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Abstract 

This chapter presents hierarchical variability as an important development notion especially when considered 

together with a systems specification through decomposition. A matured domain-specific environment is the 

precondition for variability-centric engineering for compositional approaches as targeted in this study: Most of 

the requirements have been already modeled, and most of the problem domain elements have corresponding 

reusable solutions. Also, a mature domain enjoys a wide community of developers who are familiar with those 

problems and solution-space elements and an effective set of specific tools. Decomposition is a fundamental 

mechanism in many approaches for the specification of various dimensions of modeling. Decomposition of 

especially structure modeling for software is not new. Here, variability guidance is incorporated into both 

structure and process decomposition. This chapter combines such notions in the demonstration of variability-

centric development suggesting a structural and procedural decomposition of the system. The predecessors, 

component-oriented approaches rely on the structural decomposition whereas service-oriented development is 

being supported by process decomposition. A vending machine case study is presented in this chapter for 

demonstrating the propagation of variability specification along with the enhancements of the component-

oriented model and the process model. 



4.1. Introduction 

Our era is witnessing advances software engineering toward compositional approaches, while these approaches 

continue to inspire each other. However, none of them enjoy complete and widely-accepted methodologies. 

Observed from such a perspective, this work can be classified as a component-oriented approach, significantly 

influenced by Software Product Lines (SPL) and Service-Oriented Architecture (SOA) approaches. Actually, it 

is not only the compositional avenue but also generation based techniques are effective in modern software 

development environments. Transformational methods have also been considered in the more generalized 

studies related to this research, belonging to the latter group. 

Component orientation was defined in (Dogru and Tanik, 2003) as a process targeting composition of software 

units. Actually, the decomposition view in software architecture was being addressed in those same days while 

the related software architecture notions were developing in parallel. Association among the terminology 

becomes more inclusive observing the strong connection between the software architecture and the 

compositional concepts. It is worth mentioning here that most of the approaches have been introduced with their 

“architecture” views preceding their “engineering” or “development” support. SPL Architecture (SPLA), for 

example, enables SPL Engineering (SPLE) just like Model-Driven Architecture (MDA) supports Model-Driven 

Development (MDD) or Model-Driven Engineering (MDE). 

Studies addressing software architecture in a limited fashion are mostly concentrated on the “structure” 

dimension of software-intensive systems, the Component-Oriented Software Engineering (COSE) therefore can 

be viewed as one of the earlier approaches defining this new trend. This work contributes to COSE in the form 

of addressing the other views of software architecture. This also coincides with addressing the data, function, 

and control dimensions besides the existing structure dimension despite the fact that such addressing is done in 

an implicit manner. 

For summarizing the effects of SPLA and SOA to this work, feature modeling and especially variability 

management as a related activity have been utilized as fundamental constituents in the modeling and the 

development of systems. This perspective brings important consequences to the methodology for development. 

Also, process modeling has been imported from SOA, with its suggested role as the overall control model for 

the flow of executions. The commitment of web services to the tasks in a process model, constituting the next 

most important global contribution of SOA is not a very new idea for COSE, where packages were dispatched to 

components for the similar purpose. 



It is worth mentioning the input from object orientation mostly through its modeling media–the Unified 

Modeling Language (UML). For development with UML, the goal is to “write” code after defining various 

cross sections of a software system through a set of graphical models. That is categorically different from the 

compositional approaches where locating and integration of “already written” code is desired. Nevertheless, 

UML has offered the component diagram, and even offers the usage of its diagrams for modeling the 

“architectural views.” This is taken by the industry seriously and some tools do not even allow starting a UML 

diagram unless the architectural view is first determined. Similarly, some UML tools identify themselves as 

component-based as much as object-oriented. Of course, notions develop along with a chronology of 

influences. A fundamental concept in components and further, in the mentioned approaches is the “interface.” 

Objects, after all, are supporting an explicit interface notion in the form of the public sub-sets of their class 

definitions. 

Mentioning of UML brings an important issue when the bulk of the current development practices are 

considered. UML-based activities usually start with the use case model. That is where a set of process 

representing units are declared. These units are referred to as use cases. This is a logical model for the 

processes, without an expectation to be associated with solution units (structure). However, such a central 

model for UML is left alone without a methodical support for how to determine a good set of use cases–that is 

process decomposition. Of course, process decomposition has not been the goal of the use-case diagrams, hence 

they omit the flow specifications among the use cases: what is the order of their activations is not addressed, 

and intentionally left out. This model is not desired to include the control dimension. Documentation of use-

case model descriptions is used to bridge the use-case specifications and control dimension. However, the 

documentation is not explicitly expressed and associated with related use cases in a defined manner in UML-

based tools. Such association with the control dimension through documentation is left to analysts and 

developers.   

Nevertheless, even the most prominent code development targeting tool—UML—addresses some limited form 

of process decomposition as the first step in modeling. Despite its intention to remain logical and to correspond 

to only requirements, a use-case model is used as a map for the rest of the development: Each use case is taken 

at a time, and its internals are defined using other UML diagrams. Such specification activity propagates to the 

solution space preserving the same guidance map. The developers are quite conscious of which use case they 

are currently implementing. Also, use case directed testing methods are quite common. Actually, the current 



trend has not been very far from the presented approach in this chapter except for some notions being addressed 

less and not utilizing the compositional power offered by the advancement of the development capabilities.  

