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ORGINAL ARTICLE

Cycle cost considerations in a continuous review inventory control model

Dinçer Konura and Gonca Yıldırımb

aDepartment of Computer Information Systems and Quantitative Methods, McCoy College of Business Administration, Texas
State University, San Marcos, TX, USA; bDepartment of Industrial Engineering, Cankaya University, Ankara, Turkey

ABSTRACT
In this study, the continuous review order-quantity–re-order point (Q, R) model is analysed
with cycle cost considerations. First, we formulate the maximum cycle cost of a given (Q, R)
policy using a distribution-free approach. Then, two approaches are introduced to minimize
the maximum cycle cost: (i) adjusting R of a given (Q, R) policy and (ii) designing a new (Q,
R) policy. Optimum inventory control decisions are characterized for each approach. A set of
numerical studies is presented to compare the outcomes of both approaches to three long-
term cost minimization approaches, namely the cost minimizing (Q, R) policy, the distribu-
tion-free minmax (Q, R) policy, and the distribution-free (Q, R) policy based on the maximum
entropy principle. Our numerical results demonstrate the viability of the two approaches
introduced and discuss implications of penalty costs and lead time demand’s coefficient of
variation. Later, we formulate a bi-objective model with the objectives of expected cost and
maximum cycle cost minimizations and propose a bi-directional method to approximate the
set of Pareto efficient solutions. Numerical examples are presented to illustrate the algorithm
and demonstrate the Pareto front.
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1. Introduction and literature review

Inventory is present in almost any business, and
efficient inventory control is crucial for the good
financial standing of a company. In most practical
settings, inventory management is typically chal-
lenged by the uncertain demand, and this demand
uncertainty directly translates to the inventory
related costs in the long run as well as inventory
costs incurred recurrently in short intervals. This
study revisits a well-known continuous review
inventory control model under stochastic demand,
namely order-quantity–re-order point model. A
common approach for making inventory control
decisions in continuous review systems is to minim-
ize the long-term expected cost per unit time. This
approach, nevertheless, ignores the short-term costs
incurred recurrently. In this study, we incorporate
short-term costs by taking cycle costs into account
in designing an inventory control policy under a
continuous review inventory control system with
stochastic demand.

Particularly, consider a retailer who manages the
inventory of a single product, for which the demand
is stochastic. We assume that the inventory is con-
tinuously reviewed and the retailer adopts a (Q, R)
policy, where Q > 0 is the order quantity in each
replenishment and R > 0 is the re-order point to
initiate an order. That is, whenever the on-hand

inventory is R, an order of Q units is placed. The
basic settings of continuous review inventory control
systems are as follows (see, e.g., Hadley & Whitin,
1963). The demand rate obeys a continuous prob-
ability distribution with a constant mean k> 0 and
there is a fixed lead time for receiving an order,
denoted by s> 0: The lead time demand is a ran-
dom variable, denoted by D, and let f(D) and F(D)
be the lead time demand’s probability density func-
tion and cumulative density function, respectively,
such that l> 0 and r> 0 define the mean and the
standard deviation of the lead time demand, respect-
ively. Finally, there is at most one outstanding order
at any time and we consider the case where all of
the shortages are backordered.

(Q, R) policy for inventory systems with stochas-
tic demand has been vastly investigated in the litera-
ture. We refer the reader to Hadley and Whitin
(1963), Silver, Pyke, and Peterson (1998), and
Nahmias (2009) for classical results and discussion.
Under the basic settings, the retailer is subject to
inventory holding, order setup, and shortage costs.
In particular, let h > 0 denote the inventory holding
cost per unit per unit time, K > 0 denote the setup
cost per order, and p > 0 denote the penalty cost
per unit short. Note that the shortages can only be
observed during the lead time, and the number of
shortages observed in one replenishment cycle
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(simply referred to as cycle hereafter) depends on
the re-order point R. Let n(R) denote the expected
number of shortages within a cycle. It is well known
that under a (Q, R) model, the retailer’s expected
cost per unit time, denoted by EC(Q, R), is (see also
Hadley & Whitin, 1963)

ECðQ,RÞ ¼ h R� lþ Q
2

� �
þ Kk

Q
þ pknðRÞ

Q
: (1)

The first, second, and third terms in Equation (1)
define the expected inventory holding, order setup,
and penalty costs per unit time, respectively. Main
notation used throughout the paper is summarized
in the online supplement (Section A) and additional
notation is defined as needed.

Given the lead time demand distribution (i.e.,
f(D) and F(D)), Hadley and Whitin (1963) proposed
an iterative algorithm to approximate the minimizer
of EC(Q, R). This algorithm is presented in the
online supplement (Section B) and we accept the
output of this algorithm as the cost minimizing (Q,
R) policy, denoted by ðQC,RCÞ: It should be noted
that there is a significant number of studies analyz-
ing the characteristics of the optimal (Q, R) policy
under various distributions (see, e.g., Braglia,
Castellano, & Gallo, 2016; Burgin, 1975; C. Das,
1976; Halkos, Kevork, & Tziourtzioumis, 2018;
Rossetti & €Unl€u, 2011; Tyworth & Ganeshan, 2000;
Tyworth, Guo, & Ganeshan, 1996; Tyworth &
O’Neill, 1997; Vasconcelos & Marques, 2000). It is
also worthwhile to note that there are many exten-
sions of the basic (Q, R) model to settings with
including but not limited to resource/service con-
straints (see, e.g., Aardal, Jonsson, & Jonsson, 1989;
Hariga, 2010), quantity discounts (see, e.g.,
Tamjidzad & Mirmohammadi, 2015, 2017), multiple
supply sources/transportation modes (see, e.g.,
Dullaert, Maes, Vernimmen, & Witlox, 2005;
Moinzadeh & Nahmias, 1988; Sculli & Shum, 1990;
Sculli & Wu, 1981), lead time crashing/order expe-
diting (see, e.g., Bookbinder & Çakanyildirim, 1999;
Chiang, 2010; Duran, Gutierrez, & Zequeira, 2004),
additional objectives (see, e.g., Fattahi, Hajipour, &
Nobari, 2015; Konur, Campbell, & Monfared, 2017;
Schaefer & Konur, 2015), and deteriorating items
with or without mixture of backorders and lost sales
(see, e.g., Braglia, Castellano, Marrazzini, & Song,
2019; Braglia, Castellano, & Song, 2018; Chiu, 1995;
Nahmias, 1981; Nahmias & Wang, 1979; Olsson,
2014; Uthayakumar & Parvathi, 2009). An alterna-
tive solution approach proposed, especially for set-
tings with perishable items, is optimization via
simulation (see, e.g., Braglia et al., 2019 for success-
ful implementations; Chiu, 1995; Nahmias, 1981;
Nahmias & Wang, 1979; Olsson, 2014). This study
assumes the aforementioned basic settings (several

extensions and modifications of some of our results
are noted in Section 6); therefore, Hadley and
Whitin’s (1963) iterative algorithm is used to deter-
mine ðQC,RCÞ (in Section 5, we present the simu-
lated outcomes of several (Q, R) policies with
examples). Furthermore, we introduce new
approaches to design a (Q, R) policy so as to avoid
extremely high cycle costs that might be realized. To
do so, we model the maximum cycle cost possible
using a distribution-free approach.

One significant extension of the classical (Q, R)
model addresses the case of unknown lead time
demand distribution. Considering that the lead time
demand distribution is not always known in prac-
tice, Gallego (1992) introduced a distribution-free
minmax procedure for the (Q, R) model. This pro-
cedure, building on the approach of Scarf (1958),
finds the (Q, R) policy that minimizes the maximum
expected cost per unit time, which is realized under
the worst possible lead time demand distribution fit-
ting the given mean and standard deviation of the
lead time demand. We refer the reader to Gallego
(1992) for a description of this procedure and we
denote the (Q, R) policy corresponding to the
Gallego’s (1992) distribution-free minmax approach
by ðQG,RGÞ: There is a significant number of studies
building upon Gallego’s (1992) approach for various
(Q, R) models. Moon and Choi (1994), Agrawal and
Seshadri (2000), and Tajbakhsh (2010) study the dis-
tribution-free (Q, R) model with a service level con-
straint. Moon and Gallego (1994), Chu (1999), and
Achary and Geetha (2001) analyse the case with a
mixture of backorders and lost sales. Moon, Shin,
and Sarkar (2014) consider lead time crashing with
a service level constraint and Shin, Guchhait, Sarkar,
and Mittal (2016) consider lead time crashing, ser-
vice level constraint, and transportation discounts.
Several other extensions include multiple constraints
with lead time crashing (Gholami-Qadikolaei &
Mirzazadeh, 2013), two-echelon model with lead
time crashing (Gutgutia & Jha, 2018), and produc-
tion planning with fuzzy demand (Kumar &
Goswami, 2015). We note that the distribution-free
minmax approach has also been extensively studied
for newsvendor models (see, e.g., Gallego & Moon
1993 for a review).

Another distribution-free approach utilizes the
maximum entropy principle. Under the maximum
entropy principle, the distribution with the max-
imum entropy is determined; and then, this distri-
bution is used to find the corresponding optimum
inventory decision. The maximum entropy principle
has been typically employed for newsvendor models
in the inventory management literature (see, e.g.,
Andersson, J€ornsten, Nonås, Sandal, & Ubøe, 2013;
Fleischhacker & Fok, 2015a, 2015b; Guo, Chen,
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Wang, Yang, & Zhang, 2019; Han, Du, & Zuluaga,
2014; Ninh, Hu, & Allen, 2019; Perakis & Roels,
2008; Saghafian & Tomlin, 2016; C. X. Wang,
Webster, & Suresh, 2009). To the best of our know-
ledge, the maximum entropy principle has been
only recently adapted for a (Q, R) model by
Castellano (2016). The reader is referred to
Castellano (2016) for an overview of the maximum
entropy principle applied to a (Q, R) model, where
the author considers that the lead time demand’s
mean and standard deviation are known and its
support is non-negative (i.e., ½0,1Þ). In this study,
we denote the (Q, R) policy minimizing the
expected cost per unit time under the maximum
entropy distribution by ðQE,REÞ and explain the
details of how ðQE,REÞ is determined for our set-
tings in Section 4 (and Section E of the
online supplement).

The expected cost minimization approaches (i.e.,
cost minimizing ðQC,RCÞ policy and the distribu-
tion-free ðQG,RGÞ and ðQE,REÞ policies) focus on
minimizing long-term costs, i.e., the retailer’s
expected cost per unit time considering an infinite
planning horizon. While this might be attractive for
a retailer, an approach minimizing the expected cost
per unit time ignores the costs incurred at the
short-term operational level. For instance,
Archibald, Thomas, Betts, and Johnston (2002) note
that, rather than maximizing long-term economic
performance, a start-up company might focus on
short-term financial performance in order to maxi-
mize their survival probability. Specifically, because
the demand is random, the cycle cost incurred is
also random; and this uncertainty can burden a
retailer with financial risks such as extremely high
costs during some cycles.

