
Afshari et al. Advances in Difference Equations        (2020) 2020:461 
https://doi.org/10.1186/s13662-020-02926-0

R E S E A R C H Open Access

On a new fixed point theorem with an
application on a coupled system of fractional
differential equations
Hojjat Afshari1, Fahd Jarad2 and Thabet Abdeljawad3,4,5*

*Correspondence:
tabdeljawad@psu.edu.sa
3Department of Mathematics and
General Sciences, Prince Sultan
University, P.O. Box 66833, 11586,
Riyadh, Saudi Arabia
4Department of Medical Research,
China Medical University, 40402,
Taichung, Taiwan
Full list of author information is
available at the end of the article

Abstract
In this work, new theorems and results related to fixed point theory are presented.
The results obtained are used for the sake of proving the existence and uniqueness of
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the form of integrals.
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1 Introduction
For the last multiple of decades, the fractional calculus has drawn great interest of many
sciences working on multifarious sciences on account of the good results obtained when
this research applied the fractional tools to modeling of some real life problems [22, 26,
30, 36, 46–48].

On the other side, even though the fixed point theory is a branch of pure mathematics,
it is showed that this theory is one of the main tools to use in order to tackle the qualitative
properties of differential and integral equations in general and the existence and unique-
ness of solutions to these equations in particular. A significant number of mathematicians
utilized the classical results in the fixed point theory to discuss solutions of initial and
boundary value problems (see [2–21, 23, 24, 27–29, 31–34, 37, 39–43]). Meanwhile, oth-
ers established new fixed point theorems and applied them to proving the existence and
oneness of solutions to a variety of differential equations [13, 25, 38, 44, 45].

In this work, we will propose new theorems related to the fixed points of operators.
We discuss the admissibility of two multi-valued mappings in the category of complete
b-metric spaces to obtain the existence of a common fixed point. Using the triangular
admissibility, we prove the uniqueness of the common fixed point. Then we utilize the
findings of this problem to discuss one of the most considerable qualitative aspects for
differential equation with fractional order; that is, the existence and uniqueness of the
positive solution of Riemann–Liouville fractional coupled system governed by boundary
integral conditions.
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2 Preliminaries
Let χ be a set of all increasing and continuous functions ϕ : [0, +∞) → [0, +∞) with the
property ϕ(ς ) = 0 if and only if ς = 0 and ϕ(cς ) ≤ cϕ(ς ) for c > 1.

Let Ω be the family of all functions ϑ : [0, +∞) → [0, 1
s2 ) such that, for any bounded

sequence {ςn} of positive real numbers, ϑ(ςn) → 1 implies ςn → 0.
Let (X, d) be a b-metric space. Take CB(X) the set of bounded and closed sets in X. For

x ∈ X and A, B ∈ CB(X), we define

D(x, A) = inf
a∈A

d(x, a),

D(A, B) = sup
a∈A

D(a, B).

Define a mapping H : CB(X) × CB(X) → [0,∞) such that

H(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, B)
}

,

for every A, B ∈ CB(X). Then the mapping H forms a b-metric.
Throughout the article I will denote the interval [0, 1]. The definition for admissibility

of a pair of single-valued mappings was first introduced in [1] and then generalized and
used in [35] as well. Below we present the definition for the multi-valued case within the
triangular admissibility.

Definition 2.1 Let T1, T2 : X → CB(X) be two multi-valued mappings and ρ : X × X →
[0, +∞) be a function. Then the pair (T1, T2) is said to be triangular ρ∗-admissible if the
following conditions hold:

(i) (T1, T2) is ρ∗-admissible; that is, ρ(ς ,η) ≥ 1 implies ρ∗(T1ς , T2η) ≥ 1 and
ρ∗(T2ς , T1η) ≥ 1, where

ρ∗(A, B) = inf
{
ρ(ς ,η) : ς ∈ A,η ∈ B

}
,

(ii) ρ(ς , u) ≥ 1 and ρ(u,η) ≥ 1 imply ρ(ς ,η) ≥ 1.

