable with g′ ∈ L[r, s]. Then, for η, ξ ≥ 1 and ρ ∈ [r, s] and δ ∈ (0, 1], we have

Γ(η)δη g
r Iη,δ f (ρ) + Γ(η)δη gIη,δ

s f (ρ)

≤
exp[ δ−1

δ (g(ρ)− g(r))] (g(ρ)− g(r))η−1

ρ− r

×
[
(ρ− r) f (ρ)g(ρ)− (ρ− r) f (r)g(r)− ( f (ρ)− f (r))∫ ρ

r
g(θ)dθ

]
+

exp[ δ−1
δ (g(s)− g(ρ))] (g(s)− g(ρ))η−1

s− ρ

×
[
(s− ρ) f (s)g(s)− (s− ρ) f (ρ)g(ρ)− ( f (s)− f (ρ))∫ s

ρ
g(θ)dθ

]
. (16)

Proof. By setting η = ξ in Theorem 1, we get the desired Corollary 1.

Corollary 2. Setting g(ρ) = ρ in Theorem 1, then we get the following inequality for generalized proportional
fractional integrals (2) and (3)

Γ(η)δη
rIη,δ f (ρ) + Γ(ξ)δξIξ,δ

s f (ρ)

≤ 1
2

[
exp[

δ− 1
δ

(ρ− r)] (ρ− r)η f (r)

+ exp[
δ− 1

δ
(s− ρ)] (s− ρ)ξ f (s)

]
+ f (ρ)

1
2

[
exp[

δ− 1
δ

(ρ− r)] (ρ− r)η

+ exp[
δ− 1

δ
(s− ρ)] (s− ρ)ξ

]
.

Remark 3. Setting δ = 1 in Theorem 1, we get the following inequality for generalized Riemann–Liouville
fractional integral ([52], Theorem 1).

Γ(η) g
r Iη f (ρ) + Γ(ξ) gIξ

s f (ρ)

≤ (g(ρ)− g(r))η−1

ρ− r

×
[
(ρ− r) f (ρ)g(ρ)− (ρ− r) f (r)g(r)− ( f (ρ)− f (r))∫ ρ

r
g(θ)dθ

]
+
(g(s)− g(ρ))ξ−1

s− ρ[
(s− ρ) f (s)g(s)− (s− ρ) f (ρ)g(ρ)− ( f (s)− f (ρ))∫ s

ρ
g(θ)dθ

]
. (17)

Remark 4. Setting g(ρ) = ρ and δ = 1 in Theorem 1, we get integral inequality involving Riemann–Liouville
fractional integrals ([54], Theorem 2).
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Theorem 2. Let f , g : [r, s] → R be functions such that f is differentiable, | f ′| is convex, and g is also
differentiable and increasing with g′ ∈ L[r, s]. Then, for η, ξ ≥ 0 and ρ ∈ [r, s] and δ ∈ (0, 1], we have∣∣∣Γ(η + 1)δη g

r Iη,δ f (ρ) +
δ− 1

δ
Γ(η + 1)δη+1 g

r Iη+1,δ f (ρ)

+ Γ(ξ + 1)δξ gIξ,δ
s f (ρ) +

δ− 1
δ

Γ(ξ + 1)δξ+1

×g Iξ+1,δ
s f (ρ)− exp[

δ− 1
δ

(g(ρ)− g(r))] (g(ρ)− g(r))η

f (r) + exp[
δ− 1

δ
(g(s)− g(ρ))] (g(s)− g(ρ))ξ f (s)

∣∣∣
≤1

2

[
exp[

δ− 1
δ

(g(ρ)− g(r))] (g(ρ)− g(r))η (ρ− r)| f ′(r)|

+ exp[
δ− 1

δ
(g(s)− g(ρ))] (g(s)− g(ρ))ξ (s− ρ)| f ′(s)|

]
+ | f ′(ρ)|1

2

[
exp[

δ− 1
δ

(g(ρ)− g(r))] (g(ρ)− g(r))η (ρ− r)

+ exp[
δ− 1

δ
(g(s)− g(ρ))] (g(s)− g(ρ))ξ (s− ρ)

