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In this paper, we are concerned with chirped solitary wave solutions in negative indexed materials having Kerr
nonlinearity and self-phase modulation term. An auxiliary equation method together with an ansatz technique
are employed. New chirped dark solitons, bright solitons, and trigonometric map solutions by using the auxiliary
equation technique are obtained. Both 2- and 3-dimensional graphs are provided to illustrate the obtained re-
sults. The presented research will be useful especially for scientists who are studying solitons.

Introduction

In recent years, materials with simultaneously negative electric
permittivity and magnetic permeability have become quite attractive
research tools due to their interesting properties. J. Pendry [1] high-
lighted the negative index materials (NIMs) exhibiting these properties
in his experimental work. Some researchers, e.g. [2], have focused on
nonlinear mediums with negative index refraction. In the last decade, a
large number of studies were devoted to investigating short pulses at
NIMs with different types of nonlinearities, e.g. [3-6]. Some researchers
[5] achieved a suitable model that characterizes pulse propagation at
non-linear NIMs. Subsequently, this model has been employed to ex-
plore W-shape and bright soliton-type solutions [7], chirped dark and
bright solitons at NIMs [3], rogue wave[8], solitons reproduction [9],
modulation instability [10] and discrete solitons [11,12]. These loca-
lized solitons in negative index nonlinear materials usually take the
form of shift solitons, spatio-temporal soliton, spatial soliton, e.g. see
[13]. More recently, a lot of research papers were announced that study
high-order NSE for negative index materials. The interested readers can
look at [3-5,8,13,14,20-22,24-28] for chirped dark, periodic, bright,
rogue waves and G soliton solutions.

Nowadays, new exact solutions that describe a short pulse propa-
gation in negative index nonlinear materials of nonlinear PDEs in-
cluding NLSE have become a significantly important research area.
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Semi-inverse variational principle [15], the simplest equation approach
[16], the integral technique [17], the Ansatz method [18], generalized
Tanh method [18] are some of the highly efficient methods for this
purpose found in the literature.

In this paper, we consider a generalized NLSE, which is an appro-
priate model for negative index materials having Kerr dispersion, low
group velocity dispersion (GVD) and Kerr nonlinearity. The model was
studied in [4,19] with third-order and fourth-order dispersions (FOD),
normal-GVD and anomalous-GVD. As a consequence, an exact dipole
solitary wave has been achieved. In this paper, we adopt two analytical
methods: Auxiliary equation method and the Ansatz method to estab-
lish new chirped solitary waves solutions.

Generalized Nonlinear Schrodinger equation

We consider the following generalized NLSE appropriate for nega-
tive index meta-materials with self-steepening effects and Kerr non-
linearity:
dp by 0%

CLAPL- L S%(Izl)lzzl)) — ibylYPy = 0.

o 20 74 )}

where ¥ (¢, 7) typifies the complex envelop of the electric field,
¢ =Z/Lp is the distance of propagation, and 7 = T/T; illustrates the
time variable. Z and T are the distance of propagation and time in some
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retarded frame, respectively. L, = T¢1B,| stands for the length of dis-
persion and T, is the initial pulse duration. The constant
b, = sgn|[B,] = +1 takes into account the normal-or anomalous-GVD

S = 1/awo — 1/(kovg) + 00wt (w)]/(8w)/[copt(@)]lu=ap

and controls the self-steepening; b, illustrates Kerr nonlinearity and
corresponds to self-focusing and self-defocusing non-linearity; and N
represents the order of soliton. £(w) is the dispersive permittivity and
u(w) is permeability. In NIMs, refractive index n?(w,) in carrier fre-
quency w, of medium is € (wo) 1 (wp). GVD 3, in units of ¢ is described by
A — 1/(kov;) and

N
m Y KiLp_
A = —3=2
" 2k,
where

K = 0™ [we (w)]/(m!0w™)ly=w,
and
Ly, = 0" [wp(w)]/(m!0w™)ly=w,

The group velocity of the pulse propagation can be expressed as:
Vv = 2ko/[KoLy + KiLo] and the wave number is
ko = £+/e(wo)u(wo)wo/c. Next, we will derive generalized NLSE via
traveling wave Ansatz.