Definition 2.2 ([26, 36]) The Riemann–Liouville fractional integral of order ρ > 0 of a
continuous function f : (0, +∞) → (–∞, +∞) is given by

Iρ

0+ f (ς ) =
1

Γ (ρ)

∫ ς

0
(ς – η)ρ–1f (η) dη,

provided the right-hand side is pointwise defined on (0, +∞).

Definition 2.3 ([26, 36]) The Riemann–Liouville fractional derivative of order ρ > 0 of a
continuous function f : (0, +∞) → (–∞, +∞) is given by

Dρ

0+ f (ς ) =
1

Γ (n – ρ)

(
d
dt

)n ∫ ς

0
(ς – η)n–ρ–1f (η) dη,

where n = [ρ] + 1, [ρ] denotes the integer part of the number ρ , provided that the right-
hand side is pointwise defined on (0, +∞).
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In this paper, we discuss the local existence and uniqueness of positive solutions for
the following coupled system of fractional boundary value problem subject to integral
boundary conditions:

⎧⎨
⎩

Dρ

0+ u(ς ) + f (ς , v(ς )) = 0, D


0+ v(ς ) + g(ς , u(ς )) = 0, 0 < ς < 1,

u(0) = 0, u(1) =
∫ 1

0 φ(ς )u(ς ) dς , v(0) = 0, v(1) =
∫ 1

0 ϕ(ς )v(ς ) dς
(1)

where 1 < ρ,
 ≤ 2,φ,ϕ ∈ L1I are nonnegative and f , g ∈ C(I × [0, +∞), [0, +∞)) and D is
the standard Riemann–Liouville fractional derivative. The functions φ(ς ), ϕ(ς ) satisfy the
following conditions:

(Q)φ,ϕ : I → [0, +∞) with φ,ϕ ∈ L1I

and

σ1 :=
∫ 1

0
φ(ς )ςρ–1 dς , σ2 :=

∫ 1

0
ϕ(ς )ς
–1 dς , ς ∈ (0, 1);

σ3 :=
∫ 1

0
ςρ–1(1 – ς )φ(ς ) dς , σ4 :=

∫ 1

0
ς
–1(1 – ς )ϕ(ς ) dς > 0.

Lemma 2.4 ([41]) If
∫ 1

0 φ(ς )ςρ–1 dς �= 1, then, for any σ ∈ CI , the unique solution of the
following boundary value problem:

⎧⎨
⎩

Dρ

0+ u(ς ) + σ (ς ) = 0, 0 < ς < 1,

u(0) = 0, u(1) =
∫ 1

0 φ(ς )u(ς ) dς ,

is given by

u(ς ) =
∫ 1

0
G1ρ(ς ,η)σ (η) dη,

where

G1ρ(ς ,η) = G2ρ(ς ,η) + G3ρ(ς ,η),

G2ρ(ς ,η) =
1

Γ (ρ)

⎧⎨
⎩

ςρ–1(1 – η)ρ–1 – (η – ς )ρ–1, 0 ≤ ς ≤ η ≤ 1,

ςρ–1(1 – η)ρ–1, 0 ≤ η ≤ ς ≤ 1,

G3ρ(ς ,η) =
ςρ–1

1 –
∫ 1

0 φ(ς )ςρ–1 dς

∫ 1

0
φ(ς )G2ρ(ς ,η) dς ,

(2)

Then G(ς ,η) = (G1ρ(ς ,η), G1
(ς ,η)) is a Green’s function of the system (1).

Lemma 2.5 ([41]) Let ρ,
 ∈ (1, 2]. Assume that (Q) holds. Then the functions G1ρ(ς ,η),
G1
(ς ,η) have the following properties:

(ρ – 1)σ3η(1 – η)ρ–1ςρ–1

(1 – σ1)Γ (ρ)
≤ G1ρ ≤ (1 – η)ρ–1ςρ–1

Γ (ρ)(1 – σ1)
,
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(
 – 1)σ4η(1 – η)
–1ς
–1

(1 – σ2)Γ (
)
≤ G1
 ≤ (1 – η)
–1ς
–1

Γ (
)(1 – σ2)
, η,ς ∈ I.