]
. (18)

Proof. From the convexity of | f ′|, we have

| f ′(t)| ≤ ρ− θ

ρ− r
| f ′(r)|+ θ − r

ρ− r
| f ′(ρ)|. (19)

It follows that

f ′(t) ≤ ρ− θ

ρ− r
| f ′(r)|+ θ − r

ρ− r
| f ′(ρ)|. (20)

Since g is differentiable and increasing, we have

exp[
δ− 1

δ
(g(ρ)− g(θ))] (g(ρ)− g(θ))η

≤ exp[
δ− 1

δ
(g(ρ)− g(r))] (g(ρ)− g(r))η , (21)

where ρ ∈ [r, s], θ ∈ [r, ρ], and η > 0.
From (20) and (21), we can write

exp[
δ− 1

δ
(g(ρ)− g(θ))] (g(ρ)− g(θ))η f ′(θ)

≤
exp[ δ−1

δ (g(ρ)− g(r))] (g(ρ)− g(r))η

ρ− r

(
(ρ− θ)| f ′(r)|

+ (θ − r)| f ′(ρ)|
)

. (22)
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Integrating (22) with respect to θ over [r, ρ], we get∫ ρ

r
exp[

δ− 1
δ

(g(ρ)− g(θ))] (g(ρ)− g(θ))η f ′(θ)dθ

≤
exp[ δ−1

δ (g(ρ)− g(r))] (g(ρ)− g(r))η

ρ− r

×
[
| f ′(r)|

∫ ρ

r
(ρ− θ)dθ + | f ′(ρ)|

∫ ρ

r
(θ − r)dθ

]
= exp[

δ− 1
δ

(g(ρ)− g(r))] (g(ρ)− g(r))η (ρ− r)

×
[ | f ′(r)|+ | f ′(ρ)|

2

]
, (23)

and ∫ ρ

r
exp[

δ− 1
δ

(g(ρ)− g(θ))] (g(ρ)− g(θ))η f ′(θ)dθ

= exp[
δ− 1

δ
(g(ρ)− g(θ))] (g(ρ)− g(θ))η f (θ)

∣∣∣ρ
r

−
∫ ρ

r

d
dθ

[
exp[

δ− 1
δ

(g(ρ)− g(θ))] (g(ρ)− g(θ))η
]

f (θ)dθ

=− exp
[ δ− 1

δ
(g(ρ)− g(r))

]
(g(ρ)− g(r))η f (r)

+ η
∫ ρ

r
exp[

δ− 1
δ

(g(ρ)− g(θ))] (g(ρ)− g(θ))η−1 g′(θ) f (θ)dθ

+
δ− 1

δ

∫ ρ

r
exp[

δ− 1
δ

(g(ρ)− g(θ))] (g(ρ)− g(θ))η g′(θ) f (θ)dθ

=− exp
[ δ− 1

δ
(g(ρ)− g(r))

]
(g(ρ)− g(r))η f (r) + Γ(η + 1)δη

× g
r Iη,δ f (ρ)

+
δ− 1

δ
Γ(η + 1)δη+1 g

r Iη+1,δ f (ρ). (24)

Therefore, (23) becomes

Γ(η + 1)δη g
r Iη,δ f (ρ) +

δ− 1
δ

Γ(η + 1)δη+1 g
r Iη+1,δ f (ρ)

− exp
[ δ− 1

δ
(g(ρ)− g(r))

]
(g(ρ)− g(r))η f (r)

≤ exp[
δ− 1

δ
(g(ρ)− g(r))]

× (g(ρ)− g(r))η (ρ− r)
[
| f ′(r)|+ | f ′(ρ)|

2

]
. (25)

Also, from (19), we can write

f ′(t) ≥ −
(

ρ− θ

ρ− r
| f ′(r)|+ θ − r

ρ− r
| f ′(ρ)|

)
. (26)
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Applying a similar procedure as we applied for (20), we have

exp
[ δ− 1

δ
(g(ρ)− g(r))

]
(g(ρ)− g(r))η f (r)

− Γ(η + 1)δη g
r Iη,δ f (ρ)− δ− 1

δ
Γ(η + 1)δη+1 g

r Iη+1,δ f (ρ)

