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In this paper, the fractional view analysis of the Keller–Segal equations with sensitivity functions is presented. (e Caputo
operator has been used to pursue the present research work. (e natural transform is combined with the homotopy
perturbation method, and a new scheme for implementation is derived. (e modified established method is named as the
homotopy perturbation transform technique. (e derived results are compared with the solution of the Laplace Adomian
decomposition technique by using the systems of fractional Keller–Segal equations. (e solution graphs and the table have
shown that the obtained results coincide with the solution of the Laplace Adomian decomposition method. Fractional-
order solutions are determined to confirm the reliability of the current method. It is observed that the solutions at various
fractional orders are convergent to an integer-order solution of the problems. (e suggested procedure is very attractive
and straight forward and therefore can be modified to solve high nonlinear fractional partial differential equations and
their systems.

1. Introduction

Fractional differential equations (FDEs) are the generaliza-
tions of the standard integer-order differential equations.
FDEs have gained much attention in the recent decades, as
they are broadly used in several areas to analyze different
processes, such as the processing of the signal, control theory,
identification of the system, fluid flow, biomathematics, and
other fields [1–3]. FDEs have been implemented in the
modeling of the description of unification of diffusion,
fractional random walk, and systems of both diffusive and
subdiffusive. It is also an investigation that in many physical
phenomena, experiments have proved that the solution of
fractional-order DEs is in good agreement with experimental

data of any physical phenomena to integer-order DEs. For
example, the noninteger differential equations (DEs) can
model some physical phenomena more effectively such as
delineates memory, heredity effects, properties of different
materials, and internal friction process [4–9].

(e importance of FDEs is found in the literature
because it can model most of the physical phenomena in
science and engineering more accurately as compared to
integer-order models [10–12], and therefore the researchers
have shown much interest to study fractional calculus and
FDEs during the last decades. Because of the significance of
FDEs, the mathematicians are working to develop many
useful and powerful numerical and analytical techniques to
determine the actual or approximate solutions of the
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targeted problems [13–15]. Many other powerful and ef-
ficient techniques have been suggested to obtain the exact
or analytical solutions for FDEs. For instance, these
techniques include the Laplace Adomian decomposition
method (LADM) [16–18], Chebyshev wavelet methods
(CWM) [19], collocation-shooting method [20], power
series methods (PSM) [21], fractional Bernstein polyno-
mials along with shooting method [22], fractional-Leg-
endre spectral Galerkin method [23], variational iterative
transform method (VITM) [24], homotopy perturbation
transform method (HPTM) [25–27], homotopy analysis
transform method (HATM) [28, 29], reduced differential
transform method (RDTM) [30, 31], finite element tech-
nique (FET) [32], finite difference technique (FDT) [33],
and q-homotopy analysis transform method (q-HATM)
[34]. Based on these techniques, a wide range of FDEs have
been analyzed.

(e most important cell motion which can be used as a
response to the gradient of a chemical compound is known
as chemotaxis. It has an important contribution in the
population cell number and growth of biology. E. Keller and
L. Segal suggested the first mathematical equation of che-
motaxis in 1970. (ey displayed parabolic schemes to de-
scribe the method of aggregating a cell slime mold
depending on a molecule attraction [35]. In this article, we
considered the coupled time-fractional Keller–Segel equa-
tion [36–39]:

D
c

Ψμ(ζ ,Ψ) − a
z2μ(ζ ,Ψ)

zζ2
+

z

zζ
μ(ζ ,Ψ)

z[χρ(ζ ,ψ)]

zζ
􏼨 􏼩 � 0,

D
c

Ψρ(ζ ,Ψ) − b
z2ρ(ζ ,Ψ)

zζ2
− cμ(ζ ,Ψ) + dρ(ζ ,Ψ) � 0.

(1)

With initial conditions,

μ(ζ ,Ψ) � μ0(ζ),

ρ(ζ ,Ψ) � ρ0(ζ),
􏼨 (2)

where the unidentified function μ(ζ ,Ψ) defines the con-
centrations of amoebae, the chemical concentration is
denoted by ρ(ζ,Ψ), and the chemotactic is defined by the
partial derivative of z/zζ μ(ζ ,Ψ)z[χρ(ζ ,ψ)]/zζ􏼈 􏼉, χ(ρ) is the
sensitivity function. Some other types of sensitivity functions
can be observed in the coupled time-fractional K-S che-
motactic model in [40] and also in the K-S model with a logic
sensitivity function and small diffusivity [41]. Also, singular
sensitivity can be seen in the system of the two-dimensional
K-S system in [36, 42, 43]. (e K-S model has been ex-
tensively analyzed recently. For example, Kamel et.al. have
used LADM for the solution of the S-K equation [37].
Bournaveas [38] gave the one-dimensional Keller–Segel
model with a fractional cell diffusion. Zayernouri [39]
formed a fractional class of implicit Adams–Moulton and
explicit Adams–Bashforth techniques.