Lemma 2.6 ([41]) Assume that (Q) holds and f (κ , x), g(κ , x) are continuous, then (u, v) ∈
X × X is a solution of the system (1) if and only if it is a solution of the integral equations

⎧⎨
⎩

u(κ) =
∫ 1

0 G1
(κ ,κ)f (κ, v(κ)) dκ,

v(κ) =
∫ 1

0 G1ρ(κ ,κ)g(κ, u(κ)) dκ.

3 Main results
Now, we are ready to state and prove our main results.

The following key lemma is essential to proceed in proving the main results. It states
that the admissibility of a pair of multi-valued functions will guarantee the existence of a
sequence of points with diameter greater than 1.

Lemma 3.1 Let T1, T2 : X → CB(X) be two multi-valued mappings such that the pair
(T1, T2) is triangular ρ∗-admissible. Assume that there exists 
0 ∈ X with ρ∗(
0, T1
0) ≥ 1.
Define a sequence {
n} in X by 
2i+1 ∈ T1
2i and 
2i+2 ∈ T2
2i+1, where i = 0, 1, 2, . . . . Then,
for m, n ∈N∪ {0} with m > n, we have ρ(
n,
m) ≥ 1.

Proof From ρ∗(
0, T1
0) ≥ 1 we get ρ(
0,
1) ≥ 1. Since (T1, T2) is ρ∗-admissible, we obtain
ρ∗(T1
0, T2
1) ≥ 1, hence ρ(
1,
2) ≥ 1 and so ρ∗(T2
1, T1
2) ≥ 1, then ρ(
2,
3) ≥ 1, with
continuing this process we obtain, ρ(
m,
m+1) ≥ 1.

By (ii) from definition of triangular ρ∗-admissible and regarding as; ρ(
n,
n+1) ≥ 1 and
ρ(
n+1,
n+2) ≥ 1, deduce ρ(
n,
n+2) ≥ 1. Again with continuing this process and from
m > n, we find ρ(
n,
m) ≥ 1. �

The following theorem gives the existence of a common fixed point for two mappings
T1 and T2 under less hypotheses than the results existing in the literature.

Theorem 3.2 Let (X, d) be an ρ-complete b-metric space (with s ≥ 1), and ρ : X × X →
[0, +∞) be a function. Suppose that T1, T2 : X → CB(X) are mappings such that

ρ(ς ,η)ϕ
(
s3H(T1ς , T2η)

) ≤ ϑ
(
ϕ
(
M(ς ,η)

))
ϕ
(
M(ς ,η)

)
+ Lφ

(
N(ς ,η)

)
, (3)

where

M(ς ,η) = max

{
d(ς ,η), D(ς , T1ς ), D(η, T2η),

D(η, T1ς ) + D(ς , T2η)
2s

}
and

N(ς ,η) = min
{

D(η, T1ς ), D(η, T2η)
}

,
(4)

for ϑ ∈ Ω and ϕ,φ ∈ χ . Moreover, suppose
(i) (T1, T2) is triangular ρ∗-admissible;

(ii) there exists 
0 ∈ X with ρ∗(
0, T1
0) ≥ 1;
(iii) if for every sequence {
n} in X with ρ(
n,
n+1) ≥ 1 for all n ∈ N∪ {0} and


n → 
 ∈ X , then there exists a subsequence {
n(k)} of {
n} with ρ(
n(k),
) ≥ 1.
Then T1 and T2 have a common fixed point 
 ∈ X.
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Proof Let 
0 ∈ X with ρ∗(
0, T1
0) ≥ 1. Choose 
1 ∈ T1
0 such that ρ(
0,
1) ≥ 1 and

1 �= 
0. Let q = 1√

ϑ(ϕ(d(
0,
1)))
. By (3) and considering that q > 1, we have

0 < ϕ
(
D(
1, T2
1)

) ≤ ρ(
0,
1)ϕ
(
H(T1
0, T2
1)

)
< qρ(
0,
1)ϕ

(
s3H(T1
0, T2
1)

)
.