≤ exp
[ δ− 1

δ
(g(ρ)− g(r))

]
(g(ρ)− g(r))η (ρ− r)

×
[
| f ′(r)|+ | f ′(ρ)|

2

]
. (27)

Therefore, from (25) and (27), we get∣∣∣Γ(η + 1)δη g
r Iη,δ f (ρ) +

δ− 1
δ

Γ(η + 1)δη+1 g
r Iη+1,δ f (ρ)−

exp[
δ− 1

δ
(g(ρ)− g(r))] (g(ρ)− g(r))η f (r)

∣∣∣
≤ exp[

δ− 1
δ

(g(ρ)− g(r))] (g(ρ)− g(r))η (ρ− r)

×
[
| f ′(r)|+ | f ′(ρ)|

2

]
. (28)

Again, from convexity of | f ′|, we have

| f ′(t)| ≤ θ − ρ

s− ρ
| f ′(s)|+ s− θ

s− ρ
| f ′(ρ)|. (29)

Now, for ρ ∈ [r, s], θ ∈ [ρ, s] and ξ > 0, we have

exp
[ δ− 1

δ
(g(θ)− g(ρ))

]
(g(θ)− g(ρ))ξ

≤ exp
[ δ− 1

δ
(g(s)− g(ρ))

]
(g(s)− g(ρ))ξ . (30)

Following the similar procedure as we did for (20), (21) and (26), one can obtain the following
result from (29) and (30)∣∣∣Γ(ξ + 1)δξ gIη,δ

s f (ρ) +
δ− 1

δ
Γ(ξ + 1)δξ+1 gIξ+1,δ

s f (ρ)−

exp
[ δ− 1

δ
(g(s)− g(ρ))

]
(g(s)− g(ρ))ξ f (s)

∣∣∣
≤ exp[

δ− 1
δ

(g(s)− g(ρ))] (g(s)− g(ρ))ξ (s− ρ)

×
[
| f ′(s)|+ | f ′(ρ)|

2

]
. (31)

Thus, from (28), (31), and together with triangular inequality, we get the desired inequality (18).
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Corollary 3. Setting η = ξ in Theorem 2, we deduce the following for the generalized proportional fractional
integral in general form ∣∣∣Γ(η + 1)δη g

r Iη,δ f (ρ) +
δ− 1

δ
Γ(η + 1)δη+1 g

r Iη+1,δ f (ρ)

+ Γ(η + 1)δη gIη,δ
s f (ρ) +

δ− 1
δ

Γ(η + 1)δη+1

× gIη+1,δ
s f (ρ)− exp[

δ− 1
δ

(g(ρ)− g(r))] (g(ρ)− g(r))η

+ exp[
δ− 1

δ
(g(s)− g(ρ))] (g(s)− g(ρ))η f (s)

∣∣∣
≤1

2
exp[

δ− 1
δ

(g(ρ)− g(r))] (g(ρ)− g(r))η (ρ− r)| f ′(r)|

+ exp[
δ− 1

δ
(g(s)− g(ρ))] (g(s)− g(ρ))η (s− ρ)| f ′(s)|

+| f ′(ρ)|1
2

exp[
δ− 1

δ
(g(ρ)− g(r))] (g(ρ)− g(r))η (ρ− r)

+ exp[
δ− 1

δ
(g(s)− g(ρ))] (g(s)− g(ρ))η (s− ρ).

Corollary 4. By taking g(ρ) = ρ in Theorem 2, we get the following generalized proportional fractional integral
inequality for the integrals (2) and (3)∣∣∣Γ(η + 1)δη

rIη,δ f (ρ) +
δ− 1

δ
Γ(η + 1)δη+1

rIη+1,δ f (ρ)

+ Γ(ξ + 1)δξ Iξ,δ
s f (ρ)

+
δ− 1

δ
Γ(ξ + 1)δξ+1Iξ+1,δ

s f (ρ)

− exp
[ δ− 1

δ
(ρ− r)

]
(ρ− r)η

+ exp
[ δ− 1

δ
(s− ρ)

]
(s− ρ)ξ f (s)

∣∣∣
≤1

2
exp[

δ− 1
δ

(ρ− r)] (ρ− r)η+1 | f ′(r)|

+ exp[
δ− 1

δ
(s− ρ)] (s− ρ)ξ+1 | f ′(s)|

+| f ′(ρ)|1
2

exp[
δ− 1

δ
(ρ− r)] (ρ− r)η+1

+ exp[
δ− 1

δ
(s− ρ)] (s− ρ)ξ+1 .