4.1.1 Variability in the Center of Development Activity 

Most of the assumptions in optimizing the presented development approach are based on the existence of a 

mature domain (Togay et al., 2008). This is the hidden assumption behind any modern approach anyway. A 

mature domain can be characterized by the following properties: 

1. Most of the domain requirements and reusable solutions have been developed, 

2. A large community of developers are familiar with those domain repositories, and  

3. Specific and effective tools are available. 

SPLA, for example, is a domain-oriented technology. Also, the MDD would not be practically possible without 

a scoped domain. It is known that the success of automatic-code generation depends on the width of the 

boundary of its intended domain. Once the domain is known, the bulk of the necessary actions for the 

development of the “next product” is also known. This knowledge can be arranged in the form of the common 

features in any product and the variable ones that discriminate one product from another—all in the same 

domain. Modeling of the commonalities and the variabilities is the foundation of SPLE. 

A mature domain suggests the existence of a critical mass of engineers who are well knowledgeable about the 

available assets for developing software in this specific domain. Components, for example, can be known by 

their names and functional and non-functional properties. This also implies that possible sub-problem 

definitions are known. The task of the developers now is to map the requirements to existing components and 

configure the components and their interconnection as guided by variability management. Actually, we are 

suggesting one additional layer between the requirements or selected features and the components: that is a 

process model. The top-level variability is first mapped to the process model, hence instantiating it for the 

required flow control of the system under development. Then the variability resolution ripples down the 

hierarchy, to the components level. Assuming the requirement that the domain model is sufficiently mature, the 

most important development effort will be consumed for the variability management. 

The presented approach in this chapter corresponds to both “domain engineering” and “application engineering” 

tasks of the SPLE. There are few options for variability modeling for the domain. The developers make their 

choices starting with the highest-level, mostly by selecting variants for variation points. To enable the 



configuration of the final system, following these choices, a hierarchical variability representation is required. 

Also, constraints should propagate in general, from higher-level variability specifications to the lower-level 

ones. Such specifications should be enabled to set-up the configuration interfaces of components for example, 

for automated development. This research is supporting such mechanisms that are expected to leverage 

variability-centric development probably as a new paradigm for development methodologies. 

4.1.2 Chapter Objectives 

There are significant messages this chapter intends to convey to the reader.  The presented approach supports the 

development of complex software intensive systems.  Notions for efficiency are being utilized in modern 

environments such as reuse being systematized by SPL.  Here, a further automation is suggested by exploiting 

some other notions that are explained below, while listing the targeted areas as the objectives to convey to the 

reader: 

1. Variability can be the most important input for development, for the environments (such as for SPL) 

where certain capabilities have been established, 

2. Hierarchical decomposition is an important notion in developing models and systems, 

3. A system requires more than one model during development – their simultaneous development 

(especially through hierarchical decomposition) is very important for the efficiency of the process. 

A combination of these principles establishes an efficient development paradigm. 

4.2. Background 

This section includes an introduction about the basic concepts that form the foundation for this chapter.  The 

decomposition techniques for the structural and the procedural dimensions of software systems are discussed. 

However, those decompositions can be guided by variability. Also, hierarchical modeling of variability is crucial 

as it guides such decompositions.  Hence, the hierarchical variability topic is introduced first. 

4.2.1 Hierarchical Variability Specification 

Variability modeling has been the target of many investigations since the usage of feature models (Kang et al., 

1990). Soon after, explicit variability modeling alternatives were developed as more preferred alternatives that 

also suggested their association with hierarchy and constraints. Orthogonal Variability Model (OVM) (Pohl et 

al., 2005), Covamof (Sinnema et al., 2004), and CVL-Common Variability Language (Haugen et al., 2012) can 



be listed as the prominent and earlier work in this direction. The two important notions here that are hierarchy 

and constraints, need to be considered simultaneously. Hierarchy allows the automated configuration of lower-

level variability specifications and eventually the software components because of the desire to support top-

down development strategy. Constraints, on the other hand, assume the enabling of specific associations among 

the variabilities at different levels of the hierarchy.  

Explicit variability modeling can be incorporated within the suggested approach in this chapter. It is considered 

as future work. However, the main view here is enabling variability, wherever it originates towards more 

automation for software development. That is why a mature domain is required and development is mostly 

through configuration. Variability should guide configuration. 

Our previous work about propagating variability specifications (Suloglu, 2013) in that manner involved variant-

to-variant associations from higher- to lower-level constituents (variation point regions in the models or 

configuration interfaces in the software components). Development experimentation conducted during the early 

work resulted in the suggestion to implement the variants as alternative flow paths in process models. At the 

component level, variability is generally resolved through component replacement or component configuration. 

Compliant components are expected to publish configuration interfaces that actually execute the external-to-

internal variation propagation. This latter option was possible within the mentioned early work. 

Propagation of variability resolution in a set of hierarchically represented variation points has been 

demonstrated in some examples that utilize COSE Modeling Language (COSEML)- and Business Process 

Model and Notation (BPMN)-based representations for software components and process models, respectively. 

The component-related representations are introduced in the following section, where variability specifications 

and their propagation are also presented in examples. 

The goal can be summarized as developing complex systems, mostly managing variability: Since commonality 

is more defined, to specify a new product it is mostly the variability that should be addressed. For complex 

systems, hierarchical modeling has been proposed earlier (Simon, 1996), complementing our variability 

emphasis for our goal. 