Hence, there exists 
2 ∈ T2
1 such that

ϕ
(
d(
1,
2)

)
< qρ(
0,
1)ϕ

(
s3H(T1
0, T2
1)

)

≤ qϑ
(
ϕ
(
M(
0,
1)

))
ϕ
(
M(
0,
1)

)
+ qLφ

(
N(
0,
1)

)

=
√

ϑ
(
ϕ
(
d(
0,
1)

))
ϕ
(
M(
0,
1)

)
+ qLφ

(
N(
0,
1)

)
, (5)

where

M(
0,
1) = max

{
d(
0,
1), D(
0, T1
0), D(
1, T2
1),

D(
1, T1
0) + D(
0, T2
1)
2s

}

≤ max

{
d(
0,
1), D(
1, T2
1),

D(
0, T2
1)
2s

}

≤ max

{
d(
0,
1), D(
1, T2
1),

D(
0, T2
1)
2s

}

and

N(
0,
1) = min
{

D(
0, T2
0), D(
1, T1
0)
}

≤ min
{

d(
0,
1), d(
1,
1)
}

= 0.

Since

D(
0, T2
1)
2

≤ [d(
0,
1) + D(
1, T2
1)]
2

≤ max
{

d(
0,
1), D(
1, T2
1)
}

,

we get

M(
0,
1) ≤ max
{

d(
0,
1), D(
1, T2
1)
}

.

If max{d(
0,
1), D(
1, T2
1)} = D(
1, T2
1), then by (5), we have

ϕ
(
D(
1, T2
1)

) ≤ ϕ
(
d(
1,
2)

)
<

√
ϑ

(
ϕ
(
d(
0,
1)

))
ϕ
(
D(
1, T2
1)

)
< ϕ

(
D(
1, T2
1)

)
,

which is a contradiction. Hence, we obtain max{d(
0,
1), D(
1, T2
1)} = d(
0,
1) and so
by (5),

ϕ
(
d(
1,
2)

) ≤
√

ϑ
(
ϕ
(
d(
0,
1)

))
ϕ
(
d(
0,
1)

)
.

Knowing that ϕ ∈ χ and regarding the fact that
√

ϑ(ϕ(d(
0,
1))) < 1, we have

ϕ

(
1√

ϑ(ϕ(d(
0,
1)))
d(
1,
2)

)
≤ 1√

ϑ(ϕ(d(
0,
1)))
ϕ
(
d(
1,
2)

)
< ϕ

(
d(
0,
1)

)
. (6)
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Since ϕ is increasing,

d(
1,
2) ≤
√

ϑ
(
ϕ
(
d(
0,
1)

))
d(
0,
1).

Recall that 
2 ∈ T2
1 and 
1 /∈ T2
1, so it is clear that 
2 �= 
1. Put

q1 =
√

ϑ(ϕ(d(
0,
1)))ϕ(d(
0,
1))
ϕ(d(
1,
2))

.

By (6), we have q1 > 1. Then

0 < ϕ
(
d(
2, T1
2)

) ≤ ρ(
1,
2)ϕ
(
H(T2
1, T1
2)

)
< q1ρ(
1,
2)ϕ

(
H(T2
1, T1
2)

)
.