Remark 5. By setting δ = 1 in Theorem 2, we get the integral inequality for Riemann–Liouville fractional
integrals in general form ([52], Theorem 2).

Remark 6. By taking g(ρ) = ρ and δ = 1 in 2, we get the integral inequality for classical Riemann–Liouville
fractional integrals ([54], Theorem, 1).

Now, recalling the following Lemma from [54] which will be helpful in the proof of next result.

Lemma 1. Let f : [r, s]→ R be a symmetric function which is symmetric about r+s
2 , then we have

f
(

r + s
2

)
≤ f (ρ), ρ ∈ [r, s]. (32)
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Theorem 3. Let f , g : [r, s]→ R be the functions such that f is convex and positive and g is increasing and
differentiable with g′ ∈ L[r, s]. Then for η, ξ ≥ 0 and ρ ∈ [r, s] and δ ∈ (0, 1], we have

f
(

r + s
2

)[
Γ(η + 1)δη g

r Iη,δg(s)

+
δ− 1

δ
Γ(η + 1)δη+1 g

r Iη+1,δg(s)

−Γ(ξ + 1)δξ gIξ,δ
s g(r)− δ− 1

δ
Γ(ξ + 1)δξ+1 gIξ+1,δ

s g(r)

− exp
[ δ− 1

δ
(g(s)− g(r))

]
(g(s)− g(r))η g(r)

+ exp
[ δ− 1

δ
(g(s)− g(r))

]
(g(s)− g(r))η g(s)

]
≤Γ(η + 1)δη+1 g

r Iη+1,δ f (s) + Γ(ξ + 1)δξ+1 gIξ+1,δ
s f (r)

≤ exp
[ δ− 1

δ
(g(s)− g(r))

] (g(s)− g(r))η + (g(s)− g(r))ξ

s− r[
(s− r) f (s)g(s)− (s− r) f (r)g(r)− ( f (s)− f (r))

×
∫ s

r
g(ρ)dρ

]
. (33)

Proof. Since g is differentiable and increasing, therefore

exp
[ δ− 1

δ
(g(ρ)− g(r))

]
(g(ρ)− g(r))η

≤ exp
[ δ− 1

δ
(g(s)− g(r))

]
(g(s)− g(r))η ,

where ρ ∈ [r, s], θ ∈ [r, ρ], η > 0, δ ∈ (0, 1], and g′(θ) > 0. Hence, the following inequality holds true

g′(ρ) exp
[ δ− 1

δ
(g(ρ)− g(r))

]
(g(ρ)− g(r))η

≤ g′(ρ) exp[
δ− 1

δ
(g(s)− g(r))] (g(s)− g(r))η . (34)

From the convexity of f , we have

f (θ) ≤ ρ− r
s− r

f (s) +
s− ρ

s− r
f (r). (35)

From (34) and (35), we can write∫ s

r
exp[

δ− 1
δ

(g(ρ)− g(r))] (g(ρ)− g(r))η g′(ρ) f (ρ)dρ

≤
exp[ δ−1

δ (g(s)− g(r))] (g(s)− g(r))η

s− r

×
[

f (s)
∫ s

r
(ρ− r)g′(ρ)dρ + f (r)

∫ s

r
(s− ρ)g′(ρ)dρ

]
.