4.2.2 COSEML/XCOSEML for Structural Decomposition 

COSEML emerged as a graphical modeling language for component-oriented development. It can represent 

logical entities such as packages and their physical implementations such as components. Its aim is to meet the 



graphical representation of the structural decomposition approach of COSE. Dynamic constructs to represent 

procedural view are absent in this language. XCOSEML (Kaya et al., 2014) is an extended version of COSEML 

equipped with variability and dynamic constructs. Unlike its predecessor COSEML, it is a text-based language. 

In XCOSEML, language constructs and variability constructs are handled differently for easy management of 

models conforming to “separation of concerns.” A graphical version of XCOSEML is under construction to ease 

especially the process modeling (Cetinkaya, 2017). 

COSEML aims to develop systems by composing pre-built software components in a mature domain. Therefore, 

it did not use other concepts aside from components: such as objects, that are frequently used by the approaches 

that aim code writing. Connectors were also considered as abstract entities that define connections between two 

components. However, in (Cetinkaya et al., 2016), connectors became first-class entities like components by 

handling communication concerns in them and including some extra capabilities, such as data conversion.  

Dynamic view is first defined by XCOSEML for component orientation. Initially, in the process model of the 

language (composition specification), plain messaging is shown explicitly. With the development of connectors, 

the messaging among components is allocated in the connectors, and connectors assume a bigger role in the 

development.  

4.2.3 Process Decomposition for Software Composition 

Usually, new processes leave the engineers with their creativity alone in creating new models. Earlier 

methodologies were more detailed in providing step-by-step instructions based on text-based user requirements. 

A considerable amount of detail is provided in the book of Pressman and Maxim (2015) for the hierarchical 

definition of structure models based on existing data-flow models. Data-flow models in return were also 

supported by methodological descriptions. 

Most of our models should be organized in hierarchies that are naturally defined as a result of decomposition 

activities. That is a requirement for reducing the complexity: according to Miller (1956) due to cognitive 

limitations it is hard for our brains to concentrate on more than 7± 2 items at a time, especially if those items are 

interrelated. Those items can be lines of code or other constituents of software definition models. Grouping 

about seven items and encapsulating them under a new identifier reduces the total items significantly. However, 

this technique alone usually is not enough. A program of 700 lines, for example, can be reduced to 100 functions 

only for decomposition sake: every 7 lines can be organized as a function. However, the resulting 100 functions 



are still considerably above our 7± 2 limit, let alone the ignored cohesion principle in determination of the 

function boundaries. 

So far, in the given example encapsulation reduced the cognition problem but not solved it completely. If those 

modules are also sorted in a hierarchy, almost like a tree diagram, we have far better chances to understand the 

model. As a result, looking at any locality in such a tree-based model, we can understand the whole by 

understanding its parts. In such a model, parts are positioned in a way that represents the relation of a module 

within the whole. Starting with the top module, we have better chances to keep the holistic view and orient 

ourselves in any navigation across the model. As a summary, complex models should be arranged by 

decomposition that corresponds to a hierarchy when conducted in a top-down manner. 

One rare approach that suggests the hierarchy, hence the decomposition activity is the Axiomatic Design Theory 

(ADT) (Suh, 1998). Equipped with various techniques to support modularity, this approach offers tools for 

evaluating the coupling property of a given design. Although developed initially for mechanical engineering, the 

approach was quickly adapted to software development. Its methodological dimension offers simultaneous 

decomposition techniques for various development models. After the adaptation by the software industry, it was 

applied to component orientation (Togay et al., 2008). Finally, ADT was used for process decomposition, 

leveraging on its capability to decompose various models simultaneously (Togay et al., 2017). This is a 

methodology imported in this research for guiding the decomposition due to its compatibility with the process 

model and component model for simultaneous decomposition. However, a required condition is the persuasion 

for the use of decomposition in the definition of a model. Following the concerns about preserving the holistic 

view, this option is suitable. Also, ADT promotes this kind of orientation. As a summary, developing a model 

mainly based on decomposition is supported by this research. 

In relevant literature, it is widely acknowledged that large (Mendling at al., 2007) and complex (Mendling et al., 

2008) process models decrease the level of comprehension. They also create a setting which is unfavorable 

though further error generation in these models. To overcome this undesired result, decomposition is proposed 

as a supportive method. 

Decomposition includes gradual dismantling of a system into smaller sub-systems (Dietz, 2006). It is argued 

that decomposing process models into sub-models will provide a solution for complexity (Dumas et al., 2013). 

This will also reverse the case of low understandability (Mendling et al., 2007). It is emphasized that 

decomposition will result in easier communication and improved maintainability of process models (Milani et 



al., 2016). It is also suggested that decomposition will promote reusability of the sub-models (Bass et al., 1998): 

decomposed systems will have less coupling and more cohesion as a consequence. 

In the literature, various concepts have been utilized interchangeably in relation to the process of decomposition. 

Some of which are modularization, aggregation, generalization, and abstraction. Similarly, several approaches 

have been proposed for decomposition of process models including rules and criteria.  

Dijkman et al. (2016) provide a detailed review on the comprehensive concept of decomposition. They explore 

studies on business process design approaches and furthermore classify studies based on how the processes and 

their relationships are defined. They group related approaches accordingly. These groups are namely goal-based, 

action-based, object-based and function-based approaches. The goal-based approaches (Anton et al., 1994) use 

structured goal definition which is used to derive the process architecture. Sub-goals can be defined at the lower 

levels which may be associated with sub-processes. Similarly, business actions/sub-actions and their relations 

can be designed and then mapped to processes/sub-processes in action based approaches (Dietz, 2006). On the 

other hand, object based approaches represent objects and their relations. The decomposition of objects can be 

associated with process decomposition. In function based approaches, a hierarchical relation between business 

functions is represented by a process/sub-process decomposition architecture.  