Hence, there exists 
3 ∈ T1
2 such that

ϕ
(
d(
2,
3)

)
< q1ρ(
1,
2)ϕ

(
H(T2
1, T1
2)

)

≤ q1ϑ
(
ϕ
(
M(
1,
2)

))
ϕ
(
M(
1,
2)

)
+ q1Lφ

(
N(
1,
2)

)

Similarly, M(
1,
2) ≤ d(
1,
2) and N(
1,
2) = 0. So by (5) we have

ϕ
(
d(
2,
3)

) ≤
√

ϑ
(
ϕ
(
d(
1,
2)

))
ϕ
(
d(
1,
2)

)

≤
√

ϑ
(
ϕ
(
d(
1,
2)

))√
ϑ

(
ϕ
(
d(
1,
2)

))
ϕ
(
d(
0,
1)

)

=
(√

ϑ
(
ϕ
(
d(
1,
2)

)))2
ϕ
(
d(
0,
1)

)
.

Again by (6), we obtain

d(
2,
3) ≤ (√
ϑ

(
ϕ
(
d(
1,
2)

)))2 d(
0,
1).

It is clear that 
2 �= 
1. Put

q2 =
(
√

ϑ(ϕ(d(
1,
2))))2ϕ(d(
0,
1))
ϕ(d(
2,
3))

.

Then q2 > 1 and we have

0 < ϕ
(
d(
3, T2
3)

) ≤ ρ(
2,
3)ϕ
(
H(T1
2, T2
3)

)
< q2ρ(
2,
3)ϕ

(
H(T1
2, T2
3)

)
.

Thus, there exists 
4 ∈ T2
3 such that

ϕ
(
d(
3,
4)

)
< q2ρ(
2,
3)ϕ

(
H(T1
2, T2
3)

)

≤ q2ϑ
(
ϕ
(
M(
2,
3)

))
ϕ
(
M(
2,
3)

)
+ q2Lφ

(
N(
2,
3)

)
. (7)

Similarly, M(
2,
3) ≤ d(
2,
3) and N(
2,
3) = 0. So by (7),

ϕ
(
d(
3,
4)

) ≤
√

ϑ
(
ϕ
(
d(
2,
3)

))
ϕ
(
d(
2,
3)

) ≤ (√
ϑ

(
ϕ
(
d(
0,
1)

)))3
ϕ
(
d(
0,
1)

)
.
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Similarly, from (6), we obtain

d(
3,
4) ≤ (√
ϑ

(
ϕ
(
d(
0,
1)

)))3 d(
0,
1).

It is clear that 
3 �= 
2. Put

q3 =
(
√

ϑ(ϕ(d(
0,
1))))3ϕ(d(
0,
1))
ϕ(d(
2,
3))

.

Then q3 > 1. By continuing this process and by Lemma 3.1 we obtain a sequence {
n} in X
such that


2i+1 ∈ T1
2i and 
2i+2 ∈ T2
2i+1, where i = 0, 1, 2, . . . .

Also, d(
n,
n+1) < (
√

ϑ(ϕ(d(
0,
1))))n d(
0,
1) for all n. Let t =
√

ϑ(ϕ(d(
0,
1))), then 0 <
t < 1 for n < m, by the triangle inequality we have

d(
n,
m) ≤ d(
n,
n+1) + d(
n+1,
n+2) + · · ·
+ d(
m–2,
m–1) + d(
m–1,
m)

≤ tn(1 + t + t2 + · · · )d(
0,
1)

=
(

tn

1 – ς

)
d(
0,
1) → 0 as n → +∞.

Therefore, for n < m, we obtain

d(
n,
m) → 0 as n → +∞.

Therefore

lim
m,n→∞ d(
n,
m) = 0.

We deduce that {
n} is a Cauchy sequence in (X, d). Since (X, d) is a complete b-metric
space, so there exists 
∗ ∈ X such that limn→∞ 
n = 
∗. Since ρ(
n,
n+1) ≥ 1, so there
exists a subsequence {
2nk } of {
n} such that

ρ
(

2nk ,
∗) ≥ 1, (8)

for all k. By the triangular inequality

D
(

∗, T2


∗) ≤ sd
(

∗,
2nk +1

)
+ sD

(

2nk +1, T2


∗)

≤ sd
(

∗,
2nk +1

)
+ sH

(
T1
2nk , T2


∗).