Mathematics 2020, 8, 113 12 of 19

By using (6), we get

Γ(η + 1)δη+1 g
r Iη+1,δ f (s)

≤
exp

[
δ−1

δ (g(s)− g(r))
]
(g(s)− g(r))η

s− r

×
[
(s− r) f (ρ)g(s)− (s− r) f (r)g(r)− ( f (s)− f (r))

×
∫ s

r
g(ρ)dρ

]
. (36)

Now, for ρ ∈ [r, s], ξ ≥ 0, δ ∈ (0, 1], and g′(ρ) > 0, the following inequality holds true

g′(ρ) exp
[ δ− 1

δ
(g(s)− g(ρ))

]
(g(s)− g(ρ))ξ

≤ g′(ρ) exp
[ δ− 1

δ
(g(s)− g(r))

]
(g(s)− g(r))ξ . (37)

Applying a similar procedure to (35) and (37) as we did for (34) and (35), we have

Γ(ξ + 1)δξ+1 gIξ+1,δ
s f (r)

≤
exp[ δ−1

δ (g(s)− g(r))] (g(s)− g(r))ξ

s− r

×
[
(s− r) f (s)g(s)− (s− r) f (r)g(r)− ( f (s)− f (r))

×
∫ s

r
g(ρ)dρ

]
. (38)

Hence, from (36) and (38), we get the following result

Γ(η + 1)δη+1 g
r Iη+1,δ f (s) + Γ(ξ + 1)δξ+1 gIξ+1,δ

s f (r)

≤ exp
[ δ− 1

δ
(g(s)− g(r))

] (g(s)− g(r))η + (g(s)− g(r))ξ

s− r

×
[
(s− r) f (s)g(s)− (s− r) f (r)g(r)− ( f (s)− f (r))

×
∫ s

r
g(θ)dθ

]
. (39)

Now, multiplying (32) by

exp[
δ− 1

δ
(g(s)− g(ρ)) (g(s)− g(ρ))η g′(ρ)]

and applying Lemma 1 and then integrating with respect to ρ over [r, s], we have

f
(

r + s
2

) ∫ s

r
exp[

δ− 1
δ

(g(s)− g(ρ)) (g(s)− g(ρ))η g′(ρ)dρ

≤
∫ s

r
exp[

δ− 1
δ

(g(s)− g(ρ)) (g(s)− g(ρ))η g′(ρ) f (ρ)dρ. (40)
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Using (6), we get

f
(

r + s
2

)[
Γ(η + 1)δη g

r Iη,δg(s) (41)

+
δ− 1

δ
Γ(η + 1)δη+1 g

r Iη+1,δg(s)

− exp[
δ− 1

δ
(g(s)− g(r)) (g(s)− g(r))η g(r)

]
≤ Γ(η + 1)δη+1 g

r Iη+1,δ f (s). (42)

Similarly, multiplying (32) by

exp[
δ− 1

δ
(g(ρ)− g(r)) (g(ρ)− g(r))ξ g′(ρ)]

and applying Lemma 1 and then integrating with respect to ρ over [r, s], we have

f
(

r + s
2

) [
exp[

δ− 1
δ

(g(s)− g(r)) (g(s)− g(r))ξ g(s)

− Γ(ξ + 1)δξ gIξ,δ
s g(r)

− δ− 1
δ

Γ(ξ + 1)δξ+1 gIξ+1,δg(r)
]

≤ Γ(ξ + 1)δξ+1 gIξ+1,δ
s f (r). (43)

From (41) and (43), we get

f
(

r + s
2

)[
Γ(η + 1)δη g

r Iη,δg(s)

+
δ− 1

δ
Γ(η + 1)δη+1 g

r Iη+1,δg(s)

−Γ(ξ + 1)δξ gIξ,δ
s g(r)− δ− 1

δ
Γ(ξ + 1)δξ+1 gIξ+1,δ

s g(r)

− exp[
δ− 1

δ
(g(s)− g(r))] (g(s)− g(r))η g(r)

+ exp[
δ− 1

δ
(g(s)− g(r))] (g(s)− g(r))η g(s)

]
≤Γ(η + 1)δη+1 g

r Iη+1,δ f (s) + Γ(ξ + 1)δξ+1 gIξ+1,δ
s f (r) (44)

Hence, from (39) and (44), we get the desired inequality (33).
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Corollary 5. By taking η = ξ in (33), we get the following generalized proportional fractional integral
inequality in general form

f
(

r + s
2

)[
Γ(η + 1)δη g

r Iη,δg(s)