Another recent review by (Milani et al, 2016) elaborates on methods of process model decomposition and 

classifies them based on heuristics that utilize breakpoints, data objects, roles, shared processes, repetition, and 

structuredness. Approaches that consider breakpoints are mainly grounded on the view that a process can be 

broken down into sub-processes based on specific interest points called breakpoints or milestones during the 

process lifespan which can be points where process properties are measurable (Milani et al., 2013). It is also 

suggested that decomposition can be performed based on how data objects are shared between the activities, 

hence yielding the activities using same objects placed in the same sub-process. Processes can be detached by 

means of the stakeholder views (Turetken and Demirors, 2011) where stakeholders model and improve their 

own processes individually which are then integrated to form the top level processes.  

Another approach considered for decomposition is shared processes which combine process parts that are used 

in different parts of the process. Within this perspective, alternative approaches might be also suggested where 

behavioral aspects of process parts like sequential, parallel, or cyclical can be examined and the ones with 

similar behavior are combined. Similarly, in the block-structuring approach, ‘‘single entry single exit’’ blocks 

can be identified as process parts and through graph clustering related nodes can be combined as a sub-process 



(Reijers et al., 2011). This will also result in enriched understanding and improved nature of decomposition 

processes.  

Similar ideas and propositions exist on concepts like vertical, horizontal and orthogonal modularization, and 

composition and merging as stated in La Rosa et al. (2011). Also on aggregation which specifies a top-level 

object being composed of lower-level fragments or being generalized that is a high-level abstraction of the 

lower level variants (Muehlen et al., 2010). Similarly, as another concept, though providing an alternative view, 

model abstraction describes aggregated activities of a process model in a more abstract view (Smirnov et al., 

2011). Another approach uses separation of concerns that are involved in process activities by specifying roles 

played by activities for process decomposition (Caetano et al., 2010). 

Methods for “how-to-decompose” are definitely not limited to the ones mentioned above. Within the last 

decade, especially in recent years, alternatives were proposed and discussed both in academia and in practice. 

For example, another basis for decomposition is through merging algorithms based on the graphs like EPCs 

(Event-driven Process Chains) and BPMN (La Rosa et al., 2013). For example, Huang et al. (2018) apply a 

graph mining algorithm to find out frequent subgraphs under the same process topic for merging processes, 

which is needed to be checked for semantic correctness of the merged parts. 

Johannsen et al. (2014) apply decomposition conditions of Wand and Weber (1989)—minimality, determinism, 

losslessness, minimum coupling, and strong cohesion—to BPMN. They propose guidelines for a decomposition 

process and argue that these guidelines should be redefined for each modeling language.  

To summarize the overall picture regarding the domain of process decomposition, there has been progress in 

terms of providing valuable insights and arguments into the practice. However, there is still need for a 

generalized guideline for widely accepted criteria for consistent decomposition (Johannsen and Leist, 2012), 

independent of the modeling context. 

4.3.  Variability-guided Decomposition 

The advances in the compositional capabilities and the advantages of domain orientation can be leveraged in 

promoting variability management as the main development activity. The details of how variability models are 

developed is out of the scope of this work but can be found in several studies (Kang et al., 1990; Pohl, 2005; 

Sinnema et al., 2004).  



The goal is to treat variability as a guide during procedural and structural modeling where variability affects 

process model first and then the process model shed light to structural decomposition along with its own 

variability specification. All these activities focus on mostly “domain design” and “domain realization” part of 

the “domain engineering.” In a process-oriented decomposition, the flow of the activities leads the structural 

decomposition. The flow varies with respect to functionality and behavior also to cover the needs of different 

stakeholders. In this case, variability model is going to answer the questions:  

 Why: the reasons for the process model to fork by representing variations;  

 How: the way the flow forks and joins via pinpointing the variation points with respect to constraints; 

and  

 What: the capabilities of the process model through an ability to resolve variations to produce the final 

product.  

Therefore, corresponding variability model guides the process decomposition and establishes relations with 

hierarchical variability in structural decomposition. The modeling techniques and approaches employed in our 

approach are listed in Table 4.1. 

Table 4.1.  Modeling techniques and tools 

Modeling Type Model Tool Type Specific Tool 

Variability modeling Feature Model FeatureIDE (2018) 

Process decomposition 

Business Process Modeling 

Notation (BPMN) 

Signavio (2018) 

Structural decomposition 

Hierarchical Component 

Decomposition (XCOSEML 

HCD with its variability 

model—VM)  

XCOSEML tool 

 

Our approach is not limited to the models used for process decomposition and variability modeling. The 

modeling techniques and approaches are chosen for demonstration purposes as well as their popularity. 



Variability guided decomposition process is elaborated with a set of steps along with affected models in Table 

4.2. 

Concerning the “application engineering” part, mainly “application design and application realization,” the goal 

is to conduct a top-down variability resolution while process and structure decomposition will accompany this 

effort where necessary. Also, variability-resolution actions are expected to automate related decompositions. 

Figure 4.1 depicts the variability decisions affecting the associated models. 

