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Abstract This study introduces new special two-derivative Runge-Kutta type (STDRKT) methods

involving the fourth derivative of the solution for solving third-order ordinary differential equa-

tions. In this regards, rooted tree theory and the corresponding B-series theory is proposed to derive

order conditions for STDRKT methods. Besides, explicit two-stages fifth order and three-stages

sixth order STDRKT methods are derived and stability,consistency and convergence of STDRKT

methods are analysed in details. Accuracy and effectiveness of the proposed techniques are vali-

dated by a number of various test problems and compared to existing methods in the literature.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

In this paper, we focus on initial value problems of third order

ordinary differential equations (ODEs):
u000 xð Þ ¼ f x; u xð Þ; u0 xð Þ; u00 xð Þð Þ;
u x0ð Þ ¼ a; u0 x0ð Þ ¼ b; u00 x0ð Þ ¼ c; x 2 x0; xend½ �;

�
ð1:1Þ

where u 2 RN; f :¼ R�RN �RN �RN ! RNis a continuous
vector functions.

Third-order ordinary differential equations are often uti-

lised to forecast applied scientific obstacles in the fields of phy-
sics, economics, biology and other disciplines. The usual
approach used to solve third-order ODEs is convert the prob-

lem into first-order ODEs system with initial conditions
u x0ð Þ ¼ u0; u0 x0ð Þ ¼ u00; u00 x0ð Þ ¼ u000 and solved it using partic-

ular first-order methods such as linear multistep methods and
Runge-Kutta methods. However, local truncation error and
rounding error are generated and caused inaccuracy in
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Table 1 STDRKT methods in Butcher tableau.
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approximating the numerical problems. Several direct methods
are widely proposed by researchers in solving third-order ODEs
such as iterative method, Traub’s method, residual power series

method, block method and more (see Chun and Kim [1],
Sharma and Sharma [2], Omar et al.[3], Mehrkanoon[4]).

One of the application problems related to third-order

ODEs is nonlinear Genesio equation, which is widely used to
represent jerk dynamical system and major characteristics of
regular and chaotic motion for jerk system are presented (see

Umut and Yasar [5]). Direct solution was proposed for solving
third-order nonlinear Genesio equation through block hybrid
collocation method (see Yap et al. [6]). Runge-Kutta type
direct integrators with collocation technique for solving

third-order ODEs for a class of implicit RKT methods was
proposed (see You and Chen [7]).

In this research paper, a Runge-Kutta scheme which com-

prises of fourth derivatives for the direct solution of general
third order ODEs is proposed. This method is modified from
existing two derivative Runge-Kutta type methods whereby

the multiple increment function
Pn

i¼1biki in third derivative

is removed and replaced by single function f x; u; u0; u00ð Þ from
the third order numerical problem. The benefits of this method

is to deduct the amount of function evaluation and enhance
the accuracy since the increment function contains of numeri-
cal errors based on the number of stages. Several effective two

derivative Runge-Kutta-Nyström methods with inclusion of
second derivative has been proposed to solve second order
ODEs (see Fang et al. [8], Chen et al. [9], Ehigie et al. [10]

and Mohamed et al. [11]).
The aim of this paper is to derive high order STDRKT

methods with minimal amount of stage k, consists of two-
stages fifth-order and three-stages sixth-order methods. In Sec-

tion 2, general formulation of STDRKT methods is proposed.
In Section 3, B-series and rooted tree theories of proposed
method will be shown and elements of B-series such as integer

function, fundamental differential and density will be derived.
STDRKT methods are developed based on the order condi-
tions obtained from B-series and the stability and convergence

analysis of STDRKT methods is discussed in Section 4 to exhi-
bit the capability of STDRKT. In Section 5, different types of
numerical test are proposed and used to compare with existing

methods to examine the efficiency of STDRKT methods.
Numerical results are shown in Section 6 and the paper ends
with discussion and conclusion in Section 7.

2. The formulation of STDRKT methods

In deriving STDRKT methods, a fourth derivative is com-
prised in the formulation as follow:

u ivð Þ xð Þ ¼ g x; u xð Þ; u0 xð Þ; u00 xð Þð Þ
¼ fx x; u; u0 xð Þ; u00 xð Þð Þ

þ fu x; u xð Þ; u0 xð Þ; u00 xð Þð Þu0 xð Þ
þ fu0 x; u xð Þ; u0 xð Þ; u00 xð Þð Þu00 xð Þ
þ fu00 x; u xð Þ; u0 xð Þ; u00 xð Þð Þf x; u xð Þ; u0 xð Þ; u00 xð Þð Þ:

ð2:2Þ

Evaluation g x; u; u0; u00ð Þ is derived from the derivative of third
derivative. A s-stage special two derivative Runge-Kutta type
method for third-order IVPs is prescribed as follow:
unþ1 ¼ un þ hu0n þ
h2

2
u00n þ

h3

6
f xn; un; u

0
n; u

00
n

� �
þ h4

Xs
i¼1

big xn þ cih;Ui;U
0
i;U

00
i

� �
;

u0nþ1 ¼ u0n þ hu00n þ
h2

2
f xn; un; u

0
n; u

00
n

� �
þ h3

Xs
i¼1

b0ig xn þ cih;Ui;U
0
i;U

00
i

� �
;

u00nþ1 ¼ u00n þ hf xn; un; u
0
n; u

00
n

� �þ h2
Xs
i¼1

b00i g xn þ cih;Ui;U
0
i;U

00
i

� �
;

where

Ui ¼ un þ cihu
0
n þ cihð Þ2

2
u00n þ cihð Þ3

6
f xn; un; u

0
n; u

00
n

� �
þh4

Xs
j¼1

Ai;jg xn þ cih;Uj;U
0
j;U

00
j

� �
;

U0
i ¼ u0n þ cihu

00
n þ cihð Þ2

2
f xn; un; u

0
n; u

00
n

� �
þh3

Xs
j¼1

bAi;jg xn þ cih;Uj;U
0
j;U

00
j

� �
;

U00
i ¼ u00n þ cihf xn; un; u

0
n; u

00
n

� �
þh2

Xs
j¼1

Ai;jg xn þ cih;Uj;U
0
j;U

00
j

� �
;

ð2:3Þ

where ci; bi; b
0
i; b

00
i ;Ai;j

bAi;j;Ai;j; i; j ¼ 1; . . . ; s are positive inte-

gers. This method is able to be converted into Butcher’s

tableau as shown in Table 1.

STDRKT methods are explicit methods if Ai;j; bAi;j and Ai;j

equal to 0 for i 6 j, and are implicit methods otherwise. It just
comprises of one evaluation of f and multiple evaluations of g
for every step, in which total number of function evaluations is

much less than the existing two derivative RK methods which
consist of numerious evaluations of f and g for every step
depending on the amount of stages.