Indeed, there is a significant number of studies
investigating inventory control models with financial
considerations. Typically, these studies focus on a
capital-constrained retailer’s financing her inventory
related costs through her suppliers or other sources.
For instance, single-echelon Economic Order
Quantity models have been investigated with sup-
plier/trade-credit financing and/or delayed payments
(see, e.g., Aggarwal & Jaggi, 1995; Carlson,
Miltenburg, & Rousseau, 1996; Chand & Ward,
1987; Chang, 2004; Feng, Li, & Zhao, 2013; Goyal,
1985; Haley & Higgins, 1973; Huang, 2004, 2007;
Jamal, Sarker, & Wang, 1997; Kingsman, 1991; Luo
& Huang, 2002; Mahata, 2012; Rachamadugu, 1989;
Silver & Costa, 1998; Taleizadeh, Pentico,
Jabalameli, & Aryanezhad, 2013; Taleizadeh,
Pourmohammad-Zia, & Konstantaras, 2019; Teng,
2002; Teng & Chang, 2009; Teng, Min, & Pan,
2012). Similarly, multi-period (lot-sizing) or infinite
horizon (periodic review) inventory control models

have been integrated with various tools that a
retailer can use to finance her inventory related
costs (see, e.g., Chao, Chen, & Wang, 2008; Gao,
Zhao, & Geng, 2014; Gong, Chao, & Simchi-Levi,
2014; Gupta & Wang, 2009; Hu & Sobel, 2007; Hu,
Sobel, & Turcic, 2010; Katehakis, Melamed, & Shi,
2016; L. Li, Shubik, & Sobel, 2013; Maddah, Jaber,
& Abboud, 2004; Protopappa-Sieke & Seifert, 2010;
Xu & Birge, 2006). In addition, a diverse set of
newsvendor models has been analysed for two-ech-
elon supply chains with detailed financial implica-
tions of the decisions made by the parties at
different echelons (see, e.g., Cai, Chen, & Xiao,
2014; Dada & Hu, 2008; Kouvelis & Zhao, 2012,
2016; Lai, Debo, & Sycara, 2009; Lee & Rhee, 2011;
B. Li, An, & Song, 2018; Raghavan & Mishra, 2011;
Reindorp, Tanrisever, & Lange, 2018; Xiao, Sethi,
Liu, & Ma, 2017; Yan, He, & Liu, 2019; S. A. Yang
& Birge, 2018). We refer the reader to L. Zhao and
Huchzermeier (2015), Xu et al. (2018), and Chakuu,
Masi, and Godsell (2019) for recent reviews of stud-
ies focusing on various aspects of supply
chain finance.

The studies mentioned above emphasize the risks
imposed by a retailer’s inventory related decisions
on her financial standing. Particularly, it has been
discussed that unsold inventory or unmet demand
due to the stochastic nature of the demand can
result in serious financial risks (see, e.g., Bogataj &
Bogataj, 2007; Christopher & Lee, 2004; Ghadge,
Dani, & Kalawsky, 2012). For instance, Cisco had a
dramatic financial loss in 2001 because of unsold
inventory (see, e.g., Christopher & Lee, 2004; Lai,
Debo, & Sycara, 2009; Supply Chain Digest, 2006)
and Apple lost market share and faced financial
problems because of unmet demand in 1995 (see,
e.g., Supply Chain Digest, 2006). Some of the afore-
mentioned studies even consider possibility of a
retailer’s bankruptcy due to inventory related deci-
sions (see, e.g., Cai et al., 2014; Chao, Chen, &
Wang, 2008; Gong et al., 2014; Hu & Sobel, 2007;
Hu et al., 2010; Kouvelis & Zhao, 2012, 2016; Lai
et al., 2009; Lee & Rhee, 2011; B. Li et al., 2018; L.
Li et al., 2013; Raghavan & Mishra, 2011; Xu &
Birge, 2006; Yan et al., 2019).

Inventory related financial risks arise because of
the uncertainty in a retailer’s ability to pay the
credit repayments, interests on the credit, or poten-
tial penalties. For instance, capital-constrained
retailers might use short-term loans to finance their
inventory (Lai, Debo, & Sycara, 2009) and repay-
ments rest on demand realization (see, e.g., S. A.
Yang & Birge, 2018). These financial risks necessi-
tate taking into account cycle costs in managing a
continuous review inventory control model.
Managing cycle costs can help the retailer
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accumulate her available capital, which then can be
allocated for her payments. This, in return, will
improve the retailer’s short-term financial standing.
While we do not explicitly include any financial
considerations in our models, we address the need
for cycle cost management with two approaches: (i)
adjusting the re-order point R of a given (Q, R) pol-
icy and (ii) designing a new (Q, R) policy so as to
minimize the maximum cycle cost possible.

In particular, we first formulate the cycle cost
and then characterize the maximum cycle cost func-
tion using a distribution-free approach in Section 2.
After that, the two approaches taking the maximum
cycle cost into account are discussed in detail. One
of the reasons why a retailer might prefer adjusting
R (i.e., approach (i)) rather than adjusting both Q
and R (i.e., approach(ii)) is the potential increase in
long-term average costs. Particularly, switching from
a long-term cost minimizing (Q, R) policy (such as
ðQC,RCÞ, ðQG,RGÞ, or ðQE,REÞ) to a cycle cost mini-
mizing (Q, R) policy might significantly increase the
expected cost per unit time. It can be the case that
such a drastic change is not preferred by a retailer.
On the other hand, keeping Q fixed, for instance
the Q of a (Q, R) policy minimizing long-term costs
and then adjusting R accordingly (i.e., using
approach (i)) does not completely ignore the long-
term costs. These are illustrated in our numerical
analyses in Section 4. Another reason why approach
(i) can be preferred is that, in practice, Q might
have binding restrictions considering the retailer’s
storage space, transportation capacity, capital avail-
ability, or relations with suppliers. Therefore, adjust-
ing R can be considered as an easier modification
than modifying both Q and R of a (Q, R) policy,
which is currently being used. In Section 3, we char-
acterize the optimal solutions under both
approaches and discuss their implications.

For several lead time demand distributions,
Section 4 compares various strategies through an
extensive numerical study. Specifically, we investi-
gate the effects of the penalty cost per unit short
and the lead time demand’s coefficient of variation
on how the expected cost per unit time and the
maximum cycle cost possible compare under differ-
ent (Q, R) policies. Our results indicate that, in
some settings, adjusting the R of the cost minimiz-
ing (Q, R) policy can significantly reduce the max-
imum cycle cost with a relatively small increase in
the expected cost per unit time. It is also important
to note that approach (ii) is a distribution-free pro-
cedure. Furthermore, when approach (i) is used on
a (Q, R) policy determined via a distribution-free
procedure, approach (i) is also a distribution-free
procedure. Our numerical results indicate that,
under some settings, approach (i), when applied on

a distribution-free cost minimizing (Q, R) policy
(i.e., ðQG,RGÞ or ðQE,REÞ), might reduce both the
expected cost per unit time and the maximum cycle
cost after lead time demand distribution is revealed.

It can be noticed that a (Q, R) policy minimizing
the maximum cycle cost possible based on approach
(ii) ignores the long-term expected costs; and, as
noted previously, a (Q, R) policy based on the mini-
mization of the expected cost per unit time ignores
the cycle costs. In this sense, using approach (i)
with a (Q, R) policy based on minimizing the
expected cost per unit time is a relatively moderate
strategy. Indeed, in most cases, our numerical
results presented in Section 4 agree with this.
However, approach (i) gives the retailer only a sin-
gle alternative (Q, R) policy to balance the expected
cost per unit time and the maximum cycle cost.
Furthermore, based on our numerical analysis, it is
also possible that approach (ii) can be Pareto super-
ior to approach (i), i.e., the (Q, R) policy generated
by approach (ii) may result in lower expected cost
per unit time in addition to lower maximum cycle
cost. Therefore, to give a retailer more alternative
policies that consider both the long-term expected
costs and the short-term cycle costs, we introduce a
bi-objective (Q, R) model in Section 5. We note that
there are several multi-objective (Q, R) models in
the literature (see, e.g., Fattahi et al., 2015; Konur
et al., 2017; Schaefer & Konur, 2015). Section 5
presents the bi-objective (Q, R) model with the
objectives of minimizing the expected cost per unit
time and the maximum cycle cost possible, proposes
a method to approximate its Pareto front, and dem-
onstrates its application with several numer-
ical examples.

To the best of our knowledge, this is the first
study to incorporate cycle cost and its uncertainty
in designing a (Q, R) policy. This study contributes
to the literature by introducing approaches to
account for maximum cycle costs in a continuous
review inventory control system and characterizing
the optimal policy decisions under these approaches.
A set of numerical analyses documents the practical
viability of the approaches introduced and discusses
several managerial insights. The rest of the paper is
organized as follows. Section 2 formulates the max-
imum cycle cost function and the optimal decisions
under the two approaches are characterized in
Section 3. The numerical studies are summarized in
Section 4. Section 5 presents the bi-objective model,
a solution method, and several examples.
Concluding remarks and future research directions
are noted in Section 6. An online supplement is
provided and it includes the following: notation
table (Section A); Hadley and Whitin’s (1963) itera-
tive algorithm (Section B); proofs of the
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propositions and theorems (Section C); details of
problem instance generation for the problem instan-
ces used in Section 4 (Section D); details of the
maximum entropy principle used to determine
ðQE,REÞ (Section E); description of a supplementary
procedure and simulation process used in Section 5
(Section F); figures used for the analyses of cycle
cost considerations on ðQC,RCÞ, ðQG,RGÞ, and
ðQE,REÞ in Sections 4.1, 4.2, and 4.3, respectively
(Sections G, H, and I, respectively); detailed tables
of the numerical analyses in Sections 4.1, 4.2, and
4.3, respectively (Sections J, K, and L, respectively);
and the sketch of proofs of analytical results in
Sections 2 and 3 when p is defined per unit short
per unit time (Section M).