+
δ− 1

δ
Γ(η + 1)δη+1 g

r Iη+1,δg(s)

−Γ(η + 1)δη gIη,δ
s g(r)− δ− 1

δ
Γ(η + 1)δη+1 gIη+1,δ

s g(r)

− exp[
δ− 1

δ
(g(s)− g(r))] (g(s)− g(r))η+1

]
≤Γ(η + 1)δη+1 g

r Iη+1,δ f (s) + Γ(η + 1)δη+1 gIη+1,δ
s f (r)

≤
2 exp[ δ−1

δ (g(s)− g(r))] (g(s)− g(r))η

s− r

×
[
(s− r) f (s)g(s)− (s− r) f (r)g(r)− ( f (s)− f (r))

×
∫ s

r
g(ρ)dρ

]
.

Remark 7. If we set δ = 1 in Theorem 3, we get integral inequality for Riemann–Liouville fractional integrals
proved by ([52], Theorem 3).

Remark 8. By setting g(ρ) = ρ and δ = 1 in Theorem 3, we get the integral inequality for classical
Riemann–Liouville fractional integrals ([54], Theorem 3).

4. Applications

In the following, we study some applications of the results obtained in Section 3. In particular, we
establish bounds of generalized proportional fractional integrals which contain bounds of all fractional
integrals which are given in Remark 2. By applying Theorem 1, we get the following result.

Theorem 4. Assume that the conditions of Theorem 1 are satisfied, then we have

Γ(η)δη g
r Iη,δ f (ρ) + Γ(ξ)δξ gIξ,δ

s f (ρ)

≤ exp[
δ− 1

δ
(g(s)− g(r))]

× (g(s)− g(r))η−1 + (g(s)− g(r))ξ−1

s− r

×
[
(s− r) f (s)g(s)− (s− r) f (r)g(r)− ( f (s)− f (r))

×
∫ s

r
g(θ)dθ

]
. (45)

Proof. If we set ρ = r and ρ = s in (8), we get the desired result (45).
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Corollary 6. If we set η = ξ in (45), then we get the following generalized proportional fractional integral
inequality in general form

Γ(η)δη g
r Iη,δ f (ρ) + Γ(η)δη gIη,δ

s f (ρ)

≤2
exp[ δ−1

δ (g(s)− g(r))] (g(s)− g(r))η−1

s− r

×
[
(s− r) f (s)g(s)− (s− r) f (r)g(r)− ( f (s)− f (r))

×
∫ s

r
g(θ)dθ

]
. (46)

Corollary 7. If we set η = δ = 1 and g(ρ) = ρ in (46), then we get the right Hadamard inequality

1
s− r

∫ s

r
f (ρ)dρ ≤ f (r) + f (s)

2
. (47)

Next, we present the applications of Theorem 2.

Theorem 5. Assume that the conditions of Theorem 2 are satisfied, then we have∣∣∣Γ(η + 1)δη g
r Iη,δ f (

r + s
2

) +
δ− 1

δ
Γ(η + 1)δη+1

× g
r Iη+1,δ f (

r + s
2

) + Γ(ξ + 1)δξ gIξ,δ
s f (

r + s
2

)

+
δ− 1

δ
Γ(ξ + 1)δξ+1 gIξ+1,δ

s f (
r + s

2
)

− exp[
δ− 1

δ
(g(

r + s
2

)− g(r))]
(

g(
r + s

2
)− g(r)

)η

f (r)

+ exp[
δ− 1

δ
(g(s)− g(

r + s
2

))]

(
g(s)− g(

r + s
2

)

)ξ

f (s)
∣∣∣

≤
(

s− r
2

)
1
2

[
exp[

δ− 1
δ

(g(
r + s

2
)− g(r))]

×
(

g(
r + s

2
)− g(r)

)η

| f ′(r)|

+ exp[
δ− 1

δ

(
g(s)− g(

r + s
2

)

)
]

×
(

g(s)− g(
r + s

2
)

)ξ

| f ′(s)|
]