3. Rooted trees, B-series and order conditions for STDRKT

methods

Definition 3.1. STDRKT methods in (2.3) has order p for all

smooth initial value problems in the form (1.1), local trunca-
tion errors for solution and its derivative obey

jju x0þhð Þ�u1jj ¼ jju0 x0þhð Þ�u01jj ¼ jju00 x0þhð Þ�u001 jj ¼O hpþ1
� �

:
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3.1. Rooted trees and theory for B-series

For simplicity purpose, the dependence of u on x will be
ignored in deriving rooted tree for STDRKT methods. Thus,
non-autonnomous problem (1.1) converted into following

autonomous system

v000 ¼
0

0
�f v; v0; v00ð Þ

0B@
1CA;

v x0ð Þ ¼
x0

u0

v0

0B@
1CA; v0 x0ð Þ ¼

1

u00
v00

0B@
1CA; v00 x0ð Þ ¼

0

1

v000

0B@
1CA;

8>>>>>>>><>>>>>>>>:
ð3:5Þ

where v ¼ x; uTð ÞT and �f v; v0; v00ð Þ ¼ f x; u; u0; u00ð Þ. Then,
STDRKT method (2.3) is applied to the autonomous system
(3.5) to yield

Xi ¼ x0þ cih; X0
i ¼ 1; X00

i ¼ 0;

Ui ¼ u0þ cihu
0
0þ cihð Þ2

2
u000 þ cihð Þ3

6
f0þh4

Xs
j¼1

Ai;jg Xj;Uj;U
0
j;U

00
j ;

� �

U0
i ¼ u00þ cihu

00
0 þ cihð Þ2

2
f0þh3

Xs
j¼1

bAi;jg Xj;Uj;U
0
j;U

00
j

� �
;

U00
i ¼ u000 þ cihf0þh2

Xs
j¼1

Ai;jg Xj;Uj;U
0
j;U

00
j

� �
;

i¼ 1; . . . ;s;

x1 ¼ x0þh;

u1 ¼ u0þhu00þ h2

2
u000 þ h3

6
f0þh4

Xs
i¼1

big Xi;Ui;U
0
i;U

00
i ;

� �
x0
1 ¼ 1;

u01 ¼ u00þhu000 þ h2

2
f0þh3

Xs
i¼1

b0ig Xi;Ui;U
0
i;U

00
i

� �
;

x00
1 ¼ 0;

u001 ¼ u000 þhf0þh2
Xs
i¼1

b00i g Xi;Ui;U
0
i;U

00
i

� �
:

ð3:6Þ
By comparing (3.6) and (2.3), application of STDRKT

methods (2.3) to non-autonomous problem (1.1) provides the
same numerical solution as autonomous form (3.5) (see Chen

et al. [9]). Hence, autonomous problem will be considered as
follow

u000 ¼ f u; u0; u00ð Þ
u x0ð Þ ¼ u0; u0 x0ð Þ ¼ u00; u00 x0ð Þ ¼ u000:

ð3:7Þ

For obtaining a general formula for higher derivatives of
analytical solution of problem (3.7), we consider the expression

of first to seventh derivatives of the analytical solution u xð Þ at
x ¼ x0.
u 1ð Þ ¼u0; u 2ð Þ ¼u00; u 3ð Þ ¼ f; u 4ð Þ ¼g;

u 5ð Þ ¼g0uu
0 þg0u0u

00 þg0u00 f;

u 6ð Þ ¼g 2ð Þ
uu u

02þ2g
2ð Þ
uu0u

0u00 þ2g
2ð Þ
uu00u

0fþg
2ð Þ
u0u0u

002

þ2g
2ð Þ
u0u00u

00fþg
2ð Þ
u00u00 f

2þg0uu
00 þg0u0 fþg0u00g;

u 7ð Þ ¼g 3ð Þ
uuuu

03þ3g
3ð Þ
uuu0u

02u00 þ3g
3ð Þ
uuu00u

02fþ3g
3ð Þ
uu0u0u

0u002

þ6g
3ð Þ
uu0u00u

0u00fg 3ð Þ
uu00u00u

0f2þg
3ð Þ
u0u0u0u

003þ3g
3ð Þ
u0u0u00u

002fþ3g
3ð Þ
u0u00u00u

00f2þg
3ð Þ
u00u00u00 f

3

þ3g 2ð Þ
uu u

0u00 þ3g
2ð Þ
uu0u

0f0 þ3g
2ð Þ
uu00u

0gþ3g
2ð Þ
uu00u

00fþ3g
2ð Þ
u0u0u

00fþ3g
2ð Þ
u0u00u

00g

þ3g
2ð Þ
u00u00 fgþgu00g

2ð Þ
uu u

02þ2gu00g
2ð Þ
uu0u

0u00 þ2gu00g
2ð Þ
uu00u

0fþgu00g
2ð Þ
u0u0u

002

þ2gu00g
2ð Þ
u0u00u

00fþgu00g
2ð Þ
u00u00 f

2þgu00g
0
uu

00 þgu00g
0
u0 fþgu00g

0
u00g;

þgufþgu0gþ3guu0u
002þ3gu0u00 f

2;

ð3:8Þ
where the arguments x0ð Þ and u x0ð Þ; u0 x0ð Þ; u00 x0ð Þð Þ are sup-
pressed. The complexity of the expression increases as the

order increases. Thus, geometric representation is utilised to
simplify the expression. There are four types of vertices with
branches connecting them, including ‘‘black circle”, ‘‘white

rectangle”, ‘‘white circle” and ‘‘black triangle”.

1. A black circle vertex, white rectangle, white circle and black
triangle are used to represent u0; u00; f and g respectively.

2. A black triangle vertex comprised of k branches connecting
up to black circle vertex, followed by heading up to white
rectangle vertex with l branches, white circle vertex

branches with m branches and black triangle vertex with

n branches, is used to represent each g kþlþmþnð Þ
u...uu0 ...u0u00...u00f...f , the

k-th partial derivative in terms of u; l-th partial derivative
in terms of y 0;m-th partial derivative with respect to u00

and n-th partial derivative in terms of f.

Following describes the essences of the set of rooted trees
for STDRKT methods.

Definition 3.2. The set RT of rooted trees is recursively

interpreted as

1. The graph ‘‘black circle vertex” containing of root with one

black circle vertex, expressed as s1, belongs to rooted tree;
the graph comprises a black circle vertex subsequently by
a white rectangle vertex, expessed as s2; the graph com-

prises a black circle vertex subsequently by a white rectan-
gle vertex and subsequently followed by white circle vertex,
denoted as s3 and lastly, the graph comprises a black circle

vertex followed by a white rectangle vertex and succeeded
by white circle vertex and black triangle vertex, denoted
as s4;

2. If

t1; . . . ; tr; trþ1; . . . ; tm; tmþ1; . . . ; tn; tnþ1; . . . ; ts 2 RT ; tnþ1; . . . ; ts
different from s1, then the graph can be obtained as the
roots of t1; . . . ; tr connecting downward to white rectangle

vertex, combining the roots of trþ1; . . . ; tm into this white
rectangle vertex, followed by joining the roots tmþ1; . . . ; tn
downward to white circle vertex and sequently to the roots

tn; tnþ1; . . . ; ts into a new black circle vertex, which are com-
ponents of RT. It is expressed as

t¼ t1; . . . ; tr;< trþ1; . . . ; tm >;< tmþ1; . . . ;tn >;< tnþ1; . . . ; ts >½ �4;
ð3:9Þ
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in which new black circle vertex is root of the rooted tree t.

Definition 3.3. The order for the integer function q : RT ! N ,
is recursively denoted as:

1. q s1ð Þ ¼ 1; q s2ð Þ ¼ 2; q s3ð Þ ¼ 3; q s4ð Þ ¼ 4,
2. for t ¼ t1; . . . ; tr; < trþ1; . . . ; tm >;< tmþ1; . . . ; tn >½ �3 2 RT

q tð Þ ¼ 4þ
Xr
i¼1

q tið Þ þ
Xm
i¼rþ1

q tið Þ � 1ð Þ þ
Xn
i¼mþ1

q tið Þ � 2ð Þ:

For every t 2 RT, the order q represents the amount of ver-

tices t. The set comprised of all rooted trees with order k is
expressed as RTk.