2. Maximum cycle cost modelling

In this section, we formulate the maximum cycle
cost function. In addition to the aforementioned
basic settings in Section 1, the following assump-
tions are made:

Assumption 1. (i) D 2 d, where d ¼ ½d‘, du� such
that 0< d‘ < du: (ii) Q � du: (iii) R 2 d:

Assumption 1(i) suggests a specific range for the
lead time demand between a lower limit, denoted by
d‘, and an upper limit, denoted by du. A similar
assumption is also used in newsvendor settings by
Vairaktarakis (2000), Andersson et al. (2013), and
Guo et al. (2019). By definition, the demand should
be non-negative; and in most practical scenarios,
there will be a lower bound on the lead time demand
that can be observed (we assume that d‘ > 0 to avoid
division by zero in our models). On the other hand,
even if it is practically unlikely, when there is no
upper bound on the lead time demand, it might be
the case that the retailer targets a range of demand
within specific probabilities in her inventory plan-
ning; hence, d‘ and du can be defined accordingly.
Also, since d‘ ¼ du implies deterministic lead time
demand, which is not the scope of this study, we con-
sider that d‘ < du: We give further discussion on
defining d‘ and du in our numerical analysis in
Section 4. Recall that there is at most one outstanding
order in the basic (Q, R) settings, which is guaranteed
when Q � du; hence, we have Assumption 1(ii) so
that, for any lead time demand realization, the on-
hand inventory is guaranteed to be greater than or
equal to R when an order is received (see, e.g.,
Bookbinder & Çakanyildirim, 1999; Chiang, 2010;
Halkos et al., 2018; Konur et al., 2017). Note that
assuming R � du is reasonable because a rational
retailer will not pay unnecessary inventory holding
costs by having R> du; therefore, we have R � du as
stated in Assumption 1(iii). Furthermore, in most set-
tings, it is considered that R � l to guarantee non-

negative safety stock (see, e.g., Aardal et al., 1989;
Hariga, 2010) because negative safety stock is not
practically preferred as backordering is typically more
costly than inventory holding in practice and/or low
service levels are unlikely in practical settings (see,
e.g., Tyworth & O’Neill, 1997). Assumption 1(iii)
makes it possible to have a negative safety stock, if
desired (our results can be easily modified for the
case R � l).

Similar to the calculation of EC(Q, R), when the
inventory is considered to stationarily decrease from
the beginning inventory to the ending inventory
within a cycle, we can express the cycle cost in
terms of beginning inventory, denoted by I, and
lead time demand D. Note that the minimum (max-
imum) beginning inventory of a cycle is realized
when the previous cycle’s lead time demand is max-
imum (minimum); therefore, the beginning inven-
tory I 2 i, where i ¼ ½i‘, iu� such that
i‘ ¼ R�du þ Q and iu ¼ R�d‘ þ Q: Furthermore,
the ending inventory will be R – D and two cases
are possible: (a) D�R � 0 and (b) D�R � 0: These
two cases are illustrated in Figure 1.

In case (a), the retailer carries unnecessary inven-
tory and her cycle cost as a function of I and D for
a given (Q, R) policy, denoted by C1ðI,DjQ,RÞ,
amounts to

C1ðI,DjQ,RÞ ¼ hs
2D

ðI2 � R2Þ þ hs
2
ð2R� DÞ þ K,

(2)

where the first term is the inventory holding cost
from the beginning of the cycle until order initiation
(i.e., until on-hand inventory reaches R), the second
term is the inventory holding cost during the lead
time, and the last term is the order setup cost. Note
that, when D�R � 0 as in case (a), there is no pen-
alty cost in the cycle. On the other hand, in case
(b), the retailer pays inventory carrying and penalty
costs due to the shortages and her cycle cost as a
function of I and D for a given (Q, R) policy,
denoted by C2ðI,DjQ,RÞ, amounts to

C2ðI,DjQ,RÞ ¼ hs
2D

ðI2 �R2Þ þ hs
2D

R2 þ pðD�RÞ þK,

(3)

where the first term is the inventory holding cost
from the beginning of the cycle until order

Figure 1. Illustration of two cases during lead time.
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initiation, the second term is the inventory holding
cost during the lead time, the third term is the total
penalty cost, and the last term is the order setup
cost. It then follows from Equations (2) and (3) that
the cycle cost as a function of I and D for a given
(Q, R) policy, denoted by CCðI,DjQ,RÞ, reads as

CCðI,DjQ,RÞ ¼ C1ðI,DjQ,RÞ if D � R,
C2ðI,DjQ,RÞ if D � R:

�
(4)

The maximum cycle cost will depend on the real-
izations of I and D. Let MC(Q, R) denote the max-
imum cycle cost possible for a (Q, R) policy. MC(Q,
R) reads as

MCðQ,RÞ ¼ max
I2i,D2d

fCCðI,DjQ,RÞg, (5)

where CCðI,DjQ,RÞ is defined in Equation (4). Next
proposition gives an explicit characterization of
MC(Q, R).

Proposition 2.1. MCðQ,RÞ ¼ maxfC1ðiu, d‘jQ,RÞ,
C2ðiu, dujQ,RÞg:

Proposition 2.1 implies that, for a given (Q, R)
policy, the maximum cycle cost is realized when the
beginning inventory is at its maximum possible (i.e.,
when I ¼ iu) and the lead time demand is equal to
either its lower or its upper limit (i.e., D ¼ d‘ or D
¼ du). Indeed, as aforementioned, from the moment
the cycle starts until the inventory reaches R, the
retailer pays only inventory holding costs, which is
maximized when the beginning inventory is maxi-
mized. However, during the lead time, the retailer
might incur penalty costs in addition to inventory
holding costs. If it is more costly to hold inventory,
then the cycle cost is maximized when the inventory
held is maximized, which happens when the ending
inventory is maximized (i.e., when the lead time
demand is minimum). On the other hand, if it is
more costly to pay penalties, then the cycle cost is
maximized when the number of shortages is maxi-
mized, which happens when the lead time demand
is maximum.

Considering Proposition 2.1, Equations (2)–(4),
and recalling that iu ¼ R�d‘ þ Q, we can reformu-
late MC(Q, R) as MCðQ,RÞ ¼ maxfG1ðQ,RÞ,
G2ðQ,RÞg, where

G1ðQ,RÞ ¼ R� d‘ þ Q
2

� �
hsQ
d‘

þ K, (6)

G2ðQ,RÞ ¼ ðR� d‘ þ QÞ2 hs
2du

þ pðdu�RÞ þ K: (7)

Proposition 2.1 and properties of Equations (6)
and (7) are utilized in the next section, where we
discuss how to optimally adjust the re-order quan-
tity R of a given (Q, R) policy and how to optimally
design a new (Q, R) policy so as to minimize the
maximum cycle cost possible.

3. Maximum cycle cost minimization

Recall that, in Section 1, two approaches are intro-
duced to account for the maximum cycle cost pos-
sible. The first approach modifies the re-order
quantity R of a given (Q, R) policy so as to minim-
ize the maximum cycle cost possible. Let RmðQÞ be
the optimally adjusted R under the first approach.
Note that RmðQÞ ¼ argminR2dfMCðQ,RjQÞg and it
is assumed that Q � du: The second approach deter-
mines a new (Q, R) policy so as to minimize the
maximum cycle cost possible. Let ðQM ,RMÞ be the
minimizer of the maximum cycle cost. Note that
ðQM,RMÞ ¼ argminQ�du,R2dfMCðQ,RÞg: It is
straightforward to notice that RM ¼ RmðQMÞ: In
what follows, we first characterize RmðQÞ and then
determine ðQM,RMÞ: For notational brevity, we let
yðQÞ ¼ yðQ,RjRÞ and yðRÞ ¼ yðQ,RjQÞ for a func-
tion y(Q, R).

3.1. Re-order point adjustment

Suppose that a (Q, R) policy is given such that Q �
du: It can be noticed from Equation (6) that dG1ðRÞ

dR ¼
hsQ
d‘

> 0, that is, G1ðRÞ is an increasing linear func-

tion of R. Furthermore, it follows from Equation (7)

that dG2
2ðRÞ
dR2 ¼ hs

du
> 0, that is, G2ðRÞ is strictly convex

with respect to R, and r0 uniquely minimizes G2ðRÞ
(i.e., G2ðRÞ is decreasing with R for R � r0 and
increasing with R for R � r0) such that

r0 ¼ pdu
hs

þ d‘�Q: (8)

These, along with G2ðRÞ being a quadratic func-
tion of R, imply that G1ðRÞ ¼ G2ðRÞ only when R ¼
r‘ and R ¼ ru such that

r‘ ¼ Q
ðdu�d‘Þ

d‘
�d‘ þ pdu

hs

�du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
hs

þ Q
d‘

� �2

� 2p
hs

1þ ðQ�d‘Þ
du

� �
� Q2

d‘du

s
,

(9)

ru ¼ Q
ðdu�d‘Þ

d‘
�d‘ þ pdu

hs

þ du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
hs

þ Q
d‘

� �2

� 2p
hs

1þ ðQ�d‘Þ
du

� �
� Q2

d‘du

s
:

(10)

Equations (9) and (10) follow from the quadratic
formula. Given that r‘ and ru exist, the aforemen-
tioned characteristics of G1ðRÞ and G2ðRÞ imply that
G1ðRÞ � G2ðRÞ for R 2 ½r‘, ru� and G1ðRÞ<G2ðRÞ
for R 62 ðr‘, ruÞ: These are illustrated in Figure 2 for
two possible cases: (a) r0 < r‘ and (b) r‘ � r0 � ru
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(note that, r0 > ru is not possible when r‘ and ru
exist since G1ðRÞ is increasing).

In the next proposition, we show that r‘ and ru
do exist (i.e., they are real-valued) and compare
them with d‘ and du.

Proposition 3.1. (i) 9r‘ 2 R and 9ru 2 R such that
G1ðr‘Þ ¼ G2ðr‘Þ and G1ðruÞ ¼ G2ðruÞ; and (ii)
r‘ < du < ru. Furthermore, (iii) if hsQ2 � 2pdud‘,
then r‘ � d‘; and (iv) if hsQ2 < 2pdud‘, then d‘ < r‘:

Proposition 3.1(i) then implies that MCðRÞ ¼
G1ðRÞ for R 2 ½r‘, ru� and MCðRÞ ¼ G2ðRÞ for R 62
ðr‘, ruÞ: Furthermore, Proposition 3.1(ii)-(iv) indicate
that there are two possible cases: r‘ � d‘ < du < ru
when hsQ2 � 2pdud‘ and d‘ < r‘ < du < ru when
hsQ2 < 2pdud‘: Proposition 3.1 suggests evaluating
RmðQÞ in these two cases. Next theorem character-
izes RmðQÞ as well as MCðRmðQÞÞ for each case.