(e HPM is mixed with the natural transform method
to generate a highly effective method to handle the solution

of several nonlinear problems and is known as the
homotopy perturbation transform method (HPTM).
HPTM generates a convergent series form solution that
converges to the exact solution of the problems and pro-
vides closed-form solutions. (e proposed method can
combine two important techniques to achieve an effective
solution for nonlinear equations. Gorbhani first proposed
the use of He’s polynomial in the nonlinear terms [44, 45].
It should be remembered that the HPTM is implemented
without any flexibility or restrictive assumptions or
transforms and round off free error. Many authors have
solved fractional-order diffusion equations [46], partial
differential equations [47, 48], and wave-like equations [49]
by using linear and nonlinear problems with the help of
HPTM.

In the current research paper, HPTM is implemented to
solve fractional-order Keller–Segel equations. (e solutions
achieved through the suggested technique are straightfor-
ward and simple. (e quality of the current method is
appropriate to provide the analytical results to the given
examples. (e HPTM solutions are shown to be in close
contact with the solutions of other existing techniques.

2. Preliminary Concepts

Definition 1. Let g ∈ Cβ and β≥ − 1, and then the Rie-
mann–Liouville integral of order c is given by [1–3]

J
c

Ψg(ζ ,Ψ) �
1
Γ(c)

􏽚
Ψ

0
(Ψ − θ)

c− 1
g(ζ , θ)dθ ,Ψ> 0. (3)

Definition 2. Let g ∈ Cβ and β≥ − 1, and then the Caputo
definition of the fractional derivative of order c if
m − 1< c≤m with m ∈ N is described as [1–3]

D
c

Ψg(Ψ) �

dmg(Ψ)

dΨm , c � m ∈ N,

1
Γ(m − c)

􏽚
Ψ

0
(Ψ − θ)

m− c− 1
g

(m)
(θ)dθ ,

m − 1< c<m, m ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Remark 1. Some basic properties are given below [1–3]:

D
c

ζ I
c

ζg(ζ) � g(ζ), I
cζλ �
Γ(λ + 1)

Γ(c + λ + 1)
ζc+λ

, c> 0, λ> − 1, ζ > 0,

D
c

ζ I
c

ζg(ζ) � g(ζ) − 􏽘
m

k�0
g

(k) 0+
( 􏼁

ζk

k!
, for ζ > 0.

(5)

Definition 3. (e natural transform f(Ψ) of the function
N[f(Ψ)] for Ψ ∈ R is defined as [50]
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N[f(Ψ)] � G(s, u) � 􏽚
∞

− ∞
e

− sΨ
f(Ψ)dΨ ;

s, u ∈ (− ∞,∞),

N[f(Ψ)Q(Ψ)] � N
+
[f(Ψ)] � G

+
(s, u)

� 􏽚
∞

0
e

− sΨ
f(Ψ)dΨ ;

s, u ∈ (0,∞), and Ψ ∈ R.

(6)

Theorem 1. @e natural transform of the fractional deriv-
ative of the function in the Riemann–Liouville sense is given as
[50]

N
+

D
c
f(Ψ)􏼂 􏼃 � Gc(s, u) �

sc

uc
G(s, u)

− 􏽘
m− 1

j�0

sj

uc− j
D

c− j− 1
f(Ψ)􏽨 􏽩Ψ�0, ℓ − 1≤ c< ℓ.

(7)

Theorem 2. @e natural transform of the fractional deriv-
ative of the function in the Caputo sense is given as [50]

N
+
[

c
D

c
f(Ψ)] � G

c
c(s, u) �

sc

uc
G(s, u)

− 􏽘

ℓ− 1

j�0

sc− (j+1)

uc− j
D

j
f(Ψ)􏽨 􏽩Ψ�0, ℓ − 1≤ c< ℓ.

(8)

3. Implementation of HPTM [51]

To explain the fundamental concept of this technique, we
consider a particular fractional-order nonlinear partial
differential nonhomogeneous equation:

D
c

Ψμ(ζ ,Ψ) + Rμ(ζ ,Ψ) + Nμ(ζ,Ψ) � g(ζ ,Ψ), 1< c≤ 2.

(9)

With initial conditions,

μ(ζ, 0) � h(ζ), μΨ(ζ, 0) � f(ζ), (10)

where the fractional derivative in equation (9) is defined in
the Caputo sense.(e operatorsR andN describe the linear
and nonlinear operators, respectively, and g(ζ,Ψ) is the
source term.