Letting k tend to infinity

D
(

∗, T2


∗) ≤ lim
k→∞

sH
(
T1
2nk , T2


∗). (9)
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Having ϕ ∈ χ , (8) and (9),

ϕ
(
s2D

(

∗, T2


∗))

≤ lim
k→∞

ϕ
(
s3H

(
T1
2nk , T2


∗))

≤ lim
k→∞

ρ
(

2nk ,
∗)ϕ(

s3H
(
T1
2nk , T2


∗))

≤ lim
k→∞

[
ϑ

(
ϕ
(
M

(

2nk ,
∗)))ϕ(

M
(

2nk ,
∗)) + Lφ

(
N

(

2nk ,
∗))]. (10)

We have

M
(

2nk ,
∗)

= max

{
d
(

2nk ,
∗), D(
2nk , T1
2nk ), D

(

∗, T2


∗),
D(
nk , T2


∗) + D(
∗, T1
2nk )
2s

}

≤ max

{
d
(

2nk ,
∗), d(
2nk ,
2nk+1 ), D

(

∗, T2


∗),
D(
2nk , T2


∗) + d(
∗,
2nk +1)
2s

}

and

N
(

2nk ,
∗) = min

{
D

(

∗, T1
2nk

)
, D

(

∗, T2


∗)}

≤ min
{

d
(

∗,
2nk +1

)
, d

(

∗, T2


∗)}.

Recall that

D(
2nk , T2

∗) + d(
∗,
2nk +1)

2s
≤ sd(
2nk ,
∗) + sD(
∗, T2


∗) + d(
∗,
2nk +1)
2s

.

Then

lim sup
k→∞

D(
2nk , T2

∗) + d(
∗,
2nk +1)

2s
≤ D(
∗, T2


∗)
2

.

When k tends to infinity, we deduce

lim
k→∞

M
(

nk ,
∗) = D

(

∗, T2


∗)

and

lim
k→∞

N
(

nk ,
∗) = 0.

Since limk→∞ 
(ϕ(M(
nk ,
∗))) ≤ 1
s2 , by (10)

ϕ
(
s2D

(

∗, T2


∗)) ≤ 1
s2 ϕ

(
D

(

∗, T2


∗)).

Since ϕ ∈ χ , the above holds unless D(
∗, T2

∗) = 0, that is, 
∗ ∈ T2


∗. Similarly, we can
prove that 
∗ ∈ T1


∗, so 
∗ is a common fixed point of T2 and T1. �
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Corollary 3.3 Let (X, d) be an ρ-complete b-metric space, and ρ : X × X → [0, +∞) be a
function. Suppose that T1, T2 : X → X are mappings such that

ρ(ς ,η)ϕ
(
s3H(T1ς , T2η)

) ≤ ϑ
(
ϕ
(
d(ς ,η)

))
ϕ
(
d(ς ,η)

)
, (11)

for 
 ∈ Ω and ϕ ∈ χ . Moreover, suppose
(i) (T1, T2) is triangular ρ∗-admissible;

(ii) there exists 
0 ∈ X with ρ(
0, T1
0) ≥ 1;
(iii) if for every sequence {
n} in X with ρ(
n,
n+1) ≥ 1 for all n ∈ N∪ {0} and


n → 
 ∈ X , then there exists a subsequence {
n(k)} of {
n} with ρ(
n(k),
) ≥ 1 for all
k.

Then T1 and T2 have a common fixed point 
 ∈ X.
Moreover, if the following condition holds:
H1: Either ρ(u, v) ≥ 1 or ρ(v, u) ≥ 1 whenever T1u = T2u = u and T1v = T2v = v, then T1

and T2 have a unique common fixed point.

Proof The proof of the existence of a common fixed point of T1 and T2 was shown in
Theorem 3.2.