Theorem 3.2. (i) If hsQ2 � 2pdud‘, then RmðQÞ ¼
d‘ and MCðRmðQÞÞ ¼ G1ðd‘Þ. (ii) If hsQ2 < 2pdud‘,
then RmðQÞ ¼ r‘ and MCðRmðQÞÞ ¼ G2ðr‘Þ when
r‘ � r0, and RmðQÞ ¼ maxfr0, d‘g and
MCðRmðQÞÞ ¼ G2ðmaxfr0, d‘gÞ when r‘ > r0:

It can be noted from Theorem 3.2 that
RmðQÞ< du because RmðQÞ ¼ d‘ < du when hsQ2 �
2pdud‘ and RmðQÞ � r‘ < du when hsQ2 < 2pdud‘:
Note that setting R ¼ du guarantees that there will
be no shortages in any cycle. Therefore, Theorem
3.2 implies that the retailer will not consider to have
a no-shortages-at-all policy (i.e., a policy indicating
no shortages ever) in order to minimize the max-
imum cycle cost given Q � du: Also, RmðQÞ � d‘ by
definition, i.e., the retailer does not adopt a policy
indicating guaranteed-shortages-at-every-cycle, which
is not practical as backorders are typically more
costly and/or less preferred than holding inventories
in practice. Nevertheless, these results do not specify
that, under the optimum R adjustment for the given
(Q, R) policy, the maximum cycle cost is observed
in a cycle with or without shortages. Indeed, it is
possible that the minimized maximum cycle cost is
observed in either cycle (with or without shortages).
In what follows, we discuss several key insights
from Theorem 3.2 on adjusting R of a given (Q, R)
policy in order to minimize the maximum cycle
cost possible.

In particular, let us consider the penalty cost per
unit short (p) vs. inventory holding cost per unit
per unit time (h). Suppose that p � h, i.e., the pen-
alty cost per unit short is significantly small com-
pared to the inventory holding cost per unit per
unit time, such that hsQ2 � 2pdud‘: In such a situ-
ation, one would expect the maximum cycle cost to
be observed in a cycle with no shortages. Indeed, if
we consider that hsQ2 � 2pdud‘ when p � h, it can
be shown that MCðRÞ ¼ G1ðRÞ (see, e.g., the proof
of Theorem 3.2) and recall that G1ðRÞ defines the
cycle cost for a cycle with no shortages. Knowing
this, the retailer would then aim to minimize the
inventory holding cost during a cycle so as to min-
imize the maximum cycle cost possible; therefore,
the retailer is expected to reduce R as much as pos-
sible and the minimum R value is d‘: Theorem 3.2
validates this discussion as it states that RmðQÞ ¼ d‘
when hsQ2 � 2pdud‘:

Next, suppose that p � h, i.e., the penalty cost
per unit short is significantly large compared to the
inventory holding cost per unit per unit time, such
that hsQ2 < 2pdud‘: In such a situation, however, we
cannot directly say that the maximum cycle cost is
expected to be observed in a cycle with or without
shortages because the possible number of shortages
can be relatively small. Indeed, since d‘ < r‘ when
hsQ2 < 2pdud‘, regardless of how large p is, it is
possible that the maximum cycle cost is observed in
a cycle with or without shortages. Particularly, for
relatively large R values (for R � r‘ to be specific), it
can be noticed that MCðRÞ ¼ G1ðRÞ, i.e., when R �
r‘, the maximum cycle cost is observed in a cycle
without a shortage. Knowing that, if the retailer is
restricted to set R � r‘, she would set R ¼ r‘ to
minimize the inventory holding costs, which would
minimize the maximum cycle cost given the restric-
tion R � r‘: On the other hand, for relatively small
R values (for R � r‘ to be specific), it can be noticed
that MCðRÞ ¼ G2ðRÞ, which defines the cycle cost
for a cycle with shortages. Knowing that, the
retailer’s optimum R adjustment would be to min-
imize G2ðRÞ over d‘ � R � r‘ given that she is
restricted to have R � r‘: Nonetheless, what
Theorem 3.2(ii) indicates that, when p � h such
that hsQ2< 2pdud‘, the maximum cycle cost is
observed in a cycle with shortages under the

Figure 2. Maximum cycle cost realizations as a function of R.
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optimum R adjustment minimizing the maximum
cycle cost. That is, MCðRmðQÞÞ ¼ G2ðRmðQÞÞ when
hsQ2 < 2pdud‘: Similar to the preceding discussion,
we can evaluate the effect of Q in the retailer’s opti-
mum R adjustment. In particular, indications of
Theorem 3.2 for a relatively large (small) Q such
that hsQ2 � 2pdud‘ (hsQ2 < 2pdud‘) are analogous
to the relatively low (high) penalty cost per
unit short.

3.2. (Q, R) policy design

Here, we characterize ðQM ,RMÞ: Similar to the def-
inition of RmðQÞ, let us first define QmðRÞ ¼
argminQ�dufMCðQÞg given that R 2 d: Note that
MCðQÞ ¼ maxfG1ðQÞ,G2ðQÞg: It can be noticed
from Equations (6) and (7) that dG2

1ðQÞ
dQ2 ¼ hs

d‘
> 0 and

dG2
2ðQÞ
dQ2 ¼ hs

du
> 0, that is, both G1ðQÞ and G2ðQÞ are

strictly convex with respect to Q. Furthermore,
dG1ðQÞ
dQ ¼ hs

d‘
ðR�d‘ þ QÞ and dG2ðQÞ

dQ ¼ hs
du
ðR�d‘ þ QÞ

imply that q0 uniquely minimizes both G1ðQÞ and
G2ðQÞ, where

q0 ¼ d‘�R: (11)

In addition, dG1ðQÞ
dQ > dG2ðQÞ

dQ > 0 for Q> q0 and
dG1ðQÞ
dQ < dG2ðQÞ

dQ < 0 for Q< q0: Therefore, if

G2ðq0Þ � G1ðq0Þ, there exist q‘ 2 R and qu 2 R

such that G2ðQÞ � G1ðQÞ for Q 2 ½q‘, qu� and
G2ðQÞ<G1ðQÞ for Q 62 ðq‘, quÞ, where

q‘ ¼ �ðR�d‘Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pd‘duðdu�RÞ
hsðdu � d‘Þ þ duðR�d‘Þ2

ðdu � d‘Þ

s
,

(12)

qu ¼ �ðR�d‘Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pd‘duðdu�RÞ
hsðdu � d‘Þ þ duðR�d‘Þ2

ðdu � d‘Þ

s
:

(13)

Equations (12) and (13) follow from the quad-
ratic formula. Furthermore, by convexity of G1ðQÞ
and G2ðQÞ, and the definition of q0, we have q‘ �
q0: On the other hand, if G2ðq0Þ<G1ðq0Þ, then
G2ðQÞ<G1ðQÞ for any Q (i.e., there do not exist
real-valued q‘ and qu). The preceding discussion
indicates that, for Q � du, there are two possible
cases as illustrated in Figure 3: (a) G2ðq0Þ � G1ðq0Þ

and qu � du and (b) G2ðq0Þ � G1ðq0Þ and qu < du,
or G2ðq0Þ<G1ðq0Þ:

In the next proposition, we define QmðRÞ:
Proposition 3.3. QmðRÞ ¼ du:

As expected, Proposition 3.3 implies that the
retailer should minimize her order quantity if she
wants to minimize the maximum cycle cost. This is
because, from the beginning of a cycle until order
initiation, the retailer incurs only inventory holding
cost, which is maximized when the beginning inven-
tory is at its maximum level possible. Furthermore,
noting that the order quantity does not affect the
portion of the cycle cost incurred during the lead
time, the retailer should minimize the maximum
beginning inventory possible so as to minimize the
maximum cycle cost possible. To do so, for any re-
order point, the retailer sets the order quantity to
the minimum possible, i.e., QmðRÞ ¼ du:

Next theorem, which follows from Proposition
3.3 and Theorem 3.2, defines ðQM ,RMÞ:
Theorem 3.4. ðQM,RMÞ ¼ ðdu,RmðduÞÞ:

Following section discusses the results of a set of
numerical studies investigating the effects of the
approaches introduced in this section. Later, we pre-
sent a bi-objective optimization problem where both
the expected cost per unit time and the maximum
cycle cost possible are minimized.

4. Numerical experimentation

In this section, we present a set of numerical studies
demonstrating the effects of accounting for the max-
imum cycle cost possible, either by just adjusting R
of a given (Q, R) policy or by designing a new (Q,
R) policy, on the retailer’s expected cost per unit
time. To do so, we consider the three aforemen-
tioned (Q, R) policies based on long-term expected
cost minimization, namely, the cost minimizing pol-
icy ðQC,RCÞ, Gallego’s (1992) distribution-free min-
max policy ðQG,RGÞ, and the cost minimizing (Q,
R) policy under the maximum entropy distribution
ðQE,REÞ: For each j 2 fC,G,Eg, we compare the
given ðQj,RjÞ policy to ðQj,RmðQjÞÞ and ðQM,RMÞ:

Figure 3. Maximum cycle cost realizations as a function of Q.
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The pertinent figures and tables are provided in the
online supplement (Sections G–L).

In our analyses, we use six different lead time
demand distributions: normal, truncated normal,
symmetric triangular, gamma, right-skewed triangu-
lar, and left-skewed triangular. Note that normal,
truncated normal, and symmetric triangular distri-
butions are symmetric distributions; gamma and
right-skewed triangular are right-skewed distribu-
tions; and left-skewed triangular is a left-skewed dis-
tribution. Even though left-skewness is noted to be
an uncommon demand pattern in practice (see, e.g.,
Bagchi, Hayya, & Chu, 1986; Burgin, 1975; H. Yang
& Schrage, 2009), we believe that these six distribu-
tions capture three basic demand patterns. It is
worthwhile to note that triangular distribution is
also commonly used in case of lack of data due to
its simplicity and ability to capture different patterns
(Konur & Golias, 2013; Smith, Sturrock, & Kelton,
2018). Furthermore, recall that one of the assump-
tions of our models is that the lead time demand
has lower and upper limits, i.e., its distribution
should have a compact support. Among the distri-
butions we use, normal and gamma have
unbounded supports. These distributions are com-
monly used in (Q, R) analyses (see, e.g., Tyworth &
Ganeshan, 2000; Tyworth et al., 1996; Tyworth &
O’Neill, 1997); and it is possible that one of these
distributions is the best fitted one to a retailer’s
observed data. In such a case, we suggest that the
retailer defines lower and upper limits for the lead
time demand such that a specific percentage of the
possible lead time demand realizations are captured.
In our numerical analyses, for a lead time demand
distributed according to either normal or gamma
distribution, we define d‘ ¼ F�1ð0:005Þ and du ¼
F�1ð0:995Þ, where F�1ð�Þ denotes the inverse cumu-
lative distribution function, so that the probability
of D 2 d is 0.99 (i.e., the defined range d covers
99% of the possible lead time demand realizations
from the corresponding distribution). This notion of
coverage also allows flexibility for the retailer in
terms of how robust she prefers to be while mini-
mizing the maximum cycle cost possible. The other
four distributions have bounded supports, and thus,
d‘ and du are naturally defined for them.

