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Abstract A discontinuous media can be described by fractal dimensions. Fractal objects
has special geometric properties, which are discrete and discontinuous structure. A fractal-
time diffusion equation is a model for subdiffusive. In this work, we have generalized the
Hamiltonian and Lagrangian dynamics on fractal using the fractional local derivative, so
one can use as a new mathematical model for the motion in the fractal media. More, Poisson
bracket on fractal subset of real line is suggested.

Keywords Fractal calculus · Lagrangian mechanics · Hamiltonian mechanics · Poisson
bracket · Variational calculus

1 Introduction

It is well known that strange objects such as the Weierstrass continuous function, the van
Koch curve, the Sierpin̂ski gasket, coastlines, topographical surfaces, turbulence in fluid,
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etc. are called fractals [1, 2]. Initial motivation for analysis on fractals came from physicists
working in disordered media. The heat and wave transfer in polymers, fractured and porous
rocks and amorphous semiconductors can be modeled using fractals random walk on them
see [3, 4]. Therefore, mathematicians is developing the analysis on fractals. For instance,
probabilistic approach method namely they considered a sequence of random walks on frac-
tals by taking a certain scaling factor, those random walks converge to diffusion on them.
In the second approach, (analytic approach) instead of the sequence of random walks, a se-
quence of discrete Laplacians on a sequence of fractals. Here under the proper scaling these
discrete Laplacians is converge to Laplacians on fractals. Also, using the measure-theoretical
method and fractional calculous people has generalized a calculus on fractal since the or-
dinary calculus can’t apply to them [1–34]. Riemann method for constructing a calculus
has own place which has algorithmic method [34]. Local fractional derivative has suggested
and applied in the science and engineering problems [10–14]. Recently, using Fα-calculus
random walk on a fractal structure has studied. There are several researcher that they have
studied anomalous diffusion but in most of these approaches simplest form central limit the-
orem is violated [15]. In this paper we have used Fα-calculus to generalized Lagrangian and
Hamiltonian mechanics on fractal subset real line. So one can model the motion on fractal
medium.

The organization of the paper is as follows:
We begin in Sect. 2 by reviewing the Fα-calculus. In Sect. 3 we introduced the La-

grangian and Hamiltonian mechanics on fractal subset of real line. Section 5 is dedicated to
our conclusions.

2 Summery of Fractional Fα-Calculus

We begin by reviewing the Fα-calculus as follows [34].

2.1 The Mass Function and the Integral Staircase

Definition 1 F be a subset of real line (�). Let F be in the most cases a fractal. The flag
function for a set F is denoted by θ(F, I ) and define as [34].

θ(F, I ) =
{

1 if F ∩ I �= ∅
0 otherwise

(1)

where I = [a, b] is a interval in �.

Definition 2 For a set F and a subdivision P[a,b], a < b

σα[F, I ] =
n∑

i=1

(xi − xi−1)
α

Γ (α + 1)
θ
(
F, [xi−1, xi]

)
(2)

where a < b and 0 < α ≤ 1.

Definition 3 Given δ > 0 and a ≤ b the coarse-grained mass γ α
δ (F, a, b) of F ∩ [a, b] is

given by

γ α
δ (F, a, b) = inf

P[a,b]:|P |≤δ
σ α[F, I ] (3)
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where |P | = max1≤i≤n(xi − xi−1). Taking infimum over all subdivisions P of [a, b] satisfy-
ing |P | ≤ δ.

Definition 4 The mass function γ α(F,a, b) is given by [34]

γ α(F,a, b) = lim
δ→0

γ α
δ (F, a, b) (4)

Definition 5 Let a0 be an arbitrary but fixed real number. The integral staircase function
Sα

F (x) of order α for a set F is given by [34]

Sα
F (x) =

{
γ α(F,a0, x) if x ≥ a0

−γ α(F,a0, x) otherwise
(5)

Definition 6 We say that a point x is a point of change of a function f if f is not constant
over any open interval (a, d) containing x. The set of all points of change of f is called the
set of change of f and is denoted by S chf [34].

Definition 7 The γ -dimension of F ∩ [a, b] denoted by dimγ (F ∩ [a, b]) is

dimγ

(
F ∩ [a, b]) = inf

{
α : γ α(F,a, b) = 0

}
= sup

{
α : γ α(F,a, b) = ∞}

(6)

Definition 8 Let F ⊂ R be such that Sα
F (x) is finite for all x ∈ R for α = dimγ F . Then the

S ch(Sα
F ) is said to be α-perfect (closed and every point of S ch(Sα

F ) is its limit point).