Using natural transformation in equation (9), we get [51]

N D
c

Ψμ(ζ,Ψ)􏼂 􏼃 + N[Rμ(ζ ,Ψ)] + N[Nμ(ζ ,Ψ)] � N[g(ζ ,Ψ)].

(11)

With the help of the fractional derivative natural
property, we have

N[μ(ζ,Ψ)] �
h(ζ)

s
+

f(ζ)

s2
+

uc

sc
N[g(ζ ,Ψ)]

−
uc

sc
N[Rμ(ζ ,Ψ)] −

uc

sc
N[Nμ(ζ ,Ψ)].

(12)

Taking the inverse natural transformation of equation
(12), we get

μ(ζ ,Ψ) � G(ζ ,Ψ) − N
− 1 uc

sc
N[Rμ(ζ ,Ψ) + Nμ(ζ ,Ψ)]􏼨 􏼩.

(13)

Using the HPTM procedure, the solution is expressed as

μ(ζ,Ψ) � 􏽘
∞

m�0
p

mμm(ζ,Ψ). (14)

(e nonlinear term can be decomposed as

Nμ(ζ,Ψ) � 􏽘
∞

m�0
p

m
Hm(ζ,Ψ). (15)

Few He’s polynomials Hm(u) [35, 40] are described by

Hℓ μ0, μ1, . . . , μℓ( 􏼁 �
1
ℓ!

zℓ

zpℓ N 􏽘

∞

i�0
p

iμi
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

p�0

, ℓ � 0, 1, 2, 3, . . . .

(16)

Utilizing equations (14) and (15) in equation (13), we
have

􏽘

∞

ℓ�0
p
ℓμℓ(ζ,Ψ) � G(ζ,Ψ) − p

uc

sc
N R􏽘

∞

ℓ�0
p
ℓμℓ(ζ,Ψ)⎡⎣

⎧⎨

⎩
⎛⎝

+ 􏽘
∞

ℓ�0
p
ℓ
Hℓ(ζ,Ψ)⎤⎦

⎫⎬

⎭
⎞⎠.

(17)

Using He’s polynomials in HPTM and comparing the
coefficient of power p, we get

p
0
: μ0(ζ,Ψ) � G(ζ ,Ψ),

p
1
: μ1(ζ,Ψ) � − N

− 1 uc

sc
N Rμ0(ζ,Ψ) + H0μ􏼂 􏼃􏼨 􏼩,

p
2
: μ2(ζ,Ψ) � − N

− 1 uc

sc
N Rμ1(ζ,Ψ) + H1μ􏼂 􏼃􏼨 􏼩,

p
3
: μ3(ζ,Ψ) � − N

− 1 uc

sc
N Rμ2(ζ,Ψ) + H2μ􏼂 􏼃􏼨 􏼩.

(18)

(e remaining of the μℓ(ζ,Ψ) components can be totally
obtained, and the sequence result is thus fully determined.

Finally, we calculate the analytical result of μ(ζ ,Ψ):
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μ(ζ ,Ψ) � lim
N⟶∞

􏽘

N

ℓ�0
μℓ(ζ,Ψ). (19)

Generally, the solutions of the above series converge very
quickly.

4. Numerical Examples

Example 1. (e Keller–Segal equations with a fractional
derivative are given as [37–39]

D
c

Ψμ(ζ ,Ψ) − a
z2μ(ζ ,Ψ)

zζ2
+

z

zζ
μ(ζ,Ψ)

z[χρ(ζ ,ψ)]

zζ
􏼨 􏼩 � 0,

D
c

Ψρ(ζ ,Ψ) − b
z2ρ(ζ ,Ψ)

zζ2
− cμ(ζ ,Ψ) + dρ(ζ ,Ψ) � 0.

(20)

Subjecting to the initial solutions, we get

μ(ζ , 0) � me
− ζ2

,

ρ(ζ , 0) � ne
− ζ2

.

(21)

Taking natural transformation of equation (20), we get

N
zcμ(ζ ,Ψ)

zΨc􏼢 􏼣 � N a
z2μ(ζ ,Ψ)

zζ2
−

z

zζ
μ(ζ ,Ψ)

z[χρ(ζ ,ψ)]

zζ
􏼠 􏼡􏼢 􏼣,

N
zcρ(ζ ,Ψ)

zΨc􏼢 􏼣 � N b
z2ρ(ζ ,Ψ)

zζ2
+ cμ(ζ,Ψ) − dρ(ζ ,Ψ)􏼢 􏼣,

sc

uc
N μ(ζ ,Ψ)􏼈 􏼉 −

sc− 1

uc
μ(ζ , 0) � N a

z2μ(ζ ,Ψ)

zζ2
−

z

zζ
μ(ζ ,Ψ)

z[χρ(ζ ,ψ)]

zζ
􏼠 􏼡􏼢 􏼣,

sc

uc
N ρ(ζ ,Ψ)􏼈 􏼉 −

sc− 1

uc
ρ(ζ , 0) � N b

z2ρ(ζ ,Ψ)

zζ2
+ cμ(ζ,Ψ) − dρ(ζ ,Ψ)􏼢 􏼣.