As discussed in Section 3, penalty cost per unit
short (p) and inventory holding cost per unit per
unit time (h) play an important role in minimizing
the maximum cycle cost. Another key parameter,
which is commonly considered in (Q, R) analyses is
the lead time demand’s coefficient of variance,
denoted by CV, where CV ¼ r=l: To demonstrate
the effects of p vs. h, we make comparisons for
increasing p values while keeping h fixed over four
different CV ranges. To do so, 100 problem

instances within a specific CV range are randomly
generated, and each problem instance is solved for
10 different p values while keeping h¼ 1. To dem-
onstrate the effects of CV, we make comparisons for
increasing CV values over four different p ranges
(keeping h¼ 1 fixed). To do so, 100 problem instan-
ces within a specific p range and with h¼ 1 are ran-
domly generated, and each problem instance is
solved for 10 different CV values. The details of
problem instance generation are explained in the
online supplement (Section D). This way, we are
also able to see the potential cross-effects of p vs. h
and CV on how ðQj,RjÞ, ðQj,RmðQjÞÞ, and ðQM ,RMÞ
compare for j 2 fC,G,Eg: When a problem instance
is solved, we determine: ðQC,RCÞ using Hadley and
Whitin’s (1963) iterative algorithm, ðQG,RGÞ using
Gallego’s (1992) minmax approach, and ðQE,REÞ
using Hadley and Whitin’s (1963) iterative algo-
rithm after the maximum entropy distribution is
calculated. The details of determining ðQE,REÞ are
explained in the online supplement (Section E).
Also, ðQj,RmðQjÞÞ 8j 2 fC,G,Eg are determined
using Theorem 3.2, and ðQM,RMÞ is calculated using
Theorem 3.4. Hadley and Whitin’s (1963) iterative
algorithm requires calculating n(R), which depends
on the distribution. Online supplement (Section B)
further discusses how we calculate n(R) values for
the distributions considered.

4.1. Analysis of cycle cost considerations
on ðQC, RCÞ
Below, we first summarize the effects of p and CV
on EC(Q, R) and MC(Q, R) under three alternative
(Q, R) policies, namely ðQC,RCÞ, ðQC,RmðQCÞÞ, and
ðQM,RMÞ: Then, we state two key observations. The
reader is referred to Section G of the online supple-
ment for Figures G.1, G.2, and G.3 and Section J for
the corresponding tables.

4.1.1. Effects of p and CV
The following discussion is based on Figures G.1
and G.2, which illustrate the averages of the EC(Q,
R) and MC(Q, R) values over the 100 problem
instances solved from each CV and p interval with
varying p and CV values, respectively, for each of
the six lead time demand distributions considered.

	 ECðQC,RCÞ increases with p and CV, which is an
expected result. Particularly, for any problem
instance solved under different CV intervals and
lead time demand distributions, we observe that
ECðQC,RCÞ increases with p; and for any prob-
lem instance solved under different p intervals
and lead time demand distributions, we observe
that ECðQC,RCÞ increases with CV. Indeed, it
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can be argued that ECðQC,RCÞ is non-decreasing
with p and CV. On the other hand, while
MCðQC,RCÞ tends to increase with p and CV, it
is not guaranteed that MCðQC,RCÞ will always
increase with an increase in p or CV. This is
because ðQC,RCÞ minimizes EC(Q, R) (in several
problem instances, it is observed that
MCðQC,RCÞ decreased with an increase in p,
however, we did not observe a problem instance
where MCðQC,RCÞ decreased with an increase
in CV).

	 ECðQC,RmðQCÞÞ might increase or decrease with
an increase in p or CV. Indeed, one can note
from Figure G.1, especially under high CV inter-
vals, that ECðQC,RmðQCÞÞ might increase or
decrease with an increase in p. Similarly, even
though ECðQC,RmðQCÞÞ tends to increase with
CV as depicted in Figure G.2, we observed sev-
eral problem instances where ECðQC,RmðQCÞÞ
decreased with an increase in CV. Furthermore,
MCðQC,RmðQCÞÞ might as well increase or
decrease with an increase in p or CV. One can
note from Figure G.1, especially under high CV
intervals, that MCðQC,RmðQCÞÞ might increase
or decrease with an increase in p. Also, while we
have not observed a problem instance where
MCðQC,RmðQCÞÞ decreased with an increase in
CV, it is not guaranteed that MCðQC,RmðQCÞÞ
increases with CV. These results follow because
ðQC,RmðQCÞÞ is a mixed policy; QC is leaned
towards minimizing EC(Q, R), whereas RmðQCÞ
aims at minimizing MCðQC,RÞ:

	 MCðQM ,RMÞ increases with p and CV, which is
an expected result. Particularly, for any problem
instance solved under different CV intervals and
lead time demand distributions, we observe that
MCðQM ,RMÞ increases with p; and for any prob-
lem instance solved under different p intervals
and lead time demand distributions, we observe
that MCðQM,RMÞ increases with CV. Indeed, it
can be argued that MCðQM ,RMÞ is non-decreas-
ing with p and CV. Also, while we have not
observed any problem instance where
ECðQM,RMÞ decreased with an increase in CV, it
can be seen in Figure G.1, especially for larger
CV intervals, that ECðQM ,RMÞ might increase or
decrease with an increase in p. As ðQM,RMÞ min-
imizes MC(Q, R), it is not guaranteed that
ECðQM,RMÞ will increase with an increase in p
or CV.

4.1.2. Observations
One can notice that ECðQC,RCÞ � ECðQC,RmðQCÞÞ
and MCðQC,RmðQCÞÞ � MCðQC,RCÞ by definition.
That is, adjusting the R of the cost minimizing (Q, R)
policy, i.e., ðQC,RCÞ, so as to reduce the maximum

cycle cost possible comes at a cost of increased
expected cost per unit time. Nevertheless, the magni-
tude of the changes in EC(Q, R) and MC(Q, R) are
considerable factors when preferring one policy over
the other. For instance, increasing the expected cost
per unit time by less than 5% while reducing the max-
imum cycle cost possible by more than 20% might be
preferable for the retailer. Figure G.3 demonstrates
the average percent changes in EC(Q, R) and MC(Q,
R) due to switching from ðQC,RCÞ policy to
ðQC,RmðQCÞÞ as well as to ðQM ,RMÞ: Percent changes
for a problem instance are defined as follows: DEC ¼
100%
 ECðQ0,R0Þ�ECðQC,RCÞ

ECðQC,RCÞ and DMC ¼ 100%

MCðQ0,R0Þ�MCðQC,RCÞ

MCðQC,RCÞ for ðQC,RCÞ vs. ðQ0,R0Þ, where

ðQ0,R0Þ is either ðQC,RmðQCÞÞ or ðQM ,RMÞ:
Observation O.1, stated below, emphasizes that, in
some settings, ðQC,RmðQCÞÞ can be an attractive pol-
icy to adopt based on the magnitude of these changes.

O.1 By adjusting the R of the cost minimizing (Q,
R) policy, the maximum cycle cost possible can
be significantly reduced with a relatively small
increase in the expected cost per unit time under
settings with: (i) relatively high p values under
right-skewed lead time demand distributions
considered, and (ii) relatively high p and low CV
values under symmetric lead time demand
distributions considered.

We note that similar observation can be, but
weakly, stated for settings with relatively high p and
low CV values under the left-skewed lead time dis-
tribution we considered. Nevertheless, as noted pre-
viously, left-skewness is not common in practice.
For switching from one extreme policy ðQC,RCÞ to
the other extreme policy ðQM,RMÞ, Observation O.1
does not necessarily hold, especially considering the
significant amount of changes in both EC(Q, R) and
MC(Q, R).

It can also be noticed that MCðQM ,RMÞ �
MCðQC,RmðQCÞÞ by definition. Furthermore, one
would expect that ECðQM ,RMÞ � ECðQC,RmðQCÞÞ
because ðQC,RmðQCÞÞ includes the cost minimizing
order quantity QC. For low CV values, we do
observe that ECðQM ,RMÞ � ECðQC,RmðQCÞÞ (see,
e.g., Figures G.1 and G.2). On the contrary, that is
not always the case as noted in the next
observation.

O.2 It is possible that ECðQM, RMÞ �
ECðQC , RmðQCÞÞ; therefore, ðQM, RMÞ might be
Pareto superior to ðQC , RmðQCÞÞ:
Observation O.2 implies that, the retailer should

not completely disregard modifying both Q and R
in order to minimize the maximum cycle cost pos-
sible. This is because doing so might be a better
alternative than just adjusting R, especially under
high CV settings. The tools presented in this study
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can be used towards such policy comparisons.
Furthermore, in Section 5, we present a bi-objective
model that minimizes both EC(Q, R) and MC(Q, R).

4.2. Analysis of cycle cost considerations
on ðQG, RGÞ
Below, we analyse the effects of p and CV on EC(Q,
R) and MC(Q, R) under three alternative (Q, R) pol-
icies, namely ðQG,RGÞ, ðQG,RmðQGÞÞ, and ðQM ,RMÞ:
Note that all of these three policies are based on dis-
tribution-free approaches. In the following analyses,
we solve the same problem instances used in
Section 4.1, assuming that the mean (l), standard
deviation (r), and upper and lower limits (d‘ and
du) of the lead time demand distribution are known
before determining the policy, but the exact lead
time demand distribution is observed after the pol-
icy is implemented. Recall that, for normal and
gamma distributions, d‘ and du are considered to
cover 99% of possible demand realizations. The
reader is referred to Section H of the online supple-
ment for Figures H.1, H.2, and H.3 and Section K
for the corresponding tables.