2.2 F -Limit and F -Continuity

Definition 9 Let F ⊂ R, f : R → R and x ∈ F . A number l is said to be the limit of f

through the points of F or simply F -limit of f as y → x if given any ε > 0 there exists
δ > 0 such that [34]

y ∈ F and |y − x| < δ ⇒ ∣∣f (y) − l
∣∣ < ε (7)

If such a number exists then it is denoted by

l = F − lim
y→x

f (y) (8)

Definition 10 A function f : R ⇒ R is said to be F -continues at x ∈ F if

f (x) = F − lim
y→x

f (x) (9)

2.3 Fα-Integration

Definition 11 Let f be bounded function on F and I be a closed interval [34]. Then

M[f,F, I ] =
{

supx∈F∩I f (x) if F ∩ I �= 0
0 otherwise

(10)
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and similarly

m[f,F, I ] =
{

infx∈F∩I f (x) if F ∩ I �= 0
0 otherwise

(11)

Definition 12 Let Sα
F (x) be finite for x ∈ [a, b]. Let P be a subdivision of [a, b] with points

x0, . . . , xn The upper Fα-sum and the lower Fα-sum for function f over the subdivision P

are given respectively by [34]

Uα[f,F,P ] =
n∑

i=1

M
[
f,F, [xi, xi−1]

](
Sα

F (xi, xi−1)
)

(12)

and

Lα[f,F,P ] =
n∑

i=1

m
[
f,F, [xi, xi−1]

](
Sα

F (xi, xi−1)
)

(13)

Definition 13 If f be a bounded function on F . we say that f is Fα-integrable on [a, b] if
[34]

∫ b

a

f (x)dα
F x = sup

P[a,b]
Lα[f,F,P ] =

∫ b

a

f (x)dα
F x = inf

P[a,b]
Lα[f,F,P ] (14)

In that case the Fα-integral of f on [a, b] denoted by
∫ b

a
f (x)dα

F x is given by the common
value [34].

Properties (See [34])

∫ b

a

f (x)dα
F x =

∫ c

a

f (x)dα
F x +

∫ b

c

f (x)dα
F x (15)

∫ b

a

λf (x)dα
F x = λ

∫ b

a

f (x)dα
F x where λ is constant. (16)

∫ b

a

(
f (x) + g(x)

)
dα

F x =
∫ b

a

f (x)dα
F x +

∫ b

a

g(x)dα
F x (17)

∫ b

a

f (x) dα
F x ≥

∫ b

a

g(x)dα
F x if f (x) ≥ g(x) (18)

∫ a

b

f (x) dα
F x = −

∫ b

a

g(x) dα
F x if f (x) ≥ g(x) (19)

2.4 F α-Differentiation

Definition 14 If F is an α-perfect set then the Fα-derivative of f at x is [34]

Dα
F f (x) =

{
F - limy→x

f (y)−f (x)

Sα
F

(y)−Sα
F

(x)
if x ∈ F

0 otherwise
(20)

if the limit exists.
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Properties

Dα
F λf (x) = λDα

F f (x)

Dα
F

(
f (x) + g(x)

) = Dα
F f (x) + Dα

F g(x)

Dα
F c = 0 if c is constant.

Dα
F

(
u(x)v(x)

) = (
Dα

F u(x)
)
v(x) + u(x)

(
Dα

F v(x)
)

2.5 Fundamental Theorem of Fα-Calculus

Theorem 1 Let F ⊂ R be an α-perfect set. If f is bounded on F is an F -continuous func-
tion on F ∩ [a, b] and [34]

g(x) =
∫ x

a

f (y)dα
F y (21)

for all x ∈ [a, b] then

Dα
F g(x) = f (x)χF (x) (22)

Theorem 2 Let f : R → R be a continuous Fα-differentiable function such that Sch(f ) is
contained in an α-perfect set F and h : R → R be F -continuous such that

Dα
F f (x) = h(x)χF (x) (23)

then

∫ x

a

h(x)dα
F x = f (b) − f (a) (24)

Theorem 3 Let the functions u : R → R v : R → R be such that

1. u(x) is continuous on [a, b] and Sch(u) ⊂ F

2. Dα
F u(x) exists and is F -continuous on [a, b]

3. v(x) is F -continuous on [a, b] [34].