We claim that, if T1u = T2u = u and T1v = T2v = v, then u = v. By hypothesis, if u �= v,
then either ρ(u, v) ≥ 1 or ρ(v, u) ≥ 1. Suppose that ρ(u, v) ≥ 1, then

ψ
(
d(u, v)

)
= ψ

(
d(Su, Tv)

) ≤ ψ
(
s3 d(Su, Tv)

) ≤ ρ(u, v)ψ
(
s3 d(Su, Tv)

)

≤ ϑ
(
ψ

(
d(u, v)

))
ψ

(
d(u, v)

)
< ψ

(
d(u, v)

)
,

which is contradiction. So u = v. Similarly, if ρ(v, u) ≥ 1, we can prove u = v. �

Theorem 3.4 Suppose for κ ∈ I and η, z ∈ C(I) there exists ξ : R2 → R and ϕ ∈ χ such
that

(i)

∣∣g(
κ ,η(κ)

)
– f

(
κ , z(κ)

)∣∣ ≤ 1
2
√

2
Γ (max{ρ,
})

(1 – κ)min{ρ,
}–1κmin{ρ,
}–1
ϕ(|(κ) – z(κ)|2)√
4‖(η – z)2‖∞ + 1

,

(ii) ∃ η0 ∈ C(I) with ξ (η0(κ),
∫ 1

0 G(κ ,κ)f (κ,η0(κ)) dκ ≥ 0.
If we set

η1 = T1η0 =
∫ 1

0
G1ρ(κ ,κ)g

(
κ,η0(κ)

)
dκ;

η2 = T2η1 =
∫ 1

0
G1
(κ ,κ)f

(
κ,η1(κ)

)
dκ;

η3 = T1η2 =
∫ 1

0
G1ρ(κ ,κ)g

(
κ,η2(κ)

)
dκ;

...

η2n = T2η2n–1 =
∫ 1

0
G1
(κ ,κ)f

(
κ,η2n–1(κ)

)
dκ;
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η2n+1 = T1η2n =
∫ 1

0
G1ρ(κ ,κ)g

(
κ,η2n(κ)

)
dκ;

...

we may assume the following conditions are met:
(iii) ξ (η2n–1,η2n) ≥ 0 and ξ (η2n,η2n+1) ≥ 0, respectively, imply ξ (η2n,η2n+1) ≥ 0 and

ξ (η2n+1,η2n+2) ≥ 0, respectively;
(iv) ξ (η2n–1,η2n) ≥ 0 and ξ (η2n,η2n+1) ≥ 0 implies ξ (η2n–1,η2n+1) ≥ 0;
(v) if for every sequence {ηn} in X with ξ (ηn,ηn+1) ≥ 0 for all n ∈N∪ {0} and

ηn → η ∈ X , then there exists a subsequence {ηn(k)} of {ηn} with ξ (ηn(k),η) ≥ 1 for all
k.

Then the system (1) has a solution in C(I).
Moreover, if the following conditions hold:
H2: Either ξ (η∗, ζ ∗) ≥ 0 or ξ (ζ ∗,η∗) ≥ 0 whenever

∫ 1

0
G1ρ(κ ,κ)g

(
κ,η∗(κ)

)
dκ =

∫ 1

0
G1
(κ ,κ)f

(
κ,η∗(κ)

)
dκ = η∗

and

∫ 1

0
G1ρ(κ ,κ)g

(
κ, ζ ∗(κ)

)
dκ =

∫ 1

0
G1
(κ ,κ)f

(
κ, ζ ∗(κ)

)
dκζ ∗ = ζ ∗,

then the system (1) has a unique solution in C(I).