Note that ðQG,RGÞ does not minimize EC(Q, R);
it minimizes the worst (i.e., the maximum possible)
value of EC(Q, R) against the lead time demand
distributions with mean l and standard deviation
r. Therefore, ðQG,RmðQGÞÞ does not explicitly
regard EC(Q, R) while minimizing MC(Q, R).
Furthermore, ðQM ,RMÞ does not target minimizing
EC(Q, R) by definition. The purpose of our com-
parison here is twofold. First, recalling that it
might be easier to modify R for a retailer, we
naively discuss that it is possible to decrease both
EC(Q, R) and MC(Q, R) by adjusting the R of
ðQG,RGÞ after the lead time demand distribution is
learned. That is, if the retailer will gradually transi-
tion her (Q, R) policy from ðQG,RGÞ as the lead
time demand is being learned, it is a possibility
that adjusting R to RmðQGÞ is a beneficial inter-
mediate policy. Second, given that ðQG,RGÞ is one
extreme approach to deal with the uncertainty of
the lead time demand distribution (i.e., it focuses
on the worst case possible), we would like to test
whether ðQG,RmðQGÞÞ and/or ðQM ,RMÞ can offer
benefits in addition to reducing the maximum
cycle cost possible. Moreover, we are able to dem-
onstrate approach (i) with another (Q, R) policy,
compare ðQG,RGÞ and ðQM ,RMÞ (two policies that
use different types of limited information about the
lead time demand distribution, i.e., l and r vs. d‘
and du), and observe the changes in MCðQG,RGÞ
and the changes in ECðQG,RGÞ when the lead time
demand distribution becomes known.

Next, the effects of p and CV on the three poli-
cies are discussed. After that, we state several
observations.

4.2.1. Effects of p and CV
The following discussion is based on Figures H.1
and H.2, which illustrate the averages of the EC(Q,
R) and MC(Q, R) over the 100 problem instances
solved under each CV and p interval with varying
p and CV values, respectively, for each of the six
lead time demand distributions considered. That is,
we discuss how EC(Q, R) and MC(Q, R) change
with p and CV given that the lead time demand
distribution turns out to be the distribu-
tion evaluated.

	 Similarly to ECðQC,RCÞ,ECðQG,RGÞ increases
with p and CV for any problem instance solved,
which is an expected result. On the other hand,
while MCðQG,RGÞ tends to increase with p and
CV as depicted in Figures H.1 and H.2, respect-
ively, it cannot be guaranteed that MCðQG,RGÞ
increases or decreases with p or CV. This is
because ðQG,RGÞ minimizes the maximum EC(Q,
R) value over all possible distributions (while it
can be seen in Figure H.1, especially for lower
CV values, that MCðQG,RGÞ can increase or
decrease with p, we did not observe a problem
instance where MCðQG,RGÞ decreased with an
increase in CV).

	 ECðQG,RmðQGÞÞ might increase or decrease with
an increase in p or CV. Indeed, one can note
from Figure H.1, especially under high CV val-
ues, that ECðQG,RmðQGÞÞ might increase or
decrease with an increase in p. Similarly, even
though ECðQG,RmðQGÞÞ tends to increase with
CV as depicted in Figure H.2, we observed sev-
eral problem instances where ECðQG,RmðQGÞÞ
decreased with an increase in CV. It can be fur-
ther seen in Figures H.1 and H.2 that
MCðQG,RmðQGÞÞ tends to increase with p and
CV, and we have not observed a problem
instance where MCðQG,RmðQGÞÞ decreased with
p or CV. However, it is not guaranteed that
MCðQG,RmðQGÞÞ will always increase with p or
CV because QG is based on minimizing the max-
imum EC(Q, R) possible, whereas RmðQGÞ mini-
mizes MCðQG,RÞ:

	 ECðQM ,RMÞ and MCðQM,RMÞ behave the same
way as in Section 4.2.1 because ðQM ,RMÞ is
the same.

4.2.2. Observations
One can notice that MCðQM ,RMÞ �
MCðQG,RmðQGÞÞ � MCðQG,RGÞ by definition.
Nonetheless, unlike ðQC,RCÞ vs. ðQC,RmðQCÞÞ or
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ðQM ,RMÞ, it cannot be guaranteed that
ECðQG,RGÞ � ECðQG,RmðQGÞÞ or ECðQG,RGÞ �
ECðQM ,RMÞ unless the lead time demand distribu-
tion is indeed the worst possible distribution maxi-
mizing EC(Q, R). Therefore, as noted in the next
observation, it is possible that ECðQG,RGÞ �
ECðQG,RmðQGÞÞ or ECðQG,RGÞ � ECðQM ,RMÞ if
the lead time demand distribution is not the worst
possible one.

O.3 If the lead time demand distribution is in fact
not the worst one for EC(Q, R), it is possible that
ECðQG, RmðQGÞÞ � ECðQG, RGÞ and/or ECðQM, RMÞ �
ECðQG, RGÞ; therefore, ðQG, RmðQGÞÞ and/or
ðQM, RMÞ might be Pareto superior to ðQG, RGÞ
Especially, the noted Pareto superiority of

ðQG,RmðQGÞÞ can be recognized in Figures H.1 and
H.2 for the lead time demand distributions we
tested under settings with high p and low CV values.
This suggests that, in such settings, a retailer, who is
not completely risk-averse, might prefer
ECðQG,RmðQGÞÞ over ðQG,RGÞ and reduce both the
expected costs per unit time and the maximum
cycle cost possible. Also, even though it is not very
apparent in Figures H.1 and H.2, we observed prob-
lem instances where ðQM ,RMÞ was Pareto superior
to ðQG,RGÞ under each of the distributions consid-
ered. On the other hand, it should be highlighted
that, ðQG,RGÞ may perform significantly better than
both ðQG,RmðQGÞÞ and ðQM ,RMÞ in terms of the
expected costs per unit time, especially under set-
tings with high CV and low p values. This suggests
that, in such settings, Gallego’s (1992) minmax
approach is preferable for long-term expected cost
minimization. Nevertheless, by definition, ðQG,RGÞ
cannot outperform ðQG,RmðQGÞÞ or ðQG,RmðQGÞÞ
in terms of the maximum cycle cost possible; there-
fore, ðQG,RGÞ cannot be Pareto superior to either
policy. Finally, we note that Observation O.2 of
Section 4.1.2 can also be noticed in Figures H.1 and
H.2, and Figure H.3 (defined similarly as Figure
G.3). This suggests that a discussion similar to
Observation O.1 can be noted for ðQG,RGÞ
vs. ðQG,RmðQGÞÞ:

4.3. Analysis of cycle cost considerations
on ðQE, REÞ
Finally, we analyse the effects of considering cycle
costs under the cost minimizing (Q, R) policy corre-
sponding to the maximum entropy distribution of
the lead time demand. Here, we consider that the
mean (l), standard deviation (r), and upper and
lower limits (d‘ and du) of the lead time demand
distribution are known and these are used in deter-
mining the maximum entropy distribution.
Therefore, we consider the problem instances used

in Sections 4.1 and 4.2 with bounded lead time
demand distributions. That is, we consider the prob-
lem instances, where the actual lead time demand
distribution is truncated normal, symmetric, right-
skewed, and left-skewed triangular. We solve the
same problem instances from these distributions
with three alternative (Q, R) policies, namely
ðQE,REÞ, ðQE,RmðQEÞÞ, and ðQM ,RMÞ: Note that all
of these three policies are based on distribution-free
approaches. The purpose of this section is the same
as that of Section 4.2: after the lead time demand
distribution becomes known, how EC(Q, R) and
MC(Q, R) of different approaches, which use vary-
ing information about the lead time demand distri-
bution, compare for various p and CV values. Note
that ðQE,REÞ uses l, r, d‘, and du and ðQM,RMÞ
uses d‘ and du. Also, we further demonstrate and
compare approaches (i) and (ii) with another (Q,
R) policy.

4.3.1. Effects of p and CV
Figures I.1–I.3 are defined similar to Figures
G.1–G.3 (and H.1–H.3), respectively. It can be
noticed that the expected costs per unit time and
the maximum cycle costs of ðQE,REÞ and, conse-
quentially, ðQE,RmðQEÞÞ behave very similarly to the
expected costs per unit time and the maximum
cycle costs of ðQC,RCÞ and ðQC,RmðQCÞÞ, respect-
ively. The discussions of Section 4.1.1 hold for com-
paring EC(Q, R) and MC(Q, R) under
ðQE,REÞ, ðQE,RmðQEÞÞ, and ðQM ,RMÞ for various p
and CV values. The only difference would be that
we cannot argue that ECðQE,REÞ would always
increase with CV as ECðQC,RCÞ does for a given
problem instance. This is because the underlying
maximum entropy distribution changes as CV
changes. Nevertheless, we did not observe a problem
instance where ECðQE,REÞ decreased with an
increase in CV for a problem instance. On the other
hand, it can be argued that ECðQE,REÞ would
increase with p as ECðQC,RCÞ does for a given
problem instance, because the maximum entropy
distribution does not change as p changes for the
same problem instance.

4.3.2. Observations
Recall from Observation O.3 that ðQG,RmðQGÞÞ and/
or ðQM,RMÞ might be Pareto superior to ðQG,RGÞ:
Comparing ðQE,REÞ, ðQE,RmðQEÞÞ, and ðQM ,RMÞ,
we have a similar observation as noted below.

O.4 If the lead time demand distribution is in fact
not the maximum entropy distribution, it is
possible that ECðQE , RmðQEÞÞ � ECðQE , REÞ and/or
ECðQM, RMÞ � ECðQE , REÞ; therefore, ðQE , RmðQEÞÞ
and/or ðQM, RMÞ might be Pareto superior
to ðQE , REÞ:
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Observation O.4 follows from the fact that,
even though MCðQM,RMÞ � MCðQE,RmðQEÞÞ �
MCðQE,REÞ by definition, it is not guaranteed that
ECðQE,REÞ � MCðQE,RmðQEÞÞ or ECðQE,REÞ �
MCðQM ,RMÞ when the actual lead time demand dis-
tribution is not the maximum entropy distribution.
Unlike Section 4.2.2, we did not notice a specific
pattern related to p and CV values for Pareto super-
iority of ðQE,RmðQEÞÞ and/or ðQM ,RMÞ over
ðQE,REÞ: However, in most cases, ðQE,REÞ is not
Pareto dominated or Pareto dominated with small
margins. Furthermore, it is worthwhile to note that
Observation O.1 can be accepted for ðQE,REÞ vs.
ðQE,RmðQEÞÞ and Observation O.2 is valid for com-
paring ðQE,RmðQEÞÞ and ðQM ,RMÞ:

Even though it is not our purpose to compare
the two distribution-free policies minimizing the
expected costs per unit time, i.e., ðQG,RGÞ based on
Gallego’s (1992) minmax approach and ðQE,REÞ
based on the maximum entropy distribution for
the lead time demand, we observe that ðQE,REÞ
tends to outperform ðQG,RGÞ both in terms of
EC(Q, R) and MC(Q, R). This is expected because
the maximum entropy approach uses more infor-
mation about the lead time demand distribution
than Gallego’s (1992) minmax approach does:
ðQE,REÞ is determined by utilizing l, r, d‘, and du;
whereas, ðQG,RGÞ is determined by utilizing l and
r. Furthermore, Gallego’s (1992) minmax approach
focuses on the worst-case lead time demand distri-
bution and minimizes the expected cost per unit
time against this worst-case lead time demand dis-
tribution; whereas, the maximum entropy approach
focuses on determining the best representation for
the lead time demand and uses this best represen-
tation for minimizing the expected cost per unit
time. In this sense, we can cautiously say that
Gallego’s (1992) minmax approach is risk-averse
while the maximum entropy approach is risk-neu-
tral. We refer to the reader to Castellano (2016) for
a detailed comparison of the long-term expected
costs under these two policies.