Then

∫ b

a

u(x)v(x)dα
F x =

[
u(x)

∫ x

a

v
(
x ′)dα

F x ′
]b

a

−
∫ b

a

Dα
F u(x)

∫ x

a

v
(
x ′)dα

F x ′dα
F x. (25)

Remark (See [34])

∫ y

0

(
Sα

F (x)
)n

dα
F x = 1

n + 1

(
Sα

F (y)
)n+1

Dα
F

(
Sα

F (x)
)n = n

(
Sα

F (x)
)n−1

χF (x)
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3 Lagrangian and Hamiltonian Mechanics on Fractals

Our goal in this section is to derive the equations of motion for a particle the position is
x(t) : F → R that varies on fractal subset of real F . We aim to find a function Lα

F such that
the paths of the particles between times t1 ∈ F and t2 ∈ F extremize the integral

Aα
F =

∫ t2

t1

Lα
F

(
t, x(t), tDα

F x(t)
)
dα

F t Lα
F : F × R × R → R,

where integral Aα
F is the action of the particle and the function Lα

F its Lagrangian. So we
have

δAα
F =

∫ t2

t1

[
xDα

F Lα
F δx + t Dα

F
xDα

F Lα
F δ

(
tDα

F x(t)
)]

dα
F t = 0

=
∫ t2

t1

[
xDα

F Lα
F δx + t Dα

F
xDα

F Lα
F

tDα
F δ

(
x(t)

)]
dα

F t = 0. (26)

Using Eq. (25) and δ(x(t2)) = δ(x(t1)) = 0 and let tDα
F x = � we have

=
∫ t2

t1

[
xDα

F Lα
F − tDα

F

(�
Dα

F Lα
F

)]
δ(x)dα

F t = 0. (27)

We arrive at Euler-Lagrange equation on fractal time set as

xDα
F Lα

F − tDα
F

(�
Dα

F Lα
F

) = 0. (28)

Now if we define the generalized momentum pα
F = �Dα

F Lα
F so then we have Hamiltonian

as

Hα
F = tDα

F x pα
F − Lα

F . (29)

Applying dα
F to both side of Eq. (29) we obtain

dα
F Hα

F = tDα
F x dα

F pα
F − tDα

F Lα
F dα

F t − xDα
F Lα

F dα
F x, (30)

Eq. (30) shows that Hα
F is function of t, pα

F , x so we have Hamilton equation on fractal
subset of real line F as follows:

tDα
F x = ζ Dα

F Hα
F ζ = pα

F
tDα

F Lα
F = tDα

F Hα
F

tDα
F pα

F = −xDα
F Hα

F . (31)

Example 1 Suppose the Lagrangian of a particle is

Lα
F

(
t, x(t), tDα

F x
) = a

(t
Dα

F x
)2 − b

(
x(t)

)2
, c, e are constant. (32)

Therefore, using Eq. (28) the Lagrange equation will be as following

−2b
(
x(t)

) = 2a
(
tDα

F

)2
x(t) (33)

Example 2 Let the Hamiltonian of particle is

Hα
F = c

(
pα

F

)2 + e
(
x(t)

)2
, c, e are constant.
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So the Hamilton’s equation is

tDα
F pα

F = −2ex(t) tDα
F x = 2cpα

F . (34)

4 Poisson Bracket on Fractals

If F(t, x(t),pα
F ) and G(t, x(t),pα

F ) be any two function of dynamical variables the gener-
alized Poisson bracket is define

[F,G]αF = xDα
F F pα

F Dα
F G − pα

F Dα
F F xDα

F G. (35)

Therefore the Hamiltonian equation using Poisson brackets will be

[
pα

F ,Hα
F

]α

F
= tDα

F pα
F

[
x,Hα

F

]α

F
= tDα

F x. (36)

Poisson brackets are invariant under canonical transformation.

5 Conclusion

In this work Fα-action functional on the Sobolev Space is introduced. Then, we use least
action to get the Hamiltonian and Lagrangian mechanics on fractal subset of real line. Fα-
calculus is involving local and fractional derivative so that it’s properties is similar to the
ordinary calculus. Therefor, the time evolution of dynamical system has group properties
unlike fractional nonlocal derivative that has semigroup property. Using this property we
define generalized Poisson Bracket.
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