Definition 3.4. For every tree t 2 RT, the fundamental differ-

ential is a vector function F tð Þ : Rd � Rd � Rd ! Rd, that is
recursively expressed as follow:

1. F s1ð Þ u; u0; u00ð Þ ¼ y0; F s2ð Þ u; u0; u00ð Þ ¼ u00; F s3ð Þ u; u0; u00ð Þ ¼
f u; u0; u00ð Þ; F s4ð Þ u; u0; u00ð Þ ¼ f 0 u; u0; u00ð Þ ¼ g u; u0; u00ð Þ

2. for t ¼ t1; . . . ; tr; < trþ1; . . . ; tm >;< tmþ1; . . . ; tn >;< tnþ1;½
. . . ; ts >�4 2 RT

F tð Þ u; u0; u00ð Þ
¼ @ng

@ur@u0m�r@u00n�m u; u0; u00ð Þ F t1ð Þ u; u0; u00ð Þ; . . . ;F tnð Þ u; u0; u00ð Þ½ �:
ð3:10Þ

Definition 3.5. An integer function, r : RT ! N is recursively
described as follow:

1. r s1ð Þ ¼ r s2ð Þ ¼ r s3ð Þ ¼ r s4ð Þ ¼ 1,
2. for

t ¼ tl11 ; . . . ; tlrr ; < tlrþ1

rþ1 ; . . . ; t
lm
m >;< tlmþ1

mþ1 ; . . . ; t
ln
n >

� � 2 RT ,
with the condition of t1; . . . ; tr , trþ1; . . . ; tm and tmþ1; . . . ; tn
distinct,

r tð Þ ¼
Yn
i¼1

li! r tið Þlið Þ;

in which li is product of ti for i ¼ 1; . . . ; n. Referring the

rooted trees of B-series for Runge-Kutta methods devel-
oped by Hairer et al. [12], the set RK of STDRKT methods
in B-series is defined.

Definition 3.6. For function b : RT [ £f g ! R, the form

B b; u; u0; u00ð Þ ¼ b £ð Þyþ
X
t2RT

hq tð Þ

r tð Þb tð ÞF tð Þ u; u0; u00ð Þ;

is labeled as B-series.
The lemma below is utilised for deriving the order

conditions for STDRKT methods.

Lemma 3.1. Let three mappings, �b : RT [ £f g !
R; b̂ : RT ! R and b : RT ! R satisfy �b £ð Þ ¼ 1; b̂ s1ð Þ ¼ 1
and b s2ð Þ ¼ 1, then
h4g B �b; u; u0; u00
� �

;B q
h b̂; u; u

0; u00
� �

;B q q�1ð Þ
h2

b; u; u0; u00
� �� �

is

also B-series.

h4g B �b; u; u0; u00
� �

;B
q
h
b̂; u; u0; u00

� �
;B

q q� 1ð Þ
h2

b; u; u0; u00
	 
	 


¼ B b 4ð Þ; u; u0; u00
� �

;

with

b 4ð Þ £ð Þ ¼ b 4ð Þ s1ð Þ ¼ b 4ð Þ s2ð Þ ¼ b 4ð Þ s3ð Þ ¼ 0; b 4ð Þ s4ð Þ ¼ 1;

and for q tð Þ P 5.

b 4ð Þ ¼
X
�t

Yr
i¼1

�b �tið Þ �
Ym
i¼rþ1

q �tið Þb̂ �tið Þ �
Yn

i¼mþ1

q �tið Þ q �tið Þ � 1ð Þb �tið Þ
 !

in which the summation replaces all the trees t with

�t ¼ �t1; . . . ; �tr; < �trþ1; . . . ; �tm >;< �tmþ1; . . . ; �tn >½ �3 ¼ t n s4½ �3.

Theorem 3.1. Given the analytical solution u x0 þ hð Þ of Eq.

(1.1) is B-series B e; u0; u
0
0; u

00
0

� �
with real function e prescribed

on RT [ £f g, then

e £ð Þ ¼ 1; e s1ð Þ ¼ 1; e s2ð Þ ¼ 1

2
; e s3ð Þ ¼ 1

6
;

and for t ¼ t1; . . . ; tr; < trþ1; . . . ; tm >;< tmþ1; . . . ; tn >½ �3,

e tð Þ ¼ 1

q tð Þ q tð Þ � 1ð Þ q tð Þ � 2ð Þ
Yr
i¼1

e tið Þ
Ym
i¼rþ1

q tið Þe tið Þ
Yn

i¼mþ1

q tið Þ

� q tið Þ � 1ð Þe tið Þ:
Proof of Theorem 3.1 By assumption,

u x0 þ hð Þ ¼ B e; u0; u
0
0; u

00
0

� �
¼ e £ð Þu0 þ he s1ð Þu0 0ð Þ þ h2e s2ð Þu000
þh3e s3ð Þf u0; u

0
0; u

00
0

� �
þ

X
t2RTn s1 ;s2 ;s3f g

hq tð Þ
r tð Þ e tð ÞF tð Þ u0; u

0
0; u

00
0

� �
:

ð3:11Þ

First two derivatives of y x0 þ hð Þ are shown below

u x0þhð Þð Þ0 ¼ d
dh

u x0þhð Þð Þ
e s1ð Þu0 0ð Þþ2he s2ð Þu000 þ3h2e s3ð Þf u0;u

0
0;u

00
0

� �
þ

X
t2RTn s1 ;s2 ;s3f g

q tð Þhq tð Þ�1

r tð Þ e tð ÞF tð Þ u0;u
0
0;u

00
0

� �
¼ q

h
e;u0;u

0
0;u

00
0

� �
u x0þhð Þð Þ00 ¼ d2

dh2
u x0þhð Þð Þ¼ 2e s2ð Þu000 þ6he s3ð Þf u0;u

0
0;u

00
0

� �
þ

X
t2RTn s1 ;s2 ;s3f g

q tð Þ q tð Þ�1ð Þhq tð Þ�2

r tð Þ e tð ÞF tð Þ u0;u
0
0;u

00
0

� �
¼B q q�1ð Þ

h2
e;u0;u

0
0;u

00
0

� �
ð3:12Þ

From Lemma 3.1,
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g B e; u0; u
0
0; u

00
0

� �
;B

q
h
e; u; u0; u00

� �
;B

q q� 1ð Þ
h2

e; u; u0; u00
	 
	 


¼ e00 s3ð Þf u0; u
0
0; u

00
0

� �þ X
t2RTn s1 ;s2 ;s3f g

hqÞ�2

r tð Þ e
00 tð ÞF tð Þ u0; u

0
0; u

00
0

� �
where e00 s2ð Þ ¼ 1 and for t ¼ t1; . . . ; tr; < trþ1; . . . ; tm >;< tmþ1;½
. . . ; tn >�3 2 RT n s1; s2; s3f g

e00 tð Þ ¼
Yr
i¼1

e tið Þ
Ym
i¼rþ1

q tið Þe tið Þ
Yn

i¼mþ1

q tið Þ q tið Þ � 1ð Þe tið Þ ð3:13Þ

Combining (3.11) and (3.12) into autonomous problem of (1.1)
and coefficients of the fundamental differential are compared

on the both sides, yield

e s2ð Þ ¼ 1

2
; e s3ð Þ ¼ 1

6

and for t ¼ t1; . . . ; tr;< trþ1;½ . . . ; tm >;< tmþ1;. . . ; tn >�3
2 RT n s1; s2; s3f g

e tð Þ ¼ 1

q tð Þ q tð Þ � 1ð Þ q tð Þ � 2ð Þ
Yr
i¼1

e tið Þ
Ym
i¼rþ1

q tið Þe tið Þ
Yn

i¼mþ1

q tið Þ

� q tið Þ � 1ð Þe tið Þ: �

Lastly, by referring to Taylor series expansion of u x0 þ hð Þ
around h ¼ 0; e £ð Þ ¼ e s1ð Þ ¼ 1; e s2ð Þ ¼ 2; e s3ð Þ ¼ 6.

For each t 2 RT, both density and positive integer can be

defined as c tð Þ ¼ 1
e tð Þ and a tð Þ ¼ q tð Þ!

r tð Þc tð Þ. Two propositions can

be derived based on Theorem 3.1.