Proof By Lemma 2.6 η ∈ C(I) is a solution of (1) if and only if it is a solution of

⎧⎨
⎩

z =
∫ 1

0 G1
(κ ,κ)f (κ,η(κ)) dκ,

η =
∫ 1

0 G1ρ(κ ,κ)g(κ, z(κ)) dκ.

We define T1, T2 : C(I) → C(I) by

T1η2n =
∫ 1

0
G1ρ(κ ,κ)g

(
κ,η2n(κ)

)
dκ,

T2η2n–1 =
∫ 1

0
G1
(κ ,κ)f

(
κ,η2n–1(κ)

)
dκ,

for all κ ∈ I . For this purpose, we find a common fixed point of T1 and T2. Let η, z ∈ C(I)
with ξ (η(κ), z(κ)) ≥ 0 for all κ ∈ I . By using (i), we get

∣∣T1η(κ) – T2z(κ)
∣∣2 =

∣∣∣∣
∫ 1

0
G1ρ(κ ,κ)

(
g
(
κ,η(κ)

)
–

∫ 1

0
G1
(κ ,κ)f

(
κ, z(κ)

))
dκ

∣∣∣∣
2

≤
[∫ 1

0

(1 – κ)min{ρ,
}–1κmin{ρ,
}–1

Γ (max{ρ,
})
∣∣h(

κ,η(κ)
)

– h
(
κ, z(κ)

)∣∣dκ
]2

≤
[∫ 1

0

1
2
√

2
ϕ(|η(κ) – z(κ)|2)√

4‖(η – z)2‖∞ + 1
dκ

]2



Afshari et al. Advances in Difference Equations        (2020) 2020:461 Page 11 of 13

≤ 1
8

(ϕ(‖(η – z)2‖∞))2

4‖(η – z)2‖∞ + 1
.

Hence, for η, z ∈ C(I), κ ∈ I with ξ (η(κ), z(κ)) ≥ 0, we have

∥∥(T1η – T2z)2∥∥∞ ≤ 1
8

(ϕ(‖(η – z)2‖∞))2

4‖(η – z)2‖∞ + 1
.

Put ρ : C(I) × C(I) → [0, +∞) by

ρ(η, z) =

⎧⎨
⎩

1 ξ (η(κ), z(κ)) ≥ 0, for all κ ∈ I,

0 else.

Setting ϑ : [0, +∞) → [0, 1
4 ) with ϑ(q) = q

4q+1 and s = 2 we can obtain

ρ(η, z)ϕ
(
8 d(T1η, T2z)

) ≤ 8ρ(η, z)ϕ
(
d(T1η, T2z)

)

≤ (ϕ(d(η, z)))2

4d(η, z) + 1

≤ (ϕ(d(η, z)))2

4ϕ(d(η, z)) + 1

=
1

ϑ(ϕ(d(η, z)))
ϑ

(
ϕ
(
d(η, z)

)) (ϕ(d(η, z)))2

4ϕ(d(η, z)) + 1

≤ ϑ
(
ϕ
(
d(η, z)

))
ϕ
(
d(η, z)

)
, ϑ ∈ Ω .

So T1 and T2 obey all the conditions of Theorem 3.2. We find η∗ ∈ C(I) with η∗ = T1η
∗ =

T2η
∗.

Now we claim that the solution of coupled system (1) is unique. By the condition H2 we
have the following.

Either ρ(η∗, ζ ∗) ≥ 0 or ρ(ζ ∗,η∗) ≥ 0 whenever

T1η
∗ = T2η

∗ = η∗

and

T1ζ
∗ = T2ζ

∗ = ζ ∗.

Now, using the condition of H1 in Corollary 3.3, we obtain η∗ = ζ ∗ �

4 Conclusion
Fixed point theory is one of the main tools of pure mathematics that are used to serve
in the development in the qualitative theory of differential and integral equations. For
the last few years, researchers have not only used the traditional fixed point theorems in
proving the existence and uniqueness of solutions to various types of fractional differen-
tial equation, but have developed new fixed point theorems and applied them as well. In
this article, we have developed a new fixed point theorem and utilized it to prove the lo-
cal existence of positive solution to a coupled system of differential equations where the
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Riemann–Liouville fractional derivative is used. We believe that the new fixed point theo-
rem considered here can be used to handle fractional differential equations in the setting
of other derivatives, not only containing singular kernels, but nonsingular kernels as well.
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