(22)

Simplifying the above equation, we get

N[μ(ζ ,Ψ)] �
1
s

[μ(ζ , 0)] +
uc

sc
N a

z2μ(ζ ,Ψ)

zζ2
−

z

zζ
μ(ζ ,Ψ)

z[χρ(ζ ,ψ)]

zζ
􏼨 􏼩􏼠 􏼡,

N[ρ(ζ ,Ψ)] �
1
s

[ρ(ζ , 0)] +
uc

sc
N b

z2ρ(ζ,Ψ)

zζ2
+ cμ(ζ,Ψ) − dρ(ζ ,Ψ)􏼢 􏼣.

(23)

Using inverse natural transform, we have

μ(ζ,Ψ) � μ(ζ , 0) − N− uc

sc
N a

z2μ(ζ ,Ψ)

zζ2
−

z

zζ
μ(ζ ,Ψ)

z(χρ(ζ,ψ))

zζ
􏼠 􏼡􏼢 􏼣􏼨 􏼩,

ρ(ζ,Ψ) � ρ(ζ , 0) − N−
z
2ρ(ζ ,Ψ)

uc

sc
N b

z2ρ(ζ,Ψ)

zζ2
+ cμ(ζ,Ψ) − dρ(ζ ,Ψ)􏼢 􏼣􏼨 􏼩.

(24)
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(en, the chemotactic term z/zζ μ(ζ,Ψ)z[χρ(ζ ,ψ)]/􏼈

zζ} � 0.
Now, implementing HPM, we get

􏽘

∞

ℓ�0
p
ℓμℓ(ζ,Ψ) � me− ζ2

+ p N− uc

sc
N a 􏽘
∞

ℓ�0
p
ℓz

2μℓ(ζ,Ψ)

zζ2
⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠,

􏽘

∞

ℓ�0
p
ℓρℓ(ζ,Ψ) � ne− ζ2

+ p N− uc

sc
N

b 􏽐
∞

ℓ�0
pℓz

2ρℓ(ζ,Ψ)

zζ2
+ c 􏽘
∞

ℓ�0
p
ℓμℓ(ζ,Ψ)

− d 􏽐
∞

ℓ�0
pℓρℓ(ζ,Ψ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(25)

By comparing the coefficients of powers p, we get

p
0
: μ0(ζ,Ψ) � me

− ζ2
,

p
0
: ρ0(ζ,Ψ) � ne

− ζ2
,

p
1
: μ1(ζ,Ψ) � N− uc

sc
N a

z2μ0(ζ,Ψ)

zζ2
􏼢 􏼣􏼨 􏼩,

μ1(ζ,Ψ) � 2 am 2ζ2 − 1􏼐 􏼑e
− ζ2 Ψc

Γ(c + 1)
,

p
1
: ρ1(ζ,Ψ) � N− uc

sc
N b

z2ρ0(ζ,Ψ)

zζ2
+ cμ0(ζ,Ψ) − dρ0(ζ,Ψ)􏼢 􏼣􏼨 􏼩,

ρ1(ζ,Ψ) � 2bn 2ζ2 − 1􏼐 􏼑 +(cm − dn)􏽮 􏽯e
− ζ2 Ψc

Γ(c + 1)
,

p
2
: μ2(ζ,Ψ) � N− uc

sc
N a

z2μ1(ζ,Ψ)

zζ2
􏼢 􏼣􏼨 􏼩,

μ2(ζ,Ψ) � 4a
2 3m − 6mζ2 − 6 amζ2 + 4mζ3􏼐 􏼑e

− ζ2 Ψ2c

Γ(2c + 1)
,

p
2
: ρ2(ζ,Ψ) � N− uc

sc
N b

z2ρ1(ζ,Ψ)

zζ2
+ cμ1(ζ,Ψ) − dρ1(ζ,Ψ)􏼢 􏼣􏼨 􏼩,

ρ2(ζ,Ψ) � b − 24bn − 4bn 2m
2

− 1􏼐 􏼑 + 8bζ2 − 2b dn􏼐 􏼑 2ζ2 − 1􏼐 􏼑􏽨 􏽩e
− ζ2 Ψ2c

Γ(2c + 1)

+ 2 − 4ζ2 − 1􏼐 􏼑(cm + dn) − 2ca 2mζ2 − m􏼐 􏼑􏽨 􏽩e
− ζ2 Ψ2c

Γ(2c + 1)
.