Proposition 3.1. For every tree t 2 RT, density c tð Þ is defined as
positive integer function on set RT with

1. c s1ð Þ ¼ 1; c s2ð Þ ¼ 2; c s3ð Þ ¼ 6,
2. for t ¼ t1; . . . ; tr; < trþ1; . . . ; tm >;< tmþ1; . . . ; tn >½ �3

2 RT ,c tð Þ ¼ q tð Þ q tð Þ � 1ð Þ q tð Þ � 2ð ÞQr
i¼1 c tið ÞQm

i¼rþ1
c tið Þ
q tið Þ
Qn

i¼mþ1
c tið Þ

q tið Þ q tið Þ�1ð Þ.

Proposition 3.2. For every tree t 2 RT, positive integer a tð Þ
fulfils

1. a s1ð Þ ¼ 1; a s2ð Þ ¼ 1; a s3ð Þ ¼ 1,

2. for t ¼ tl11 ; . . . ; tlrr ; < tlrþ1

rþ1 ; . . . ; t
lm
m >;< tlmþ1

mþ1 ; . . . ; t
ln
n >

� �
3

2 RT , whereby t1; . . . ; tr distinct, trþ1; . . . ; tm distinct and

tmþ1; . . . ; tn distinct,

a tð Þ ¼ q tð Þ � 3ð Þ!
Yr
i¼1

1
li !

a tið Þ
q tið Þ!

� �li Ym
i¼rþ1

1
li !

a tið Þ
q tið Þ�1ð Þ!

� �li
�
Yn

i¼mþ1

1
li !

a tið Þ
q tið Þ�2ð Þ!

� �li
;

ð3:14Þ

where li is the product of ti; i ¼ 1; . . . ; n.

Here, B-series can be defined as

B b; u; u0; u00ð Þ ¼ b £ð Þuþ
X
t2RT

hq tð Þ

q tð Þ! b tð Þc tð Þa tð ÞF tð Þ u; u0; u00ð Þ;

ð3:15Þ
and g B �b; u; u0; u00
� �

;B b̂; u; u0; u00
� �

;B b; u; u0; u00ð Þ
� �

can be

denoted as

g B �b; u; u0; u00
� �

;B b̂; u; u0; u00
� �

;B b; u; u0; u00ð Þ
� �
¼

X
t2RTn s1 ;s2 ;s3f g

hq tð Þ�4

q tð Þ! b
4ð Þ tð Þc tð Þa tð ÞF tð Þ u; u0; u00ð Þ: ð3:16Þ
3.2. Analytical solution and exact derivative on B-series

Theorem 3.2. The analytical solution u x0 þ hð Þ and the deriva-
tive u0 x0 þ hð Þ and u00 x0 þ hð Þ of the problem (3.7) have the
forms as follow

u x0þhð Þ ¼ u0þ
X
t2RT

hq tð Þ
q tð Þ!a tð ÞF tð Þ u0;u

0
0;u

00
0

� �¼B ar
q! ;u0;u

0
0;u

00
0

� �
¼B 1

c ;u0;u
0
0;u

00
0

� �
;

ð3:17Þ

u0 x0 þ hð Þ ¼ u00 þ
X
t2RT

hq tð Þ�1

q tð Þ�1ð Þ! a tð ÞF tð Þ u0; u
0
0; u

00
0

� �
¼ B ar

h q�1ð Þ! ; u0; u
0
0; u

00
0

� �
¼ B q

hc ; u0; u
0
0; u

00
0

� �
;

ð3:18Þ

u00 x0 þ hð Þ ¼ u000 þ
X
t2RT

hq tð Þ�2

q tð Þ�2ð Þ! a tð ÞF tð Þ u0; u
0
0; u

00
0

� �
¼ B ar

h2 q�2ð Þ! ; u0; u
0
0; u

00
0

� �
¼ B q q�1ð Þ

h2c
; u0; u

0
0; u

00
0

� �
:

ð3:19Þ

Proof of Theorem 3.2. The conclusion is based on Theorem 3.1
and the expression (3.15). h
3.3. Numerical solution and numerical derivative on B-series

For setting up B-series concerning of numerical solution of u1
and its numerical derivatives, u01 and u001 of the problem (3.7)

produced by STDRKT methods, Ui;U
0
i and U00

i are expanded

as B-series as Ui ¼ B �Wi; u0; u
0
0; u

00
0

� �
;U0

i ¼ B q
h
Ŵi; u0; u

0
0; u

00
0

� �
and U00

i ¼ B q q�1ð Þ
h2

Wi; u0; u
0
0; u

00
0

� �
respectively. Hence, the first

three equations in (2.3) become

B �Wi;u0;u
0
0;u

00
0

� �¼ u0þ cihu
0
0þ cihð Þ2

2
u000 þ cihð Þ3

6
f0

þh4
Xs
j¼1

Ai;jg B �Wj;u0;u
0
0;u

00
0

� �
;B q

h
Ŵj;u0;u

0
0;u

00
0

� �
;B q q�1ð Þ

h2
Wj;u0;u

0
0;u

00
0

� �� �
;

B q
h
Ŵi;u0;u

0
0;u

00
0

� �
¼ u00þ cihu

00
0 þ cihð Þ2

2
f0

þh3
Xs
j¼1

bAi;jg B �Wj;u0;u
0
0;u

00
0

� �
;B q

h
Ŵj;u0;u

0
0;u

00
0

� �
;B q q�1ð Þ

h2
Wj;u0;u

0
0;u

00
0

� �� �
;

B q q�1ð Þ
h2

Wi;u0;u
0
0;u

00
0

� �
¼ u000 þ cihf0

þh2
Xs
j¼1

Ai;jg B �Wj;u0;u
0
0;u

00
0

� �
;B q

h
Ŵj;u0;u

0
0;u

00
0

� �
;B q q�1ð Þ

h2
Wj;u0;u

0
0;u

00
0

� �� �
:

ð3:20Þ
Referring to (3.15) and (3.16), the previous three equations can
be expressed as
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�Wi £ð Þuþ
X
t2RT

hq tð Þ
q tð Þ!

�Wi tð Þc tð Þa tð ÞF tð Þu0;u00;u000Þ

¼u0þcihu
0
0þ cihð Þ2

2
u000þ cihð Þ3

6
f0

þ
Xs
j¼1

X
RTn s1 ;s2 ;s3f g

hq tð Þ
q tð Þ!Ai;jW

4ð Þ
j tð Þc tð Þa tð ÞF tð Þ u0;u

0
0;u

00
0

� �
;

X
t2RT

hq tð Þ�1

q tð Þ�1ð Þ!Ŵi tð Þc tð Þa tð ÞF tð Þ u0;u
0
0;u

00
0

� �
¼u00þcihu

00
0þ cihð Þ2

2
f0

þ
Xs
j¼1

X
RTn s1 ;s2 ;s3f g

hq tð Þ�1

q tð Þ!
bAi;jW

4ð Þ
j tð Þc tð Þa tð ÞF tð Þ u0;u

0
0;u

00
0

� �
;

X
t2RT

hq tð Þ�2

q tð Þ�2ð Þ!Wi tð Þc tð Þa tð ÞF tð Þu0;u00;u000Þ

¼u000þcihf0þ
Xs
j¼1

X
RTn s1 ;s2 ;s3f g

hq tð Þ�2

q tð Þ! Ai;jW
4ð Þ
j tð Þc tð Þa tð ÞF tð Þ u0;u

0
0;u

00
0

� �
;

ð3:21Þ
It follows

�Wi £ð Þ ¼ 1; �Wi s1ð Þ ¼ ci; �Wi s2ð Þ ¼ cið Þ2
2
; �Wi s3ð Þ ¼ cið Þ3

6
;