Traveling wave solution

We obtain chirp soliton solutions to Eq. (1) via the Ansatz method as
follows:

(¢ 1) = ¢ (©explig(®)], &={—r, (2

where v is the frame of velocity. The corresponding chirp equation is
written as

o)
Sw(S, 1) = —a—[g(§)]
T
Substituting Eq. (2) in Eq. (1), we get

3
and
# — bgs — Pvigg’ — 357 = 0.
2 4
Eq. (4) yields
, 038 o1
£ T T ®)
and the corresponding chirp is
3S 1
0= 20,5 "o ®)
Hence, by substituting Eq. (5) in Eq. (3), we get
Q8" + 2b1v2§2S - (bziv i b1)¢3 " Zi—}“ =0 %

To reduce ODE (7), we multiply (7) with ¢', and integrate it for £
assuming a zero integration constant. Finally, we get the following
equation:

1 1 1( S 382
byt + ——¢* — —| —— + by |¢* + —"—¢f = 0.
202V 4va2<zs 2\ by T b2¢ ®)

Next, we set ¢?> = f, hence:

2 =cof? + af + eof, ©)
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where

4 4 (s
Co = = —
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byv

The ODE (refer to Eq. (9)) is an auxiliary equation that may be
solved by an algebraic technique presented in [23]. Thus, in order to
construct chirp and the chirped soliton solutions, the sign of the para-
meters in Eq. (9) plays a key role. Therefore, by using [23], we con-
struct chirp and chirped solitons as follows:

Case 1: ¢y > 0, A > 0, where A = ¢ — 4cyc,

£(E) = 2weeh(Vad)
T JA — cisech(é) (10)
hence the chirp:
_ 38| Zeosech(Ved) | 1
deltaw, (1) = 2, [ VA — cwech(JaE) byv an

and the complex envelope:

psiy () = ’#ﬁﬁ;a ) .
Case 2: ¢y >0,A <0
FE) = - 2coesch(([co)
J=A — cisech(Je€) (13)
hence the chirp:
o) = - [_ = O—CSZZEZS%OE) “h (14)

and the complex envelope:

_ | 2coesch (([coé) £Cv)
G) \/ o esenten ¢ s
Case 3: ¢y > 0, A, < 0, where A, = ¢ — 4coc, — 4c
FoE)=— 2cosech ((/¢o§)
BT eisech((Eo€) + = A tanh(/G€) — 2¢, (16)
£©) = 2coesch (([coé)
3207 clesch (JarE) — A coth(YToé) + 2cq 17)
From f;, (§) and f; , (§), the chirp soliton turns out to be:
50311 (T) = 35| 2cosech (/¢ &) 1
Lt 2by | cisech(Go€) + J—Atanh(YTo€) — 2¢o | bov
(18)
S015(7) = 35| 2¢coesch({/co€) 1
B2 2by | ciesch () — A coth(eo€) + 2¢ byv
19
and the complex envelope:
I,b (g) _ \_ ZC()SeCh(\/c—Og) eig({—m’)
> \/ cisech ((fco€) + —Artanh((/coé) — 2¢o (20)
b (©) = (_ 2coesch ((Jco) pieGvo)
312 \/ creseh ((er€) — JA  coth((JGo&) + 2¢o 21)
Case 4: ¢y < 0, and ¢ — 4cyc, — 4ct
£ = 2cosec(/=Co6)
R asec(y=coé) — V-A (22)

The chirped soliton and corresponding chirp:
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Fig. 1. Spatio-temporal plot of chirp solitary waves |6ws 11! (18) for b, = 1, by = 1.5, S = 25.5, (a;) v = 13.25, (@) v = 9.25, (a3) v = 8.005, and (a4) v = 6.005 re-
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t
spectively.
35 2cosec(/=Co$) 1
Ocwy 1 (r) = -
2b2 clsec(ﬂ/—coé') —J=A bov (23)
[ 2 — .
ha®= - CECZRE__ v
cisec(=coé) — V-A 24)
Graphical representation
Fig. 1 plots chirp solitary waves of dw;;; at

b,=1,b=15,8 =255, (a)) v=1325, (ap) v =925, (az) v = 8.005,
and (a4) v = 6.005 and the corresponding chirped soliton. Fig. 2 is the

0.2

0.15

evolution plot of ¢, ;. Figs. 3 and 4 are analytical representations of
the chirped 6ws;,(r) at by =1, by =105, S =215 v=-1.51, at
t=0, t=25, t=10, t =15 respectively, for — 15 < x < 15. One may
conclude that the constants ¢, ¢, ¢, are related to normal GVD, electric
permittivity, dispersive magnetic permeability, Kerr nonlinearity term,
self-steepening coefficient, and the negative refraction index medium.
Furthermore, the graphs illustrate the propagation of combined dark
and bright solitons.

Conclusion

We explored chirped solitary waves in negative indexed materials
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Fig. 2. Spatio-temporal plot evolution of the chirped solitons |¢3Y111|2 (20) for b, = 1, by = 10.5, S = 50.15, v = 15.75, and the corresponding plot (2-D) (blue line) at
t = 0 respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Spatio-temporal plot evolution of the chirped solitons 1), , ,I* (20) for b, = 1, by = 10.5, S = 2.15, v=—1.51,att =0, t =5, t = 10, ¢ = 15 respectively, for
—15<x<15.
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Fig. 4. Spatio-temporal evolution of chirped solitons I3, ;> (24) for b, = 1, by = 0.5, S =0.15, at(f}) v =34.075, (f,)v =31.075 (f;)v = 25.075and (f,) v = 18.075,
respectively.
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