(26)
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(e series form of equation (20) is given by

μ(ζ ,Ψ) � 􏽘

∞

ℓ�0
μℓ(ζ,Ψ) � μ0(ζ,Ψ) + μ1(ζ,Ψ) + μ2(ζ,Ψ)

+ μ3(ζ,Ψ) + · · · ,

ρ(ζ ,Ψ) � 􏽘
∞

ℓ�0
ρℓ(ζ,Ψ) � ρ0(ζ,Ψ) + ρ1(ζ,Ψ) + ρ2(ζ,Ψ)

+ ρ3(ζ,Ψ) + · · · .

(27)

(e HPTM solution is given as

μ(ζ ,Ψ) �me− ζ2
+ 2 am 2ζ2 − 1􏼐 􏼑e

− ζ2 Ψc

Γ(c + 1)
+ 4a

2 3m − 6mζ2 − 6 amζ2 + 4mζ3􏼐 􏼑e
− ζ2 Ψ2c

Γ(2c + 1)
+ · · ·

ρ(ζ ,Ψ) � ne
− ζ2

+ 2bn 2ζ2 − 1􏼐 􏼑 +(cm − dn)􏽮 􏽯e
− ζ2 Ψc

Γ(c + 1)
+ b − 24bn − 4bn 2m

2
− 1􏼐 􏼑 + 8bζ2 − 2b dn􏼐 􏼑 2ζ2 − 1􏼐 􏼑􏽮 􏽯e

− ζ2

·
Ψ2c

Γ(2c + 1)
+ 2 − 4ζ2 − 1􏼐 􏼑(cm + dn) − 2ca 2mζ2 − m􏼐 􏼑􏽮 􏽯e

− ζ2 Ψ2c

Γ(2c + 1)
+ · · · .

(28)

(e series solutions are obtained by using the numerical
values d � 0.8, m � 160, b � 3, n � 120, a � 0.5, and c � 1:

μ(ζ,Ψ) � 160e
− ζ2

+ 160 2ζ2 − 1􏼐 􏼑e
− ζ2 Ψc

Γ(c + 1)
+ 5 96 − 384ζ2 + 128ζ3􏼐 􏼑e

− ζ2 Ψ2c

Γ(2c + 1)

+ 5 252 − 24ζ2 + 128ζ3 + 175ζ4􏼐 􏼑e
− ζ2 Ψ3c

Γ(3c + 1)
+ · · ·

ρ(ζ,Ψ) � 120e
− ζ2

+ 320 2ζ2 − 1􏼐 􏼑 − 64􏽨 􏽩e
− ζ2 Ψc

Γ(c + 1)
+ 3450 − 7680ζ2 − 1920 2ζ2 − 1􏼐 􏼑􏽨

− 7680ζ + 12ζ2 320 2ζ2 − 1􏼐 􏼑 + 64􏼐 􏼑􏽩

+ 5 192ζ − 128ζ3􏼐 􏼑 − 2 320 − ζ 160 2ζ2 − 1􏼐 􏼑 + 32􏽨 􏽩􏽮 􏽯

· e
− ζ2 Ψ2c

Γ(2c + 1)
5 1360 − 215ζ2 − 28 8ζ2 + 7ζ3 − 2􏼐 􏼑 − 3045ζ + 8ζ2 8ζ2 + 7ζ3 − 2􏼐 􏼑􏼐 􏼑􏽮

+ 123ζ − 840ζ3􏼐 􏼑 − 0.9 1280ζ − 2ζ 160 8ζ2 + 7ζ3 − 2􏼐 􏼑 + 64􏽨 􏽩􏼐 􏼑􏽯

· e
− ζ2 Ψ3c

Γ(3c + 1)
+ · · · .

(29)

Example 2. (e Keller–Segal equations with a fractional
derivative are given as [37–39]
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D
c

Ψμ(ζ ,Ψ) − a
z2μ(ζ ,Ψ)

zζ2
+

zμ(ζ ,Ψ)

zζ
zρ(ζ ,ψ)

zζ

− μ(ζ ,Ψ)
z2ρ(ζ ,ψ)

zζ2
� 0,

D
c

Ψρ(ζ ,Ψ) − b
z2ρ(ζ ,Ψ)

zζ2
− cμ(ζ,Ψ) + dρ(ζ ,Ψ) � 0.

(30)

With the initial conditions:

μ(ζ , 0) � me
− ζ2

,

ρ(ζ , 0) � ne
− ζ2

.