�Wi s4ð Þ ¼
Xs
j¼1

Ai;jW
4ð Þ
j ¼

Xs
j¼1

Ai;j; Ŵi s1ð Þ ¼ 1; Ŵi s2ð Þ ¼ ci;

Ŵi s3ð Þ ¼ cið Þ2
2
;

Ŵi s4ð Þ ¼
Xs
j¼1

bAi;jW
4ð Þ
j ¼

Xs
j¼1

bAi;j; Wi s2ð Þ ¼ 1; Wi s3ð Þ ¼ ci;

Wi s4ð Þ ¼
Xs
j¼1

Ai;jW
4ð Þ
j ¼

Xs
j¼1

Ai;j;

ð3:22Þ
and

�Wi tð Þ ¼
Xs
j¼1

Ai;jW
4ð Þ
j tð Þ; Ŵi tð Þ ¼

Xs
j¼1

bAi;jW
4ð Þ
j tð Þ; Wi tð Þ

¼
Xs
j¼1

Ai;jW
4ð Þ
j tð Þ: ð3:23Þ

Moreover, for trees t ¼ t1; . . . ; tr; < trþ1; . . . ; tm >;< tmþ1;½
. . . ; tn >�3 2 RT and q tð Þ P 5, Lemma 3.1 obtains

W 4ð Þ
j tð Þ ¼

X
�t

Yr
i¼1

�Wj �tið Þ
Ym
i¼rþ1

Ŵj �tið Þ
Yn

i¼mþ1

Wj �tið Þ
 !

; ð3:24Þ

in which the sum replaces all trees �t satiating
t ¼ t1; . . . ; tr; < trþ1; . . . ; tm >;< tmþ1; . . . ; tn >½ �3 ¼ t n s4½ �3.

Inserting (3.23) into (3.24), yields

W 4ð Þ
j tð Þ ¼ um�t

Yr
i¼1

Xs
k¼1

Aj;kW
4ð Þ
k

�tið Þ �
Ym
i¼rþ1

Xs
k¼1

bAj;kW
4ð Þ
k

�tið Þ
 

�
Yn

i¼mþ1

Xs
k¼1

Aj;kW
4ð Þ
k

�tið Þ
!
: ð3:25Þ
Denote W 4ð Þ
j tð Þ ¼ Uj tð Þ for all trees t¼ t1; . . . ;tr;< trþ1; . . . ;tm >;½

< tmþ1; . . . ;tn >�3 2RT and q tð ÞP 5. Then (27) can be tran-

scribed as

Uj tð Þ ¼
X
�t

Yr
i¼1

Xs
k¼1

Aj;kUk �tið Þ �
Ym
i¼rþ1

Xs
k¼1

bAj;kUk �tið Þ �
Yn

i¼mþ1

Xs
k¼1

Aj;kUk �tið Þ
 !

:

ð3:26Þ
where t ¼ t1; . . . ; tr; < trþ1; . . . ; tm >;< tmþ1; . . . ; tn >½ �3 ¼
t n s4f g½ �. Propositions below shows the values of Ui tð Þ for all
trees in RT.

Proposition 3.3. The function Ui on RT n s1; s2f g can be
calculated coercively as follow:
1. Ui s3ð Þ ¼ 0; Ui s4ð Þ ¼ 1,
2. for

t ¼ tl11 ; . . . ; tlrr ; < tlrþ1

rþ1 ; . . . ; t
lm
m >;< tlmþ1

mþ1 ; . . . ; t
ln
n >

� �
3
2 RT ,

with t2; . . . ; tr distinct and disperate from s1; trþ1; . . . ; tm dis-
tinct and tmþ1; . . . ; tn distinct,

Ui tð Þ ¼ c
l1
i

Yr
k¼2

Xs
j¼1

Ai;jUj �tið Þ
 !lk

�
Ym

k¼rþ1

Xs
j¼1

bAi;jUj �tið Þ
 !lk

�
Yn

k¼mþ1

Xs
j¼1

Ai;jUj �tið Þ
 !lk

;

ð3:27Þ
where l1 is the product of s1 and lk is the product of tk for
k ¼ 2; . . . ; n,

3. for t 2 RT and q tð Þ P 5,�t= sl11 ;�tl22 ; . . . ;�tlrr ;<�tlrþ1

rþ1 ; . . . ;�t
lm
m >;

�
<�tlmþ1

mþ1 ; . . . ;�t
ln
n >�3 = t n s4½ �3 with �t2; . . . ;�tr distinct and dis-

parate from s1 and �trþ1; . . . ;�tn distinct,

�Ui tð Þ ¼
X
�t

Ui �tð Þ;

where l1 is the product of s1 and lk is the product of tk for
k ¼ 2; . . . ; n.

Hereby, we indicate the vectors U tð Þ ¼ U1 tð Þ; . . . ;Us tð Þð ÞT
for t 2 RT n s1; s2; s3f g. The rooted trees with order up to nine
with the values of related functions are listed in Table 2.

Elementary weight for y1, expressed as / tð Þ and can be formed
as follow

/ tð Þ ¼
Xs
i¼1

biUi tð Þ ¼ bTU tð Þ;

and elementary weight for u0 and u00 are expressed as /0 tð Þ and
/00 tð Þ respectively.

/0 tð Þ ¼
Xs
i¼1

b0iUi tð Þ ¼ b0TU tð Þ; /00 tð Þ ¼
Xs
i¼1

b00i Ui tð Þ ¼ b00TU tð Þ:

ð3:28Þ
Therefore, the numerical solution u1 and its numerical derivative,
u01 and u001 of the numerical problem generated by STDRKT

methods have following B-series



Table 2 Root trees for STDRKT methods up to order nine.

(continued on next page)
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u1 x0 þ hð Þ ¼ u0 þ hu00 þ h2

2
u000 þ h3

6
f0

þ
X

t2RTn s1 ;s2 ;s3f g

hq tð Þ
q tð Þ!/ tð Þc tð Þa tð ÞF tð Þ u0; u

0
0; u

00
0

� �
;

u01 x0 þ hð Þ ¼ y00 þ hy000 þ h2

2
f0

þ
X

t2RTn s1 ;s2 ;s3f g

hq tð Þ�1

q tð Þ! / tð Þc tð Þa tð ÞF tð Þ u0; u
0
0; u

00
0

� �
;

u001 x0 þ hð Þ ¼ y000 þ hf0 þ
X

t2RTn s1 ;s2 ;s3f g

hq tð Þ�2

q tð Þ! / tð Þc tð Þa tð ÞF tð Þ u0; u
0
0; u

00
0

� �
:

ð3:29Þ
All the rooted trees for STDRKT methods up to order seven and

selected rooted trees comprised of all order conditions for
STDRKT methods with order eight and nine are shown in Table
2. The selection of rooted trees with order eight and nine is based

on the terms of / tð Þ that crucial in deriving all order conditions
with order eight and nine. Duplication of the term for / tð Þ will be
eliminated and that rooted trees are not listed in Table 2 due to

the concern of yielding large quantity of pages.
4. Development of STDRKT methods

Coefficients of STDRKT methods are determined as given in
(3.5).

Order conditions for explicit STDRKT methods are listed
as follow.