5. Extension to bi-objective modelling

As observed in the previous section, solely minimiz-
ing the maximum cycle cost and using ðQM ,RMÞ
policy can significantly increase the expected cost
per unit time. On the other hand, when the
expected cost per unit time is minimized and
ðQC,RCÞ is used, the maximum cycle cost signifi-
cantly increases. Adjusting only the R of the cost
minimizing policy, i.e., ðQC,RmðQCÞÞ policy, can be
accepted as a moderate approach, and we noted that
it can be a preferable policy in several settings (i.e.,

see Observation O.1). However, ðQC,RmðQCÞÞ is a
single policy aimed to balance EC(Q, R) and MC(Q,
R), and ðQM ,RMÞ might be Pareto superior to
ðQC,RmðQCÞÞ (i.e., see Observation O.2). These
results necessitate a systematic approach to simul-
taneously take EC(Q, R) and MC(Q, R) into account
and offer a retailer multiple alternative (Q,
R) policies.

In order to balance the expected cost per unit
time and the maximum cycle cost, we formulate a
bi-objective optimization model such that both
EC(Q, R) and MC(Q, R) are minimized given the
lead time demand distribution. This bi-objective
optimization model (P) is:

P: min ECðQ,RÞ
min MCðQ,RÞ

s:t: Q � du, d‘ � R � du:

Note that since Q and R are continuous decision
variables, the set of Pareto efficient solutions of P is
infinite unless ðQC,RCÞ ¼ ðQM ,RMÞ; therefore, we
focus on approximating the set of Pareto efficient
solutions of P, denoted by PF : Let F ¼ fðQ,RÞ :
Q � du, d‘ � R � dug, i.e., F is the set of feasible
(Q, R) policies. Note that a policy ðQe,ReÞ 2 F is a
Pareto efficient solution of P if and only if
@ðQ0,R0Þ 2 F such that ½ECðQ0,R0Þ,MCðQ0,R0Þ� 6¼
½ECðQe,ReÞ,MCðQe,ReÞ�,ECðQ0,R0Þ � ECðQe,ReÞ,
and MCðQ0,R0Þ � MCðQe,ReÞ: We let ðQe,ReÞ to
denote an arbitrary solution in PF :

One common method to approximate PF is the
�-constraint method (Lin, 1976). In this method,
one of the objective functions is included as a con-
straint with an upper limit while minimizing the
other objective function (see, e.g., Schaefer &
Konur, 2015). For problem P, when the expected
cost per unit time is selected for minimization,
�-constraint would require solving
minQ,RfECðQ,RÞ : MCðQ,RÞ � D, ðQ,RÞ 2 Fg for
decreasing D values, i.e., decreasing limits on the
maximum cycle costs. In this sense, �-constraint
method implies iteratively solving single-objective
cost minimization (Q, R) models with budget
restrictions, where budget refers to the maximum
cycle cost in our study. We note that various (Q, R)
models with budget restrictions have been analysed
in the literature (see, e.g., Bera, Rong, Mahapatra, &
Maiti, 2009; K. Das, Roy, & Maiti, 2004; Fattahi
et al., 2015; Ghalebsaz-Jeddi, Shultes, & Haji, 2004;
Kundu & Chakrabarti, 2012; Tamjidzad &
Mirmohammadi, 2015, 2017, 2018; T.-Y. Wang &
Hu, 2008; X. Zhao, Qiu, Xie, & He, 2012). The
resulting solution will be a Pareto efficient solution
for problem P. This suggests that a capital
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restriction on a retailer’s short-term spending will
increase her long-term expected cost, which is an
anticipated result. Indeed, the studies cited in
Section 1 on the intersection of inventory manage-
ment and supply chain finance emphasize such
tradeoffs between a retailer’s capital availability and
long-term profitability.

As noted above, �-constraint method requires
solving nonlinear optimization models with a non-
continuously differentiable function (MC(Q, R)
being either the objective or the constraint function)
and it is noted to be computationally burdensome
(Schaefer & Konur, 2015). In what follows, a simple
search produce is proposed to determine such
Pareto efficient solutions by utilizing several charac-
teristics of ðQe,ReÞ:

First, let us define QcðRÞ ¼ argminfECðQ,RjRÞ :
Q � dug and RcðQÞ ¼ argminfECðQ,RjQÞ : R 2 dg:
It can be discussed that ECðQ,RjRÞ is strictly convex

with respect to Q and one can show that QcðRÞ ¼
maxfdu,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðKþpnðRÞÞ

h

q
g: Similarly, it can be discussed

that ECðQ,RjQÞ is strictly convex with respect to R
and one can show that RcðQÞ ¼ d‘ if

F�1 1� Qh
pk

� �
< d‘,RcðQÞ ¼ F�1 1� Qh

pk

� �
if d‘ � F�1

1� Qh
pk

� �
< du, and RcðQÞ ¼ du if du < F�1 1� Qh

pk

� �
:

Notice that QC ¼ QcðRCÞ and RC ¼ RcðQCÞ by def-
inition. Also recall that QmðRÞ ¼
argminfMCðQ,RjRÞ : Q � dug ¼ du 8R 2 d as
defined in Proposition 3.3 and RmðQÞ ¼
argminfECðQ,RjQÞ : R 2 dg, which is defined in
Theorem 3.2.

Proposition 5.1. If ðQe,ReÞ 2 PF , then (i) Qe 2
½du,QcðReÞ� and
(ii)
Re 2 ½minfRcðQeÞ,RmðQeÞg, maxfRcðQeÞ,RmðQeÞg�:

We utilize Proposition 5.1 to devise a bi-direc-
tional search method to approximate PF as follows.
Let PF(R) and PF(Q) denote the Pareto efficient sol-
utions of bi-objective models P-R and P-Q, respect-
ively, such that

P-R : min ECðQ,RjRÞ P-Q : min ECðQ,RjQÞ
min MCðQ,RjRÞ min MCðQ,RjQÞ
s:t: ðQ,RÞ 2 F, s:t: ðQ,RÞ 2 F:

That is, PF(R) is the set of Pareto efficient Q val-
ues of P-R corresponding to the given R and PF(Q)
is the set of Pareto efficient R values of P-Q corre-
sponding to the given Q. Note that PF �
f[Q�du PFðQÞg [ f[R2d PFðRÞg: Prior to giving
details of the search method, a routine is presented
in the online supplement (Section F), Routine 0,
that returns the set of Pareto efficient solutions,
PE(S), out of a given set of solutions S ( for similar

routines, see also, Konur & Golias, 2013; Konur &
Dagli, 2015; Schaefer & Konur, 2015; Konur &
Schaefer, 2016 ).

Proposition 5.1(i) implies that PFðRÞ �
½du,QcðRÞ�, and it can be further discussed that
PFðRÞ � ½du,QcðRÞ� due the convexity of ECðQ,RjRÞ
and MCðQ,RjRÞ being an increasing linear function
of Q. Therefore, PF(R) can be approximated by gen-
erating an arbitrary number of Q values from
½du,QcðRÞ�: This approximation of PF(R) can then
be used to approximate [R2d PFðRÞ by considering
an arbitrary number of R values from within d.
Routine 1 states a one-directional search method,
based on R, that approximates [R2d PFðRÞ:

Routine 1 returns at most /1 
 w1 solutions,
where /1 and w1 are user-defined parameters. Note
that neither ðQC,RCÞ nor ðQM ,RMÞ, the two
extreme Pareto efficient solutions, are in PF1. These
will be included in the next routine. If only Routine
1 is to be used to approximate PF , then both
ðQC,RCÞ and ðQM,RMÞ should be added to PF1

before executing Routine 0.
Proposition 5.1(ii) implies that PFðQÞ �

½minfRcðQÞ,RmðQÞg, maxfRcðQÞ,RmðQÞg�, and it can
be further discussed that PFðQÞ � ½minfRcðQÞ,
RmðQÞg, maxfRcðQÞ,RmðQÞg� due to the convexity of
both ECðQ,RjQÞ and MCðQ,RjQÞ: Therefore, PF(Q)
can be approximated by generating an arbitrary num-
ber of R values from ½minfRcðQÞ,RmðQÞg,
maxfRcðQÞ,RmðQÞg�: This approximation of PF(Q)
can then be used to approximate [Q�du PFðQÞ by con-
sidering an arbitrary number of Q values. We know
that Q � du; however, unlike approximating
[R2d PFðRÞ, Q does not have a direct upper bound
and it is therefore necessary to define an upper bound
on Q in order to approximate [Q�du PFðQÞ: We know
from Proposition 5.1(i) that Qe 2 ½du,QcðReÞ� for a
Pareto efficient solution ðQe,ReÞ: Also, recall that

QcðRÞ ¼ maxfdu,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðKþpnðRÞÞ

h

q
g �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðKþpnðRÞÞ

h

q
:

Noting that n(R) is maximized when R is minimized, it

can be concluded that QcðRÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðKþpnðd‘ÞÞ

h

q
8R 2 d:

Based on the preceding discussion, Routine 2, stated
below, is also a one-directional search method, based
onQ, that approximates [Q�du PFðQÞ:
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Routine 2 returns at most /2 
 w2 þ 1 solutions,
where /2 and w2 are user-defined parameters.
Notice that ðQM,RMÞ is guaranteed to be in PF2.
Also, since QC might be missed during the search
over Q, we add it to PF2 before executing Routine 0.

The bi-directional search method to approximate
PF , Algorithm 1, is stated below. Algorithm 1 sim-
ply combines PF1 and PF2, and returns the approxi-
mated PF , denoted by cPF , as the Pareto efficient
solutions with the union of PF1 and PF2. Note that
both PF1 and PF2 will have a piecewise representa-
tion on the objective space, where each piece is an
approximated convex curve corresponding to either
PF(Q) or PF(R). Therefore, one can expect that cPF
has a piecewise representation as well. Indeed, that
is the case as we demonstrate Algorithm 1 with sev-
eral examples next.