(31)

Applying natural transformation to equation (30), we get

N
zcμ(ζ ,Ψ)

zΨc􏼨 􏼩 � N a
z2μ(ζ ,Ψ)

zζ2
−

zμ(ζ ,Ψ)

zζ
zρ(ζ ,ψ)

zζ
+ μ(ζ ,Ψ)

z2ρ(ζ ,ψ)

zζ2
􏼢 􏼣,

N
zcρ(ζ ,Ψ)

zΨc􏼨 􏼩 � N b
z2ρ(ζ,Ψ)

zζ2
+ cμ(ζ,Ψ) − dρ(ζ ,Ψ)􏼢 􏼣,

sc

uc
N μ(ζ,Ψ)􏼈 􏼉 −

sc− 1

uc
μ(ζ, 0) � N a

z2μ(ζ ,Ψ)

zζ2
−

zμ(ζ ,Ψ)

zζ
zρ(ζ ,ψ)

zζ
+ μ(ζ ,Ψ)

z2ρ(ζ ,ψ)

zζ2
􏼢 􏼣,

sc

uc
N ρ(ζ,Ψ)􏼈 􏼉 −

sc− 1

uc
ρ(ζ, 0) � N b

z2ρ(ζ,Ψ)

zζ2
+ cμ(ζ,Ψ) − dρ(ζ ,Ψ)􏼢 􏼣.

(32)

Simplifying the above equation, we get

N μ(ζ ,Ψ)􏼈 􏼉 �
1
s
μ(ζ , 0)􏼈 􏼉 +

uc

sc
N a

z2μ(ζ ,Ψ)

zζ2
−

zμ(ζ ,Ψ)

zζ
zρ(ζ ,ψ)

zζ
+ μ(ζ ,Ψ)

z2ρ(ζ ,ψ)

zζ2
􏼢 􏼣,

N ρ(ζ ,Ψ)􏼈 􏼉 �
1
s
ρ(ζ , 0)􏼈 􏼉 +

uc

sc
N b

z2ρ(ζ ,Ψ)

zζ2
+ cμ(ζ,Ψ) − dρ(ζ ,Ψ)􏼢 􏼣.

(33)

Using inverse natural transform, we have

μ(ζ ,Ψ) � μ(ζ, 0) − N
− uc

sc
N a

z2μ(ζ ,Ψ)

zζ2
−

zμ(ζ ,Ψ)

zζ
zρ(ζ ,ψ)

zζ
+ μ(ζ ,Ψ)

z2ρ(ζ ,ψ)

zζ2
􏼢 􏼣􏼢 􏼣,

ρ(ζ ,Ψ) � ρ(ζ , 0) − N
− uc

sc
N b

z2ρ(ζ ,Ψ)

zζ2
+ cμ(ζ,Ψ) − dρ(ζ ,Ψ)􏼢 􏼣􏼢 􏼣.

(34)

Now, implementing HPM, we get

􏽘

∞

ℓ�0
p
ℓμℓ(ζ,Ψ) � me− ζ2

+ p N
− uc

sc
N a 􏽘
∞

ℓ�0
p
ℓz

2μℓ(ζ,Ψ)

zζ2
− 􏽘
∞

ℓ�0
p
ℓ
Hℓ + 􏽘

∞

ℓ�0
p
ℓ
Hℓ′⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

􏽘

∞

ℓ�0
p
ℓρℓ(ζ,Ψ) � ne− ζ2

+ p N
− uc

sc
N b 􏽘
∞

ℓ�0
p
ℓz

2ρℓ(ζ,Ψ)

zζ2
+ c 􏽘
∞

ℓ�0
p
ℓμℓ(ζ,Ψ) − d 􏽘

∞

ℓ�0
p
ℓρℓ(ζ,Ψ)⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

(35)
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where Hℓ and Hℓ′ are He’s polynomials that show the
nonlinear terms. So, representing He’s polynomials for
Hℓ(μ), we find that

􏽘

∞

ℓ�0
p
ℓ
Hℓ �

zμ(ζ ,Ψ)

zζ
zρ(ζ ,ψ)

zζ
,

H0 �
zμ0(ζ,Ψ)

zζ
zρ0(ζ,ψ)

zζ
,

H1 �
zμ0(ζ,Ψ)

zζ
zρ1(ζ,ψ)

zζ
+

zμ1(ζ,Ψ)

zζ
zρ0(ζ,ψ)

zζ
,

H2 �
zμ0(ζ,Ψ)

zζ
zρ2(ζ,ψ)

zζ
+

zμ1(ζ,Ψ)

zζ
zρ1(ζ,ψ)

zζ
+

zμ2(ζ,Ψ)

zζ
zρ0(ζ,ψ)

zζ
.