The order conditions for u:

Fourth order:

bTe ¼ 1

24
: ð4:29Þ

Fifth order:

bTc ¼ 1

120
: ð4:30Þ

Sixth order:

bTc2 ¼ 1

360
; bTAe ¼ 1

720
: ð4:31Þ

Seventh order:

bTc3 ¼ 1

840
; bT bAe ¼ 1

5040
; bTAc

¼ 1

5040
; bTcAe ¼ 1

1680
: ð4:32Þ

The order conditions for u0:
Third order:

b0Te ¼ 1

6
: ð4:33Þ

Fourth order:

b0Tc ¼ 1

24
: ð4:34Þ

Fifth order:

b0Tc2 ¼ 1

60
; b0TAe ¼ 1

120
: ð4:35Þ

Sixth order:

b0Tc3 ¼ 1

120
; b0T bAe ¼ 1

720
; b0TAc ¼ 1

720
;

b0TcAe ¼ 1

240
: ð4:36Þ
Seventh order:

b0Tc4 ¼ 1
210

; b0T 1
2
Ac2 þ bAc

� �
¼ 1

5040
; b0TAe ¼ 1

5040
;

b0Tc2Ae ¼ 1
420

; b0TA � Ae
� � ¼ 1

5040
; b0Tc bAe ¼ 1

1260
;

b0T c � Acþ Ac2
� � ¼ 1

2520
; b0T Ae

� �2 ¼ 1
1260

:

ð4:37Þ
The order conditions for u00:

Second order:

b00Te ¼ 1

2
: ð4:38Þ

Third order:

b00Tc ¼ 1

6
: ð4:39Þ

Fourth order:

b00Tc2 ¼ 1

12
; b00TAe ¼ 1

24
: ð4:40Þ

Fifth order:

b00Tc3 ¼ 1

20
; b00T bAe ¼ 1

120
; b00TAc

¼ 1

120
; b00TcAe ¼ 1

40
: ð4:41Þ

Sixth order:

b00Tc4 ¼ 1
30
; b00Ti

1
2
Ac2 þ bAc

� �
¼ 1

720
; b00TAe ¼ 1

720
;

b00Tc2Ae ¼ 1
60
; b00TA � Ae

� � ¼ 1
720

; b00Tc bAe ¼ 1
180

;

b00T c � Acþ Ac2
� � ¼ 1

360
; b00T Ae

� �2 ¼ : 1
180

ð4:42Þ
Seventh order:

b00Tc5¼ 1
42
; b00Tc 1

2
Ae
� �2þA �Ae

� �
¼ 1

336
; b00Tc �Ac2¼ 1

630
;

b00T 1
3
Ac3þc2 �Ac� �¼ 1

2520
; b00T 1

2
Ac3þ1

2
c2 �Acþc � bAc

� �
¼ 1

1680
;

b00Tc3 �Ae¼ 1
84
; b00T 1

2
c �Ac2þAc2

� �¼ 1
840

; b00Tc2 � bAe¼ 1
252

b00T 1
2
bAc2þc � bAc

� �
¼ 1

2520
; b00T bA �AeþA � bAe

� �
¼ 1

504
;

b00T 1
6
Ac3þAc

� �¼ 1
5040

; b00Tc �Ae¼ 1
1008

;

b00T Ac �AeþcA �Ae� �¼ 1
720

:

ð4:43Þ
The simplifying assumption is utilised in generating parame-

ters of STDRKT methods as follow:Xn
i

Ai;j ¼ c4i
24

: ð4:44Þ
4.1. Two stage STDRKT method of order five

Order conditions up to order five in the equations u, u0 and u00,
comprised of Eqs. (4.29), (4.30), (4.33), (4.34) and (4.35),

(4.38), (4.39), (4.40), (4.41) and (4.42) are used to derive the
fifth-order STDRKT method. Simplified assumption (4.44) is
used to obtain parameters of the methods. This system

has no free parameter but yield a unique solution.
Truncation error norms for un; u

0
n and u00n are given by
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jjs 6ð Þjj ¼ 1:389�10�3; jjs0 6ð Þjj ¼ 2:196�10�3; jjs00 6ð Þjj ¼ 1:440�10�2 with

the global truncation error term, jjs 6ð Þ
g jj2 ¼ 1:463� 10�2.

Parameters of the new method are given in Butcher tableau

and denoted by STDRKT2(5) shown in Table 3:

4.2. Three stage STDRKT method of order six

Order conditions up to order six in the equations u, u0 and u00

comprised of Eqs. (4.29), (4.30) and (4.31), (4.33), (4.34), (4.35)
and (4.36), (4.38), (4.39), (4.40), (4.41) and (4.42) are used to
derive the sixth-order STDRKT method. The resulting system

contains two free parameters, A3;1 and A3;2.

A2;1 ¼ �5
1

2
� 1

10

ffiffiffi
5

p	 

A3;1 � 5

1

2
� 1

10

ffiffiffi
5

p	 

A3;2

þ A3;1 þ A3;2 þ 1

120
� 1

600

ffiffiffi
5

p
ð4:45Þ

Minimizing error equations of seventh order conditions are

utilised to select the parameters that generate minimum
value of truncation error norms for un; u

0
n and u00n. Minimising

error equations generate jjs 7ð Þjj ¼ 1:141� 10�4; jjs0 7ð Þjj ¼
1:731� 10�3 and jjs00 7ð Þjj ¼ 3:460� 10�3 with the global

truncation error of jjs 7ð Þ
g jj2 ¼ 3:871� 10�3, yielding, A3;1 ¼

2144
223443

; A3;2 ¼ 225
101651

. Then, these values are substituted into

(4.44) and obtain A2;1 ¼ 6167
64229898

The coefficients of the new

method presented in Butcher tableau and denoted by

STDRKT3(6) as seen in Table 4:
Next, we discuss the properties of STDRKT methods,

including zero stability, consistency and convergence.

Definition 4.1. The numerical method with order p is zero
stable if numerical solutions remain bounded in the limit
h ! 0, with the modulus of roots for the first characteristic
polynomial are less than or equal to zero. [13]

STDRKT methods can be transformed into matrix finite
difference equation as follow

IUnþ1 ¼ AUn þ h3 B � Fnð Þ þ h4 C � Gnð Þ; ð4:46Þ
Table 4 The STDRKT3(6) method.

0 0 0

c2 A2;1 0 bA2;1

c3 A3;1 A3;2 0 bA3;1

b1 b2 b3 b01

where A2;1 ¼ 1609
6616950 ;A3;1 ¼ 6764

734409 ;A3;2 ¼ 253
114305 ;

bA2;1 ¼ 6503
1847919 ;

bA3;1 ¼

b1 ¼ 1
72 ; b2 ¼ 94667

3597934 ; b3 ¼ 2092
1426731 ; b

0
1 ¼ 1

24 ; b
0
2 ¼ 67297

616924 ; b
0
3 ¼ 5473

343884 ; b
00
1 ¼ 1

12 ; b

Table 3 The STDRKT2(5) method.

0 0 0
1
2

1
384

0 1
40

1
40

1
60

1
12
where

Unþ1= unþ1; hu
0
nþ1; h

2u00nþ1

� �T
;Un=-

un; hu
0
n; h

2u00n
� �T

;Fn ¼ fn; fn; fn½ �T;Gn ¼ gn; gn; gn½ �T;A;B and C

are matrices 3� 3. In STDRKT methods, knowing that

A ¼
1 1 1

2

0 1 1

0 0 1

0B@
1CA:

Then,

In� A ¼
n� 1 1 1

2

0 n� 1 1

0 0 n� 1

0B@
1CA:

First characteristic polynomial can be defined as

p nð Þ ¼ det In� A½ � ¼ n� 1ð Þ3: ð4:47Þ
Thus, STDRKT method is zero stable by reason of the roots,
ni ¼ 1; i ¼ 1; 2; 3, are less than or equal to one.

Definition 4.2. The method is consistent with the order at least

p if and only if local truncational error, Tpþ1 ¼ O hpþ1
� �

as

h ! 0 (see Suli [14]).