Variability resolution first needs to consider the dependent variabilities at the feature level. If only feature 

models are used to represent variabilities, such consideration will be the observation of “include” and “exclude” 

constraints in the feature model. That way some further variability decisions will have to be made, preferably 

automatically. 

Next, ramifications of a resolution at the feature level should be considered. For example, selecting an optional 

feature as a variability-resolution action will require further selections in some variability points in the process 

model, or in the structure model, or in both. These kind of consequences may be automatically handled based on 

the maturity of the domain and completeness in the domain models. Such a propagation can be from the feature 

model to both the process model and the structure model, from the process model to the structure model, and 

also can be internal to any model. By the way, the structure model in this work implies the COSEML 

representation of the logical and component levels altogether.  

Propagation of variability decisions can be observed to be taking place inside any model, and from a higher-

level model to a lower-level one. The structure level is considered as the lowest-level model, being below the 

process model: It is only after determining the flow of the operations that the operation instances can be 

connected. 

A similar space of mutually-dependent models where the developers would be faced with the final status of all 

the models after one design decision was implied by Togay (2008). However, an explicit addressing of such 

methodological concerns was not incorporated. Also, variability was not employed. The interdependent actions 

in a set of models could be from any model constituent to any other, exploring the possibilities in a 

combinatorial complexity. Here, interventions are allowed only in the variant representations. This is both a 

limitation to the complexity and the elevation of variability notion to the position where it becomes the primary 

development action. 



Table 4.2. Variability-guided decomposition steps 

Step Affected Model 

1. Start with appending an activity to the process model. BPMN Model 

2. Analyze the feature model with respect to the recently added activity whether any 

of the features are related to it and make the activity’s behavior diverse. 

None 

3. If there will be more than one possible realization of the activity, then convert them 

to sub-processes to be decomposed further. 

BPMN Model 

4. Add a corresponding package to XCOSEML component decomposition model if 

there is no package that can be related to the activity/sub-process. Otherwise, use an 

existing package.  

XCOSEML HCD – 

Package Specification  

5. Define relevant components and their functions with respect to activity/sub-process 

if required.  

XCOSEML HCD  – 

Component Interface 

6. Specify variation point and related variants with constraints for the newly 

introduced package and its parent package if exists. Define variation mappings among 

newly defined variation points and variants. 

XCOSEML VM  – 

Configuration Interface, 

XCOSEML HCD  – 

Composition 

Specification 

7. Define a new function or use an existing one in the package composition for the 

parent package. Specify or change the flow of the function with corresponding 

variation points and variants through “variation specification attachments.” Append 

new function to parent package interface if added.  

XCOSEML VM – 

Configuration Interface, 

XCOSEML HCD  – 

Composition 

Specification 



8. Apply 7th step to the newly introduced package.  

 

 

XCOSEML VM  – 

Configuration Interface, 

XCOSEML HCD  – 

Composition 

Specification 

9. Start from the 1st step and loop until process model is completed.  

 

  

 

 

Figure 4.1Propagation of variability in the decomposition environment 

4.4.  A Case Study: Vending Machine 

The vending machine as a case study is chosen to demonstrate variability-guided process decomposition. The 

variability information from the variability model is mapped in the process model and XCOSEML model. 

Variability propagation is achieved through selections and the end product is specified.  



The vending machine is an automated machine invented in the late 1880s which provides a diverse set of items 

ranging from beverages, tickets, postcards, cigarettes, to hot pizzas. They accept payment by cash or, today, 

even by credit cards. The vending machine in our case study offers beverages, solid food, and soft drinks. 

Different items require different delivery processes for the vending machine. Solid food and soft drinks are 

placed in the dispenser directly. On the other hand, preparation of hot beverages such as tea or coffee includes a 

set of steps: placing cup and spoon, pouring tea or coffee, and adding sugar if requested. 

A feature model for the vending machine has been created as shown in Figure 4.2. The feature model is the 

source of variability information. This, in turn, configures the XCOSEML variability model, leads to variability 

resolution, and propagation of resolution from upper levels to lower levels, all the way to components. In this 

way, variability binding of the process model is completed towards the configuring of an application.  

 

 

Figure 4.2 Feature model of vending machine case study 

For the domain design and realization part, process decomposition for vending machine starts with the 

initialization of corresponding models as shown in Table 4.3. Improvements in each stage of the decomposition 

process are represented through a process model and an XCOSEML model conforming to the feature model.   

 

 

 

 



Table 4.3 First stage of decomposition 

Process Model  

 

XCOSEML Structural 

Model 

Package VendingMachine 

 

XCOSEML Variability 

Related Models 

None 

Then, as shown in Table 4.4, the addition of the activities to the process model starts: Vending machine waits for 

the payment at first. After analyzing the feature model, it is observed that the machine supports two different 

payments: via cash or credit card. The feature “Payment_type” and its child features “Coin” and “Credit_card” 

point out that payment process will be diversified. Therefore, a sub-process is added to the process model with 

the name “Get Payment” to be decomposed further. The relation between “Coin” and “Credit_card” features are 

“optional” as the vending machine can support either one or both of them. As no package exists that can be 

related to payment associated activities, a new package “Payment” is added to the root of the XCOSEML 

component decomposition. A variation point “PaymentType” and its variants “Coin” and “CreditCard” are 

created with the “optional” relation, which is directly related to the newly introduced features. As our 

decomposition is hierarchical, there should be a related variation point and variants defined for “Payment” 

package which are “Type,” “Coin,” and “CreditCard,” respectively. In order to represent and enable propagation 

from upper levels to lower levels of the hierarchy, variation mappings are defined. In this case, a one-to-one 

mapping is established in composition specification: the variant of “PaymentType” in vending machine package 

is mapped to “Coin,” that is the variant of “Type” in the payment package.  