(36)

For Hl
′(μ), we find that

􏽘

∞

ℓ�0
p
ℓ
Hl
′ � μ(ζ ,Ψ)

z2ρ(ζ ,ψ)

zζ2
,

H0′ � μ0(ζ,Ψ)
z2 ρ0(ζ,ψ)􏼂 􏼃

zζ2
,

Hl
′ � μ0(ζ,Ψ)

z2 ρ0(ζ,ψ)􏼂 􏼃

zζ2
+ μ1(ζ,Ψ)

z2 ρ0(ζ,ψ)􏼂 􏼃

zζ2
,

H2′ � μ0(ζ,Ψ)
z2 ρ2(ζ,ψ)􏼂 􏼃

zζ2
+ μ1(ζ,Ψ)

z2 ρ1(ζ,ψ)􏼂 􏼃

zζ2
+ μ2(ζ,Ψ)

z2 ρ0(ζ,ψ)􏼂 􏼃

zζ2
.

(37)

(e series solutions are obtained by using the numerical
values d � 0.8, m � 160, b � 3, n � 120, a � 0.5, and c � 1.

By comparing the coefficients of powers p, we get

p
0
: μ0(ζ,Ψ) � 160e

− ζ2
,

p
0
: ρ0(ζ,Ψ) � 120e

− ζ2
,

p
1
: μ1(ζ,Ψ) � N

− uc

sc
N a

z2μ0(ζ,Ψ)

zζ2
− H0 + H0′􏼢 􏼣􏼢 􏼣,

μ1(ζ,Ψ) � 4 9600ζ2 − 40􏼐 􏼑e
− ζ2

− 60􏼚 􏼛e
− ζ2 Ψc

Γ(c + 1)
,

ρ1(ζ,Ψ) � 8 3 60ζ2 − 30􏼐 􏼑 + 8􏼑􏽮 􏽯e
− ζ2 Ψc

Γ(c + 1)
,

(38)

8 Complexity



p
2
: μ2(ζ,Ψ) � N

− uc

sc
N a

z2μ1(ζ,Ψ)

zζ2
− H1 + H1′􏼢 􏼣􏼨 􏼩,

μ2(ζ,Ψ) � 160 120 − 240 − 240ζ2 − 1􏼐 􏼑e
− ζ2

− 2 240ζ + ζ2 240ζ2 − 1􏼐 􏼑􏽨 􏽩e
− ζ2

􏼚 􏼛
Ψ2c

Γ(2c + 1)

+ 7680 120 − 4ζ 15 2ζ2 − 1􏼐 􏼑 + 2􏽨 􏽩􏽮 􏽯ζe
− 2ζ2

− 38400 480 + 160 2ζ2 − 1􏼐 􏼑􏼐 􏼑 − 960􏼐 􏼑e
− 2ζ2

+ 500(307 − 614.4ζ)ζe
− 3ζ2

􏼚 􏼛

·
Ψ3c

Γ(3c + 1)
+

1280 720 − 2 90 2ζ2 − 1􏼐 􏼑 + 8􏼐 􏼑 + 4ζ2 90 2ζ2 − 1􏼐 􏼑 + 8􏼐 􏼑􏼐 􏼑

+160 240ζ2 − 1􏼐 􏼑 − 480ζ2 + 478.125􏼐 􏼑120 4ζ2 − 1􏼑􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
e

− ζ2 Ψ3c

Γ(3c + 1)
,

p
2
: ρ2(ζ,Ψ)

ρ2(ζ,Ψ) � 25956 + 6 2ζ2 − 1􏼐 􏼑
2

+ 1320 1 − 4ζ2􏼐 􏼑 + 3 2ζ2 − 1􏼐 􏼑􏼚 􏼛e
− ζ2 Ψ2c

Γ(2c + 1)
.

(39)

(e series form of equation (30) is given by

μ(ζ ,Ψ) � 􏽘
∞

ℓ�0
μℓ(ζ,Ψ) � μ0(ζ,Ψ) + μ1(ζ,Ψ) + μ2(ζ,Ψ) + μ3(ζ,Ψ) + · · · ,

ρ(ζ ,Ψ) � 􏽘
∞

ℓ�0
ρℓ(ζ,Ψ) � ρ0(ζ,Ψ) + ρ1(ζ,Ψ) + ρ2(ζ,Ψ) + ρ3(ζ,Ψ) + · · · .