+
∣∣ f ′( r + s

2
)
∣∣ ( s− r

2

)
× 1

2

[
exp[

δ− 1
δ

(g(
r + s

2
)− g(r))]

(
g(

r + s
2

)− g(r)
)η

+ exp[
δ− 1

δ
(g(s)− g(

r + s
2

))]

(
g(s)− g(

r + s
2

)

)ξ]
. (48)

Proof. If we set ρ = r+s
2 in (18), we get the desired inequality (48).
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Corollary 8. If we set η = ξ in (48), we get the following inequality∣∣∣Γ(η + 1)δη g
r Iη,δ f (

r + s
2

)

+
δ− 1

δ
Γ(η + 1)δη+1 g

r Iη+1,δ f (
r + s

2
)

+ Γ(η + 1)δξ gIη,δ
s f (

r + s
2

)

+
δ− 1

δ
Γ(η + 1)δη+1 gIη+1,δ

s f (
r + s

2
)

− exp[
δ− 1

δ
(g(

r + s
2

)− g(r))]
(

g(
r + s

2
)− g(r)

)η

f (r)

+ exp[
δ− 1

δ
(g(s)− g(

r + s
2

))]

(
g(s)− g(

r + s
2

)

)η

f (s)
∣∣∣

≤
(

s− r
2

)
1
2

[
exp[

δ− 1
δ

(g(
r + s

2
)− g(r))]

×
(

g(
r + s

2
)− g(r)

)η

| f ′(r)|

+ exp[
δ− 1

δ
(g(s)− g(

r + s
2

))]

×
(

g(s)− g(
r + s

2
)

)η

| f ′(s)|
]

+
∣∣ f ′( r + s

2
)
∣∣ ( s− r

2

)
1
2

[
exp[

δ− 1
δ

× (g(
r + s

2
)− g(r))]

(
g(

r + s
2

)− g(r)
)η

+ exp[
δ− 1

δ
(g(s)− g(

r + s
2

))]

(
g(s)− g(

r + s
2

)

)η]
.

(49)

Corollary 9. If we set η = δ = 1 and g(ρ) = ρ, then we get the following inequality∣∣∣ 1
s− r

∫ s

r
f (ρ)dρ− f (r) + f (s)

2

∣∣∣
≤ s− r

8

[
| f ′(r)|+ | f ′(s)|+ 2

∣∣∣ f ′ ( r + s
2

) ∣∣∣] . (50)

5. Concluding Remarks

The generalized proportional fractional integral inequalities for the generalized proportional
fractional integrals in general form via convex functions are established in this paper. The obtained
results contain a bound for the sum of left and right generalized proportional fractional integrals with
dependence on a kernel function and some other inequalities for functions, the absolute values of the
derivatives of which are convex. In addition, generalized Hadamard type inequalities for symmetric
and convex functions are presented. In particular, these inequalities hold for all the fractional integrals
comprises in Remark 2. The inequalities proved in this paper are the generalization of inequalities
established earlier by Farid et al. [52] and Farid [54]. In conclusion, one can follow these inequalities to
establish further inequalities for other classes of functions related to convex functions by employing
generalized proportional fractional integrals.
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k-fractional integral operators. Symmetry 2018, 10, 614. [CrossRef]

39. Rahman, G.; Nisar, K.S.; Qi, F. Some new inequalities of the Gruss type for conformable fractional integrals.
AIMS Math. 2018, 3, 575–583. [CrossRef]

40. Rahman, G.; Ullah, Z.; Khan, A.; Set, E.; Nisar, K.S. Certain Chebyshev type inequalities involving fractional
conformable integral operators. Math. Math. 2019, 7, 364. [CrossRef]

41. Jarad, F.; Abdeljawad, T.; Alzabut. J. Generalized fractional derivatives generated by a class of local
proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [CrossRef]

42. Alzabut, J.; Abdeljawad, T.; Jarad, F.; Sudsutad, W. A Gronwall inequality via the generalized proportional
fractional derivative with applications. J. Inequal. Appl. 2019, 101. [CrossRef]

43. Rahman, G.; Khan, A.; Abdeljawad, T.; Nisar, K.S. The Minkowski inequalities via generalized proportional
fractional integral operators. Adv. Differ. Equations 2019, 2019, 287. [CrossRef]