 



Table 4.4 Second stage of decomposition 

Process Model 

 

XCOSEML Structural 

Model 

Package VendingMachine 

 Configuration VendingMachine_conf 

 includes Payment 

Package Payment 

 Configuration Payment_conf 

XCOSEML Variability 

Related Models 

Configuration VendingMachine_conf of Package 

VendingMachine 

 externalVP PaymentType 

  optional 

   variant Coin 

   variant CreditCard 

Configuration Payment_conf of Package Payment 

  externalVP Type 

   optional 

    variant Coin 

    variant CreditCard 

Composition VendingMachine_cmps 

 import configuration VendingMachine_conf 

 variability mapping 

  VP PaymentType maps package Payment VP Type 

   variant Coin maps variant Coin 

   variant CreditCard maps variant CreditCard 

To further decompose “Get Payment” sub-process shown in Table 4.5, a new process is created with the same 

name “Get Payment” and the flow of the activities are specified. In our case, for payment a coin can be 

deposited to the machine or a credit card can be used whose information is checked beforehand. There are two 

different paths for payment, so an XOR control item is placed after the “start,” and two paths are forked and 

joined with this XOR.  



 

There is no need to add a new package in XCOSEML structural decomposition as “Payment” is an appropriate 

package for payment-related activities. Therefore, “Payment_comp” is introduced with two functions: 

“GetCoin” and “ConnectBank.” There needs to be no change in the XCOSEML variation model. A function 

“Operate” is defined in the “VendingMachine” root package which calls “GetPayment” function from the 

“Payment” package. Therefore, a new function, “GetPayment” is specified in “Payment” composition 

specification with the corresponding variability attachments. “GetPayment” function includes coin-related 

activities (the “GetCoin” function) if only “Coin” is selected. This variability is represented by appending 

“#ifSelected(Coin)#” attachment at the beginning of the coin related activities (Payment_comp.GetCoin). The 

same holds for the “CreditCard” variation where the function call is surrounded with “#ifSelected(CreditCard)#” 

attachment. In this way, the activities will be added with respect to the selection of the variants, namely “Coin” 

and “CreditCard.”  

 



Table 4.5 Third stage of decomposition 

Process Model 

 
 

XCOSEML 

Structural 

Model 

Package VendingMachine 

 Configuration  

  VendingMachine_conf 

 includes Payment 

Composition VendingMachine_cmps 

 import configuration VendingMachine_conf 

 Variability mapping 

 VP PaymentType maps package Payment VP Type 

  variant Coin maps variant Coin 

  variant CreditCard maps variant CreditCard 

 method Operate: 

  payment.getPayment 

Package Payment 

 Configuration   

  Payment_conf 

Component Payment_comp 

 interface Payment_int 

Composition Payment_cmps 

 import Payment_conf 

 has Payment_comp 

 ContextParameters 

 coinInserted 

 creditCardProvided 

 Method GetPayment: 

 #vp Type ifSelected(Coin)#  

  guard(coinInserted) Payment_comp.GetCoin 

 #vp Type ifSelected(CreditCard)# 

  guard(creditCardProvided)   

  Payment_comp.ConnectBank 

 

Interface Payment_int 

 providedMethods 

  GetCoin 

  ConnectBank 

XCOSEML 

Variability 

Related Models 

Configuration 

VendingMachine_conf of 

Package VendingMachine 

 externalVP PaymentType 

  optional 

   variant Coin 

   variant CreditCard 

Configuration Payment_conf 

of Package Payment 

  externalVP Type 

   optional 

    variant Coin 

    variant CreditCard 



The decomposition process proceeds with applying the steps as exemplified with three stages in above until the 

process model is completed. After then, a family of vending machine applications can be constructed with its 

process model, and corresponding XCOSEML component decomposition along with its variation specifications. 

From this point on our domain design is ready to be configured with end-user choices which comprise activities 

of product design and realization. The finalized process model is shown in Figure 4.3 and the details of the sub-

processes, “Get Payment,” “Process Payment,” “Prepare Item,” and “Payback” are depicted in Figures 4.4, 4.5, 

4.6, and 4.7. 

 

Figure 4.3 Finalized process model of vending machine 

 

Figure 4.4 “Get Payment” sub-process 

 



 

Figure 4.5 "Process Payment" sub-process 

 

 

Figure 4.6 “Prepare Item” sub-process 

 

 

Figure 4.7 “Payback” sub-process 

 

For the “product realization” part of “product engineering,” suppose the end user chooses “Beverages” from 

“Container” and “Coin” from “Payment_type” from the feature model in Figure 4.2. The final feature model 

includes all features that the final application covers, presented in Figure 4.8. 



 

Figure 4.8 Configured feature model for the application 

The propagation starts from the root package “VendingMachine” and is propagated to configure the interfaces 

and compositions, which in turn provides the final product with its process model. The process model of the 

application stays same as in Figure 4.1. However, the flow of the sub-processes is changed, which is shown in 

Figures 4.9, 4.10, 4.11, and 4.12. 