We considered explicit STDRKT methods in the class as

follow:

Xr
j¼0

ajunþj¼
Xr�1

j¼0

hbju
0
nþjþh2cju

00
nþjþh3djfnþj

� �
þ
Xr�1

j¼0

h4 /g unþr�1;...;un;u
0
nþr�1;...;u

0
n;u

00
nþr�1;...;u

00
n

� �
:

�
ð4:48Þ

On putting r ¼ 1, then

a1 ¼ 1; a0 ¼ �1; b0 ¼ 1; c0 ¼ 1
2
; d0 ¼ 1

6
;

/g u00n ; u
0
n; un; xn; h

� � ¼Xs
i¼1

biki; i ¼ 1; 2; 3; . . . ; s
ð4:49Þ
0

0 A2;1 0bA3;2
0 A3;1 A3;2 0

b02 b03 b001 b002 b003
18869
298808 ;

bA3;2 ¼ 0;A2;1 ¼ 15066
394433 ;A3;1 ¼ � 22733

421493 ;A3;2 ¼ 109801
347760 ;

00
2 ¼ 109801

364179 ; b
00
3 ¼ 43796

380293 ; c2 ¼ 28657
103682 ; c3 ¼ 75025

103682.

0

0 1
8

0

1
12

1
6

1
3



Fig. 1 Illustration of thin films flow of viscous fluid with

u000 ¼ u�2.
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where ki ¼ f xn þ cih; un þ hu0n þ h2

2
u00n þ h3

6
fn þ h4

Ps
j¼1ai;jkj

� �
.

The condition for (4.47) to be consistent are

Xr
j¼0

aj ¼ 0;
Xr
j¼0

jaj �
Xr�1

j¼0

bj ¼ 0;
Xr
j¼0

j2

2
aj �

Xr�1

j¼0

cj ¼ 0;

Xr
j¼0

j3

3!
aj �

Xr�1

j¼0

dj ¼ 0;
/g u00 xnð Þ;...;u00 xnð Þ;u0 xnð Þ;...;u0 xn ;u xnð Þ;...;u xnð Þ;xn ;0ð Þð ÞXr

j¼0

j4

4!aj

¼ g xn; u xnð Þ; u0 xnð Þ; u00 xnð Þð Þ:
ð4:50Þ

Applying the conditions (4.49), the necessary and sufficient
condition for STDRKT methods to acquire consistency is

/g y00 xnð Þ; y0 xnð Þ; y xnð Þ; xn; 0ð Þ

¼ g xn; yn; y
0
n; y

00
n

� �()
Xs
i¼1

bi ¼ 1

24
: ð4:51Þ

Here, local truncation error, Tnþ1 at xnþ1 is expressed as the

residual when unþj; u0n; u00n is replaced by

u xnþj

� �
; u0 xnð Þ; u00 xnð Þ; j ¼ 0; 1,which is

Tnþ1 ¼u xnþ1ð Þþhu0 xnþ1ð Þþh2

2
u00 xnþ1ð Þ

þh3

6
f xnþ1;y xnþ1ð Þ;y0 xnþ1ð Þ;y00 xnþ1ð Þð Þ

� u xnð Þþhu0 xnð Þþh2

2
u00 xnð Þþh3

6
f xn;u xnð Þ;u0 xnð Þ;u00 xnð Þð Þ

h i
�h4/g u00 xnð Þ;u0 xnð Þ;u xnð Þ;xn;hð Þ;

ð4:52Þ
where /g is defined in (4.49). Assuming that p is the largest

integer whereby Tnþ1 ¼ O hpþ1
� �

, then the method has order

p (see Lambert [16]). We denote by ~unþ1 the value at xnþ1 gen-

erated by STDRKT methods when the localising assumption,
un ¼ u xnð Þ is made. Since

~unþ1 ¼ un þ hu0n þ
h2

2
u00n þ

h3

6
f xn; un; u

0
n; u

00
n

� �
þ h4/g u00n ; u

0
n; un; xn; h

� �
: ð4:53Þ

Then we have

u xnþ1ð Þþhu0 xnþ1ð Þþ h2

2
u00 xnþ1ð Þþ h3

6
f xnþ1;u xnþ1ð Þ;u0 xnþ1ð Þ;u00 xnþ1ð Þð Þ

�~unþ1 ¼Tnþ1:

ð4:54Þ
STDRKT methods are consistent if they follow (4.49) that

u xnþ1ð Þþhu0 xnþ1ð Þþ h2

2
u00 xnþ1ð Þþ h3

6
f xnþ1;u xnþ1ð Þ;u0 xnþ1ð Þ;ð

u00 xnþ1ð Þ� u xnð Þþhu0 xnð Þþ h2

2
u00 xnð Þþ h3

6
f xn;u xnð Þ;u0 xnð Þ;u00 xnð Þð Þ

h i
¼ h4

24
f0 xn;un;u

0
n;u

00
n

� �� h4

24
g xn;un;u

0
n;u

00
n

� �þO h5
� �

:

ð4:55Þ
By reason of f0 xn; u xnð Þ; u0 xnð Þ; u00 xnð Þð Þ ¼ g xn; un; u

0
n; u

00
n

� �
;Tnþ1

for STDRKT methods is equal to O h5
� �

, it shows that

STDRKT methods are consistent if their order is at least 4,

which is in line with our definitions of order for linear multi-
step methods. Since the order of STDRKT methods is at least
4, and hence, this method is consistent.

Convergence is a property of numerical method related
to truncation errors that ensures the numerical solution
converges onto the exact solution and the global truncation

error goes to zero at all step size indices in the limit 4h ! 0
(see Atkinson [15]). Maximum absolute global truncation error
between the analytical solution and numerical solution the gets

smaller as the step size becomes lesser.
Definition 4.3. The numerical method is convergent iff acquir-

ing the properties of zero stability and consistency. (see Lam-
bert [16])

Since STDRKT methods are zero-stable and consistent,
implies that STDRKT methods are convergent.
5. Problem testing and numerical result

Efficiency of the new methods with order five and six are

examined on selected numerical problems for comparison pur-
pose. Below are the numerical methods utilised to be
compared:

� STDRKT3(6) - Newly proposed special explicit two-
derivative Runge-Kutta type method of six algebraic order
proposed.

� STDRKT2(5) - Newly proposed special explicit two-
derivative Runge-Kutta type method of five algebraic order
proposed.

� RK5 - Runge-Kutta fifth-order method (proposed by
Butcher) (Source: Goeken [17])

� RKDP45 - Runge-Kutta Dormand-Prince method (pro-
posed by Dormand [18])

� RK6 - Rung-Kutta sixth-order method (proposed by Luther
[19]) e

� RK6S - Runge-Kutta sixth-order method (proposed by Al-

Shimmary [20])
Problem 1 Consider the linear homogeneous problem

u000 ¼ �u0; u 0ð Þ ¼ 0; u0 0ð Þ ¼ 1; u00 0ð Þ ¼ 2; x 2 0; 20½ �
whose analytic solution is u xð Þ ¼ 2 1� cos xð Þ þ sin x.Source:
Yap et al. [6].
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Problem 2 Consider the linear nonhomogeneous problem

u000 ¼ u2 þ cos xð Þ2 � cos x� 1; u 0ð Þ ¼ 0; u0 0ð Þ ¼ 1; u00 0ð Þ ¼ 0;

x 2 0; 10½ �
whose analytic solution is u xð Þ ¼ 2u xð Þu0 xð Þ � 2 cos x sinxþ
sinx.Source: Mechee et al. [21].

Problem 3 Consider the linear nonhomogeneous problem

u000 ¼ u00 � u0 þ uþ ex; u 0ð Þ ¼ 1; u0 0ð Þ ¼ 1; u00 0ð Þ ¼ 0; x 2 0; 2½ �

whose analytic solution is u xð Þ ¼ 1
2
xex þ cos xð Þ þ 1

2
sin xð Þ.