Algorithm 1: A bi-directional search method to
generate an approximated PF , denoted by cPF:

1 Generate PF1 using Routine 1.
2 Generate PF2 using Routine 2.
3 Return cPF¼PEðPF1[PF2Þ using Routine 0.

Prior to these examples, we note that EC(Q, R)
and MC(Q, R) values for any given (Q, R) in
Routines 1 and 2, and Algorithm 1, are calculated
using Equations (1) and (5) right before Routine 0
is executed. One can also use simulation to evaluate
EC(Q, R) and MC(Q, R) values for any given (Q, R)
before executing Routine 0. In this case, these meth-
ods would return the Pareto efficient solutions by
comparing individual policies based on their simu-
lated average cost per unit time and maximum cycle
cost. We demonstrate such a simulation approach
with some of the examples discussed below. To do
so, we let SPF1, SPF2, and dSPF be defined similar to
PF1, PF2, and cPF , respectively. SPF1, SPF2, and dSPF
correspond to the outcomes of Routines 1 and 2,
and Algorithm 1, respectively, when simulation is
used to evaluate EC(Q, R) and MC(Q, R) values for
any given (Q, R) before executing Routine 0. PF1,
PF2, and cPF correspond to the outcomes of
Routines 1 and 2, and Algorithm 1, respectively,
when Equations (1) and (5) are used to calculate

EC(Q, R) and MC(Q, R) values for any given (Q, R)
before executing Routine 0. We explain the details
of our simulation setup in the online supplement
(Section F) and we refer the reader to Nahmias and
Wang (1979), Nahmias (1981), Chiu (1995), Olsson
(2014), and Braglia et al. (2019) for using detailed
simulation approaches in determining near-optimal
policies for several challenging single-objective (Q,
R) models.

Figure 4(a–c) illustrates PF1, PF2, and cPF and
Figure 5(a–c) illustrate SPF1, SPF2, and dSPF for a
problem instance, where the lead time demand dis-
tribution is normal, gamma, and truncated normal,
respectively. In both Figures 4 and 5, Routines 1
and 2 parameters are /1 ¼ /2 ¼ 10 and w1 ¼ w2 ¼
20 for illustration purposes. Furthermore, Figure 4
includes the simulated EC(Q, R) and MC(Q, R) val-
ues for the (Q, R) policies in cPF , denoted by PFsim,
as well as PEðPFsimÞ, i.e., the Pareto efficient solu-
tions based on these simulated EC(Q, R) and MC(Q,
R) values of the solutions within cPF: Similarly,
Figure 5 includes the EC(Q, R) and MC(Q, R) values
calculated using Equations (1) and (5) for the (Q, R)
policies in dSPF , denoted by SPFeqn, as well as
PEðSPFeqnÞ, i.e., the Pareto efficient solutions based
on these calculated EC(Q, R) and MC(Q, R) values
of the solutions within dSPF :

As it can be observed, both cPF and dSPF have
a piecewise structure, where each piece is a con-
vex curve defined partially or fully by one of the
convex pieces returned by either Routine 1 or 2.
Similarly, both PEðPFsimÞ and PEðSPFeqnÞ have
piecewise structures. One can also note that cPF
and dSPF are very close to each other, indicating
that the methods proposed return similar Pareto
points when they are executed with calculated or
simulated EC(Q, R) and MC(Q, R) values.
Furthermore, when cPF and PEðPFsimÞ are com-
pared in Figure 4, we can see that the range of
EC(Q, R) values are very close for all three prob-
lem instances. Indeed, it can be observed that the
calculated ECðQ,RÞ values can be lower or higher
than the simulated EC(Q, R) values. On the other
hand, the simulated MC(Q, R) values are lower
than the calculated MC(Q, R) values, which is an
expected result because the calculated MC(Q, R)
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value is the maximum cycle cost possible, whereas
the simulated MC(Q, R) value is based on the
simulated cycles. Similar observations can be noted
when dSPF and PEðSPFeqnÞ are compared in Figure
5. Finally, it can be noticed from Figure 4 that
PFsim and PEðPFsimÞ differ only by several points
(0, 3, and 1 point(s) in Figure 4(a–c), respect-
ively). These points within PFsim that are not in

PEðPFsimÞ are Pareto dominated by small margins.
Similarly, it can be noticed from Figure 5 that
SPFeqn and PEðPFeqnÞ differ only by several points
(3, 4, and 0 point(s) in Figure 5(a–c), respect-
ively). Again, these points are Pareto dominated
by small margins. These observations further sug-
gest that the methods proposed approximate the
Pareto front similarly when they are executed with

Figure 4. Illustration of Algorithm 1 with calculated EC(Q, R) and MC(Q, R) values.

Figure 5. Illustration of Algorithm 1 with simulated EC(Q, R) and MC(Q, R) values.

Figure 6. Illustrations of bPF over varying p and CV values.
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calculated or simulated EC(Q, R) and MC(Q,
R) values.

Increasing /1,/2,w1, and w2 will result in a bet-
ter approximation. In Figure 6, Algorithm 1 is exe-
cuted with /1 ¼ /2 ¼ 100 and w1 ¼ w2 ¼ 100 using
calculated EC(Q, R) and MC(Q, R) values. Figure
6(a–c) demonstrates cPF for increasing p values for a
problem instance such that D is distributed accord-
ing to symmetric, right-skewed, and left-skewed tri-
angular distributions, respectively. Similarly, Figure
6(d–f) demonstrates cPF for increasing CV values for
a problem instance such that D is distributed
according to symmetric, right-skewed, and left-
skewed triangular distributions, respectively. It can
be noticed that cPF tends to move up-right direction
as p or CV increases, which is expected (but not
guaranteed) based on the numerical results dis-
cussed in Section 4. Specifically, as p or CV
increases, the left extreme of cPF (i.e., the point cor-
responding to ðQC,RCÞ) is guaranteed to move right
but not up and the right extreme of cPF (i.e., the
point corresponding to ðQM ,RMÞ) is guaranteed to
move up but not right. We finally note that, even
though it is not very apparent in Figure 6 due to
the number of Pareto efficient solutions, cPF s have
the piecewise structure similar to those in Figures 4
and 5.

6. Conclusions

Considering that demand uncertainty can pose
short-term financial risks due to recurring inventory
related costs at the operational level, this study ana-
lyzes approaches to minimize such risks by mini-
mizing the maximum cycle cost possible in a
continuous review inventory control system, i.e., a
(Q, R) model. After formulating the maximum cycle
cost possible, two approaches to account for max-
imum cycle cost minimization are proposed. The
first approach, a relatively moderate approach, sug-
gests adjusting the re-order point R while keeping
the order quantity Q fixed at a specific value, such
as the order quantity minimizing the long-term
expected costs. The second approach focuses on
designing a (Q, R) policy that directly minimizes the
maximum cycle cost possible. We characterize the
optimum policy parameters under each approach. A
set of numerical analyses suggests that, especially in
settings with high shortage penalty and/or low lead
time demand variation, using the first approach to
account for cycle costs can be a viable practical
strategy. This is because it might help reduce the
maximum cycle cost significantly while increasing
the long-term expected cost by a relatively small
amount. Another set of numerical analyses suggests
that, considering maximum cycle costs during the

process of learning the lead time demand distribu-
tion might be preferred. This is because doing so
can help reduce the long-term expected cost in add-
ition to reducing the maximum cycle cost. Our
numerical results further indicate that long-term
expected cost minimization and short-term max-
imum cycle cost minimization can be conflicting
objectives. Therefore, we presented a bi-objective
(Q, R) model with these two objectives. A method
to approximate the set of Pareto efficient solutions
is discussed and the bi-objective model and the
approximation method are demonstrated with sev-
eral examples.

We made several assumptions in this study. First,
it is assumed that the lead time is fixed. We note
that, in the case of lead time uncertainty, our analyt-
ical results will still hold because they are based on
the definition of the bounds on the demand during
lead time (i.e., d‘ and du). Therefore, considering
that the lead time uncertainty is translated to the
lead time demand uncertainty and d‘ and du can be
defined accordingly, our analytical results will not
change. In addition, we did not enforce safety stock
to be non-negative, i.e., it is assumed that R � d‘
rather than R � l: We note that Theorem 3.2, and
thereby Theorem 3.4, can be easily modified for
R � l: One further remark is that the results of
Sections 2 and 3 will hold true if the retailer is pre-
sented with quantity discounts as long as the total
procurement cost in a cycle increases with the order
quantity. That is, if the procurement cost in a
replenishment cycle is CðQÞ ¼ cðQÞQ, where c(Q) is
a discount schedule, and C(Q) is increasing with Q
(which is practically true as a retailer would not be
paying less by buying more even if the unit pur-
chase cost decreases with the order quantity), it can
be easily discussed that the definitions of RmðQÞ and
ðQM,RMÞ remain the same. However, it should be
noted that the aforementioned changes in the model
might change the insights generated in Section 4.

On the other hand, changing several settings
might require modifications. For instance, one of
the critical assumptions is that the penalty cost is
defined per unit short. Alternatively, in other prac-
tical settings, penalty cost can be defined per unit
short per unit time, similar to inventory holding
cost. In such a case, some of the results presented in
Sections 2 and 3 hold; nevertheless, definitions of
several functions, specific R values used in the anal-
yses, and different cases investigated will need to be
modified. The online supplement (Section M) pro-
vides a sketch for the proofs of these results when
the penalty cost is defined per unit short per unit
time. Furthermore, the discussions pertaining to the
numerical analyses might change. Another practical
setting would be the case of lost sales and/or partial
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backordering for the shortages (see, e.g., Achary &
Geetha, 2001; Braglia et al., 2018, 2019; Chu, 1999;
Moon & Gallego, 1994; Olsson, 2014; Uthayakumar
& Parvathi, 2009). When a mixture of lost sales and
backorders is allowed, our results will change. We
also note that detailed simulation approaches can be
developed for analysing such settings and other pos-
sible extensions (see, e.g., Braglia et al., 2019; Chiu,
1995; Nahmias, 1981; Nahmias & Wang, 1979;
Olsson, 2014). We believe that the results presented
in this study can help with such as well as other
future research problems noted below.

The contribution of this study is in developing
methodologies to incorporate maximum cycle cost
in designing a (Q, R) policy. Several future research
directions are as follows. We considered continuous
review inventory system, one possible research ques-
tion is to investigate cycle costs in periodic review
inventory systems. Another potential and practical
setting that can be explored is multi-item and/or
multi-source inventory systems with shared resour-
ces. In such settings, analysing the interactions
among multiple items and/or multiple sources and
their contributions to the cycle costs can provide
practical insights for a retailer. Also, as noted above,
(Q, R) models extended to other practical settings
can be studied with cycle cost considerations.
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