 

Figure 4.9 “Get payment” sub-process for the application 

As “Coin” feature is selected, “Get Payment” includes only coin-related activities which are represented by the 

“Deposit Coin.” Similarly, the activities related to the preparation of beverages are included in “Prepare Item” 

sub-process, represented in Figure 4.10.  

 

 

Figure 4.10 “Prepare Item” sub-process for the application 

 

The selection of “coin” feature also affects “Process Payment” and “Payback” sub-processes to include only 

coin related functionality, which is represented in Figures 4.11 and 4.12.  



 

Figure 4.11 “Process Payment” sub-process for the application 

 

 

Figure 4.12 “Payback” sub-process for the application 

4.5.  Discussion 

Variability-guided decomposition may result in structural and procedural models that are very much related: 

there is usually a one-to-one relation in mapping the constructs between these models. A general difference is 

apparent here: flow connections are considered in processes and composition relations in structures. 

It is assumed that the feature model–level variability should be the starting point and then reflected to the 

process model. Here, feature models are not claimed to be the indispensable source for variability.  Any 

variability model can be used. Variability will be utilized starting from such a variability model and then 

following a hierarchical navigation.  Based on the assessment that variability is the only high-level product-

specific information that a set of models require, this work proposes a method to take variability as input and 

produce a system incorporating as much automation as possible.  Also accepting variability as the highest 

abstraction-level information, Simon’s (1996) findings support our approach as it supports a hierarchical 

decomposition. 

This order also corresponds to the model-development order. As a result, the selected tasks in the process model 

will be implemented by corresponding components. Therefore, the next step after the definition of a process 

model is the configuration of the component-oriented/based solution with respect to the propagated variability 

constraints/specs. However, the feature model is not directly used in the configuration of the structural models, 

instead, the feature model is related to the variability model of XCOSEML which enables propagation of 



variability resolutions. Reasons for this choice are: XCOSEML works with its own variability model, and a 

feature model does not categorize its features as variation points and variants, however, these elements are 

important in the configuration of structural decomposition. Besides, from the end-user point of view, the 

contents of the feature model should be relevant and meaningful by representing available choices that the end 

user can select. In fact, the feature model constructed in the variability-guided decomposition process is 

developer-oriented which also includes functions of the system. Therefore, pruning of the feature model can be 

an additional step before it comes into use. The remaining features that are not selected by end users either are 

bound by the constraints or left to be chosen by developers of the system. In this way, variability resolution is 

ready to affect the structural decomposition.  

Concerning variability propagation to process models, there have been various works, a detailed survey can be 

found in (La Rosa et al., 2017). Also, component models were addressed for variability. These separate efforts 

are consolidated in this research for a holistic modeling and development methodology by also devising further 

mechanisms for system composition. Here the important part is modeling variable parts of the process 

decomposition in a manageable way. A prospective approach is the definition of sub-processes in the presence of 

alternative or optional flows. The notion of sub-process also supports coherence, meaning that related flows are 

composed with each other. By following this approach, it can be a good practice to contemplate about the 

creation of a sub-process whenever the process model comes into a diversification point that serves different 

needs. 

4.5.1 About the Architecture 

The software architecture corresponding to the presented approach suggests three fundamental models, feature 

model, process model, and component model.  The latter two will also be part of the run-time environment.  If 

variability were not incorporated a similar architectural structure could be maintained.  However, additional 

structures would be especially required for the development time.  The existence of the feature model would be 

questioned without variability.  The process and the set of components would need to be shaped up as a result of 

other models.  Those models could include requirements and component based notations.  Basically, the 

architecture would not include support for propagating variability over configuration interfaces that themselves 

would be excluded also.  There would be bigger emphasis on a requirements model, guiding individually 

different component and process solutions. 



4.5.2 Simultaneous Decomposition and Variability 

The suggested process is based on two foundations.  The first one is promoting top-down approaches in 

decomposition.  Simon (1996) has suggested decomposition as the key tool for addressing complex engineering 

design.  Moreover, this decomposition should be carried in a hierarchical manner, starting from top.  Our 

approach accepts variability specifications as the highest-level information for software development.  This is 

felt more in the product development activities than in the domain model development. Therefore, variability 

will be the reference point, guiding the development tasks that follow the abstraction levels after variability. 

The other foundation is simultaneous decomposition.  Since 1970s, the software industry has realized the 

problems with Waterfall-like processes:  Models developed in isolation (usually in a predetermined sequence 

that does not allow revisiting the previous models much) will not render a consistent set of constituents to yield 

code. As a response, evolutionary and iterative processes were invented to allow for different models 

influencing each other.  Suh (1998) specifically devised a method to develop a set of models simultaneously so 

that once one model is finalized, all are finalized that are in compliance to each other.  Both Simon and Suh 

consent to the importance of building by decomposition as a starting point. 

Various implementations of these ideas have been practiced. Here, variability-guided simultaneous 

decomposition is promoted, as a synthesis of these foundations in an effort to gain important efficiency 

increases in software development. 

Similarly, variability in different models have been handled with different techniques. This should be continued, 

however, the expected mature domain suggests the constraints among different kinds and locations of variability 

being already defined. Also the necessary adaptations in different models should better be defined for all 

possible variants. One outcome of this approach would be a fast connection between the problem and the 

solution domains: Possible associations have already been set between the elements of these domains and 

product development will iron out the details in constraint propagation.  Once the decisions are made about the 

variations, their repercussions in the requirements, design, or implementation will be followed by the constraint 

navigations. Also to mention, horizontal (peer-to-peer) constraints are also important.  They should be dealt with 

as they would in any case.  This research promotes top-down propagation as it is important in system definition. 