44. Rahman, G.; Abdeljawad, T.; Khan, A.; Nisar, K.S. Some fractional proportional integral inequalities.
J. Inequalities Appl. 2019, 244. [CrossRef]

45. Rahman, G.; Jarad, F.; Abdeljawad, T.; Khan, A.; Nisar, K.S. Certain inequalities Via generalized proportional
Hadamard fractional integral operators. Adv. Differ. Equations 2019, 454. [CrossRef]

46. Adjabi, Y.; Jarad, F.; Abdeljawad, T. On Generalized Fractional Operators and a Gronwall Type Inequality
with Applications. Filomat 2017, 31, 5457–5473. [CrossRef]

47. Abdeljawad, T. A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel.
J. Inequalities Appl. 2017, 130. [CrossRef]

48. Abdeljawad, T.; Agarwal, R.P.; Alzabut, J.; Jarad, F.; ÖZbekler, A. Lyapunov-type inequalities for mixed
non-linear forced differential equations within conformable derivatives. J. Inequalities Appl. 2018, 143.
[CrossRef]

http://dx.doi.org/10.1186/s13660-018-1717-8
http://www.ncbi.nlm.nih.gov/pubmed/30137732
http://dx.doi.org/10.17654/MS103111879
http://dx.doi.org/10.15672/HJMS.20164512484
http://dx.doi.org/10.1016/j.amc.2015.07.026
http://dx.doi.org/10.7153/jmi-03-20
http://dx.doi.org/10.1090/proc/13488
http://dx.doi.org/10.1186/s13660-017-1444-6
http://dx.doi.org/10.1186/s13660-017-1318-y
http://dx.doi.org/10.4418/2014.69.1.18
http://dx.doi.org/10.22436/jnsa.009.09.06
http://dx.doi.org/10.1186/s13660-019-2040-8
http://dx.doi.org/10.3390/sym10110614
http://dx.doi.org/10.3934/Math.2018.4.575
http://dx.doi.org/10.3390/math7040364
http://dx.doi.org/10.1140/epjst/e2018-00021-7
http://dx.doi.org/10.1186/s13660-019-2052-4
http://dx.doi.org/10.1186/s13662-019-2229-7
http://dx.doi.org/10.1186/s13660-019-2199-z
http://dx.doi.org/10.1186/s13662-019-2381-0
http://dx.doi.org/10.2298/FIL1717457A
http://dx.doi.org/10.1186/s13660-017-1400-5
http://dx.doi.org/10.1186/s13660-018-1731-x


Mathematics 2020, 8, 113 19 of 19

49. Abdeljawad, T. Fractional operators with exponential kernels and a Lyapunov type inequality.
Adv. Differ. Equations 2017, 313. [CrossRef]

50. Abdeljawad T.; Alzabut, J.; Jarad, F. A generalized Lyapunov-type inequality in the frame of
conformable derivatives. A generalized Lyapunov-type inequality in the frame of conformable derivatives.
Adv. Differ. Equations 2017, 321. [CrossRef]

51. Jarad, F.; Alqudah, M.A.; Abdeljawad, T. On more general forms of proportional fractional operators. arXiv
2019, arXiv:1911.08899.

52. Farid, G.; Nazeer, W.; Saleem, M.S.; Mehmood, S.; King, S.M. Bounds of Riemann–Liouville fractional
integrals in general form via convex functions and their applications. Mathematics 2018, 6, 248. [CrossRef]

53. Khan, T.U.; Khan, M.A. Generalized conformable fractional integral operators. J. Comput. Appl. Math. 2018.
[CrossRef]

54. Farid, G. Some Riemann–Liouville fractional integral inequalities for convex functions. J. Anal. 2018, 1–8.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s13662-017-1285-0
http://dx.doi.org/10.1186/s13662-017-1383-z
http://dx.doi.org/10.3390/math6110248
http://dx.doi.org/10.1016/j.cam.2018.07.018
http://dx.doi.org/10.1007/s41478-018-0079-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Main Results
	Applications
	Concluding Remarks
	References