Problem 4 Consider nonlinear nonhomogeneous system

u0001 ¼ 1

2
e4xu3u

0
2; u0002 ¼ 8

3
e2xu1u

0
3; u0002 ¼ 27u2u

0
1;
Fig. 2 Maximum global error versus time

Fig. 3 Maximum global error versus time
u1 0ð Þ ¼ 1; u01 0ð Þ ¼ �1; u001 0ð Þ ¼ 1;

u2 0ð Þ ¼ 1; u02 0ð Þ ¼ �2; u002 0ð Þ ¼ 4;

u3 0ð Þ ¼ 1; u03 0ð Þ ¼ �3; u003 0ð Þ ¼ 9; x 2 0; 1½ �
whose analytic solution is u1 xð Þ ¼ e�x; u2 xð Þ ¼ e�2x;

u3 xð Þ ¼ e�3x.

Source: Fawzi et al. [22].
Problem 5 Consider linear homogeneous system

u0001 ¼ u002; u0002 ¼ u003; u0002 ¼ u001;

u1 0ð Þ ¼ 1; u01 0ð Þ ¼ 1; u001 0ð Þ ¼ 1;
of computation curves for Problem 1.

of computation curves for Problem 2.



Fig. 4 Maximum global error versus time of computation curves for Problem 3.

Fig. 5 Maximum global error versus time of computation curves for Problem 4.
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u2 0ð Þ ¼ 1; u02 0ð Þ ¼ 2; u002 0ð Þ ¼ 4;

u3 0ð Þ ¼ 1; u03 0ð Þ ¼ 3; u003 0ð Þ ¼ 9; x 2 0; 1½ �
whose analytic solutions are follow:

u1 xð Þ ¼ �3� 8xþ 14

3
ex þ 8

3
e�

1
2 sin

ffiffiffiffiffiffi
3x

p

2

 !
� 2

3
e�

x
2 cos

ffiffiffiffiffiffi
3x

p

2

 !
;

u2 xð Þ¼�8þ14

3
ex�

ffiffiffiffiffi
3e

p �x
2 sin

ffiffiffiffiffiffi
3x

p

2

 !
þ13

3
e�

x
2 cos

ffiffiffiffiffiffi
3x

p

2

 !
þx;

u3 xð Þ ¼ 14

3
ex � 5

3

ffiffiffiffiffi
3e

p �x
2 sin

ffiffiffiffiffiffi
3x

p

2

 !
� 11

3
e�

x
2 cos

ffiffiffiffiffiffi
3x

p

2

 !
� x:
Problem 6 Consider the nonlinear, homogeneous and
dynamic chaotic system, Genesio equation. (see Yap [6])

u000 þ Au00 þ Bu0 � f u tð Þð Þ ¼ 0;

where

f u tð Þð Þ ¼ �Cu tð Þ þ u tð Þð Þ2;
with A;B and C are constants and contingent on the following

initial conditions:

u 0ð Þ ¼ 0:2; u0 0ð Þ ¼ �0:3; u00 0ð Þ ¼ 0:1

Genesio equation is used widely as jerk equation that exhibit
various features of the regular and chaotic motion. (see Umut
[5]) The problem is integrated on the interval 0; 5½ � with posi-
tive constants, A ¼ 1:2;B ¼ 2:92 and C= 6 that satisfy
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AB < C for the existence of solution.There is no exact solution

of of this problem, and hence, the numerical approximations
obtained from selected methods compare with the numerical
approximations obtained by Runge Kutta order 4 method

with h ¼ 0:001.
Problem 7 Consider the nonlinear nonhomogeneous system
of thin film flow equations of liquids. In fluid dyamics, this
system can be used to represent the motion of the fluid on

plane surface and dynamic balance between surface tension
and viscous forces in the fluid layer with the absence of
gravity. (see Tuck [23])Thin film flow equation can be gen-

eralised into

u000 ¼ f uð Þ; ð5:56Þ
Fig. 6 Maximum global error versus time

Fig. 7 Maximum global error versus time
where

f uð Þ ¼ �1þ u�2;

f uð Þ ¼ �1þ 1þ dþ d2
� �

u�2 � dþ d2
� �

u�3;

f uð Þ ¼ u�2 � u�3;

f uð Þ ¼ u�2:

ð5:57Þ

In this study, we consider nondimensionalised equation of thin
film flow equations, written as follow:

u000 ¼ u�2: ð5:58Þ
The problem is integrated on the interval 0; 5½ � with the initial
conditions u 0ð Þ ¼ u0 0ð Þ ¼ u00 0ð Þ ¼ 1. There is no analytical

solution for Eq. (5.58). Numerical approximations obtained
of computation curves for Problem 5.

of computation curves for Problem 6.



Fig. 8 Maximum global error versus time of computation curves for Problem 7.
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from selected methods compared with the numerical approxi-
mations obtained by Runge-Kutta order 4 method with

h ¼ 0:0001. The illustration of thin films flow of viscous fluid
with a free surface with Eq. (5.58) are shown below:

6. Numerical results

Figures below show the numerical results of selected methods

in term of maximum global truncation error versus cost of
computation measured using time. The model of computer
used in computing the numerical results is Lenovo G50-70
Intel Core i3-4030U (1.9 GHz).
7. Conclusions

In summary, the special class of explicit two-derivative Runge-

Kutta type methods that comprises one f-evaluation and mul-
tiple g-evaluations for solving third order ODEs with initial
value conditions provided were derived. Many researchers

have proposed improved Kutta methods with definitions and
algebraic theories of rooted trees and B-series theory depend-
ing on the theories and concepts presented by Butcher

([24–26]) and Chen et al. ([9]) to solve first-order and second-
order ODEs (see [11,27]).

In this work, essential aspects of B-series, comprised of

integer function, fundamental differential, real function,
density and elementary weights are derived and formulated
to construct B-series specifically for STDRKT methods
depending on algebraic order conditions in the form of

u 4ð Þ ¼ g x; u; u0; u00ð Þ to solve general third order ODEs directly.
In this paper, we developed two-stages of order five and three-
stages of order six, denoted as STDRKT2(5) and STDRKT3
(6) methods respectively. STDRKT methods are proved as

efficient direct methods with the properties of zero stability,
consistency and convergence. (see Fig. 1).
The numerical results are sketched in Figs. 2–8*** and
these figures display the proficiency curves in which the new
proposed methods, STDRKT2(5) and STDRKT3(6) are com-
pared with RK5, DOPRI45, RK6 and RK6S in term of max-

imum global truncation error and computational cost in term
of time using the same computational machine. STDRKT2(5)
method is more efficient than RK5 and DOPRI45 while

STDRKT3(6) method is more efficient compared to RK6
and RK6S methods in solving numerical linear problems in
Figs. 2 and 3. Next, STDRKT2(5) method outperforms

RK5, DOPRI45 and similar to STDRKT3(6) method sur-
passes RK6 and RK6S in solving both nonlinear homogeneous
system and linear homogeneous system with analytical solu-

tions provided as shown in Figs. 4 and 6. In Figs. 7 and 8,
we notice that STDRKT2(5) method is more potent compared
to RK5 and DOPRI5 methods and on the other hand,
STDRKT3(6) method is shown better than RK6 and RK6S

in solving application problems with no analytical solution
and the numerical approximations are compared to RK4
methods with h = 0.001.

From the figures above, it is evident that these new Runge-
Kutta methods are more proficient than traditional Runge-
Kutta methods in term of maximum global error versus time

of computation. STDRKT methods with same amount of
stages acquired higher accuracy rate due to their ability to
reach higher algebraic order compared to traditional Runge-
Kutta methods with the inclusion of higher derivative, g-

evaluations. Numerical results showed that STDRKT methods
are well performed methods generating less maximum global
truncation error while requiring less cost of evaluations com-

pared to existing Runge-Kutta methods.
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