As the ripple effect of any constraint resolution, any resultant vertical or horizontal constraint requirements 

should be handled as intermediate steps.  This may sometimes be painful. 



Lastly, the decomposition is suggested to be carried top-down.  In this perspective, the process is allocated in a 

higher-level of abstraction than the structure.  However, not depending on a variation point being in any of these 

models, a top-down process should be carried out.  This traversal, starting from the top, should advance until a 

variation point is found and process it and continue.  Meaning, the higher-levels without variation points will not 

stop the process.  Also the traversal will advance based on levels, not on models. Meaning, starting or ending at 

any model will not hamper the process. 

4.5.3 Proactive/Reactive Variability 

Here, a short discussion about what would happen if variability was omitted, is presented. . In mature domains 

such as an established SPL infrastructure, variability is a pillar whose absence will nullify the SPL practice 

altogether. Still it is possible to contemplate a scenario where software development is carried out without the 

variability capability and tried to be applied after the case. First of all, variability considers a set of software 

products to be developed. Without it, the individual developments of a set of different products will be 

addressed albeit how related they may be. The result will materialize as a set of maintenance projects that take 

one product independent from the others, probably enduring difficulties due to the principle about the increased 

complexity when changes are applied late in the process. Here the changes will be applied after almost 

completion, hence very costly. 

4.5.4 Disadvantages 

One shortfall of the suggested approach is its dependence on advanced development environments, such as a 

well-established SPL infrastructure. Also, availability of additional tools in such an environment would be 

necessary. Since the idea is to increase the efficiency, this objective cannot be significantly achieved unless there 

are specific tools integrated to such an established environment. The existing stand-alone tools mentioned in this 

text have not been integrated to a full SPL infrastructure. 

4.6. Conclusion 

In this chapter, a variability-guided decomposition process defined that has been illustrated using a case study. 

Incorporating variability into system development eases management of change in requirements and adoption to 

change in a systematic way. It can be achieved proactively or reactively: constructing the system from the 

perspective of variability from scratch or reconstruct existing system with identification of variable parts 

respectively. The presented approach serves as guidance for the proactive attempt to variability. Decomposition 



of the system into smaller processes sheds light on structural decomposition along with variations. The 

hierarchical nature of process and structure enables propagation of variability specifications from upper levels to 

lower levels by establishing relations and constraints between them for variability resolution. In this way, 

variability binding is achieved in a systematic way by resolving variability in the upper levels and expecting 

configurations in the lower levels to reveal a complete system. 

4.7. Lessons Learned and Future Work 

There is an unresolved question that can define future work problems related to the presented approach. That is 

the question of how many isomorphism can be attainable in the various decomposition models for the modeling 

“domains” of the ADT. In software development, this question corresponds to the similarity between the 

requirements decomposition and the design decomposition. A ramification of this discussion would yield further 

efficiency in SPL approaches where the isomorphism between the feature model and the component 

decomposition would further automate the selection of components, once a product feature model is instantiated 

from the domain model. A research on ramifications for such isomorphism can be a good future work. 

Actually, ADT offers design matrices and a method to evaluate them for the assessment of coupling: if 

functional requirements can map to design parameters in a one-to-one manner, the two models are uncoupled. 

However, this also implies a possible isomorphism–reducing the work for building the topology of the 

component network: Once the features are selected, so are the components and, further, their decomposition 

connections. What is still missing to convert this topology to an executable system is to incorporate a process 

model: define a set of connections for message sending and the ordering of the invocations for those messages. 

Yet, data needs to be saved and forwarded to be used as input and output parameters for the messages that 

stimulate methods. This is referred to as state management in the process modeling world. 

ADT, allowing the coupling assessment through its “design matrices” would also allow two other coupling 

classifications for the less-preferred design choices.  These correspond to one-to-many or many-to-many 

mappings between the functional requirements and design parameters. Usually the logical and physical parts of 

the decomposition in COSEML more or less correspond to requirements and design models. In the higher levels 

of a COSEML model, the diagram is suggested to preserve one-to-many relations from a parent node to its 

children.  



COSEML suggests to start with a logical decomposition and at any level when the developers can associate a 

logical with a potential physical component, they stop the decomposition. Next, they link this logical module to 

the component. It is also possible to decompose components into smaller components. However, the goal is to 

reach a product practically and sooner; it is better to avoid composition or decomposition among the 

components. The related work suggests the two-level hierarchy (Togay et al., 2017) where a logical-level model 

is directly mapped to methods without a further structuring in the lower levels. That is reminiscent of the related 

SOA technologies consisting of an “orchestration” that is a process model and a set of web service method calls. 

However, it is possible to allow one-to-many as well as many-to-one relations from the logical level to the 

components: One logical module could correspond to more than one readily available component for its 

realization. An advanced COSEML engineer is supposed to decompose the logical level in an effort to convert 

this sub-section of the model to a one-to-one mapping alternative. On the other hand, the logical model could 

have been over decomposed where a component to be found in the industry could be implementing both of such 

requirements. Also if possible, the modification in the lower levels of the logical part is preferred for one-to-one 

mappings around such leaf-levels. However, the language does not impose any such restrictions. 
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