(40)

(e HPTM solution is given as

μ(ζ ,Ψ) � 160e
− ζ2

+ 4 9600ζ2 − 40􏼐 􏼑e
− ζ2

− 60􏼔 􏼕e
− ζ2 Ψc

Γ(c + 1)

+ 160 120 − 240 − 240ζ2 − 1􏼐 􏼑e
− ζ2

− 2 240ζ + ζ2 240ζ2 − 1􏼐 􏼑􏽨 􏽩e
− ζ2

􏼚 􏼛
Ψ2c

Γ(2c + 1)

+ 7680 120 − 4ζ 15 2ζ2 − 1􏼐 􏼑 + 2􏽨 􏽩􏽮 􏽯ζe
− 2ζ2

− 38400 480 + 160 2ζ2 − 1􏼐 􏼑􏽨 􏽩 − 960e
− 2ζ2

+ 500(307 − 614.4ζ)ζe
− 3ζ2

􏼒 􏼓􏼚 􏼛

·
Ψ3c

Γ(3c + 1)
+ 1280 720 − 2 90 2ζ2 − 1􏼐 􏼑 + 8􏼐 􏼑 + 4ζ2 90 2ζ2 − 1􏼑􏼐 􏼑 + 8􏼐 􏼑􏼐 􏼑􏽮

+160 240ζ2 − 1􏼐 􏼑 − 480ζ2 + 478.125􏽨 􏽩 120 4ζ2 − 1􏼐 􏼑􏼐 􏼑􏽯e
− ζ2 Ψ3c

Γ(3c + 1)
+ · · ·

ρ(ζ ,Ψ) � 120e
− ζ2

+ 8 3 60ζ2 − 30􏼐 􏼑 + 8􏽮 􏽯e
− ζ2 Ψc

Γ(c + 1)

+ 25956 + 6 2ζ2 − 1􏼐 􏼑
2

+ 1320(1 − 4ζ)
2

+ 3 2ζ2 − 1􏼐 􏼑􏼚 􏼛e
− ζ2 Ψ2c

Γ(2c + 1)
+ · · · .

(41)
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5. Results and Discussion

In Figures 1 and 2, the comparative study of HPTM and
LADM solutions has been made for variables μ(ζ ,Ψ) and
ρ(ζ ,Ψ) at c � 1 for Example 1. (e graphical representation
has shown the close relation between HPTM and LADM
solutions. In Figures 3 and 4, the graphs of μ(ζ ,Ψ) and
ρ(ζ ,Ψ) verses ζ are plotted for fixedΨ � 1 for both fractional
and integer orders of Example 2. (e graphical represen-
tation has confirmed the convergence of fractional-order

solutions towards integer-order solutions. In Table 1, the
LADM and HPTM solutions of Example 1 are compared at
ζ � 1 and c � 1. It is observed that LADM and HPTM
solutions are identical and justify the reliability of the
proposed techniques. In Figures 5 and 6, the HPTM solu-
tions, and in Figure 7, the HPTM solutions at fractional
orders c � 0.5, 0.6, 0.8, and 1, are discussed for variables
μ(ζ ,Ψ) and ρ(ζ ,Ψ). It is investigated that both the methods
have a higher degree of accuracy and provide the closed-
form solution to Example 2.
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Figure 1: HPTM solutions of μ(ζ,Ψ) and ρ(ζ,Ψ) at c � 1.
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Figure 2: LADM solutions of μ(ζ,Ψ) and ρ(ζ,Ψ) at c � 1.
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Figure 3: HPTM solutions of μ(ζ,Ψ) and ρ(ζ,Ψ) at c � 1.
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Figure 4: HPTM solutions of μ(ζ,Ψ) and ρ(ζ,Ψ) at different fractional orders c � 0.5, 0.6, 0.8, 1 and Ψ � 1.

Table 1: Comparison of HDM [36], LADM [37], and HPTM at ζ � 1 and c � 1.

Ψ HDM HDM LADM LADM HPTM HPTM
μ (ζ,ψ) ρ (ζ,ψ) μ (ζ,ψ) ρ (ζ,ψ) μ (ζ,ψ) ρ (ζ,ψ)

0.2 2.70× 105 8.0× 102 2.70× 105 8.0× 102 2.70× 105 8.0× 102
0.4 3.0× 106 2.0× 103 3.0× 106 2.0× 103 3.0× 106 2.0× 103
0.6 5.90× 106 4.0× 103 5.90× 106 4.0× 103 5.90× 106 4.0× 103
0.8 8.50× 106 7.0× 103 8.50× 106 7.0× 103 8.50× 106 7.0× 103
1.00 1.50× 107 1.20× 104 1.50× 107 1.20× 104 1.50× 107 1.20× 104
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Figure 5: HPTM solutions of μ(ζ,Ψ) and ρ(ζ,Ψ) at c � 1.
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Figure 6: HPTM solutions of μ(ζ,Ψ) and ρ(ζ,Ψ) at c � 1.
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6. Conclusion

In the current article, an effective technique which is known
as the Laplace homotopy transform method is implemented
to solve the systems of Keller–Segal equations for both
fractional and integer orders of the derivatives within the
Caputo operator. Two numerical examples of fractional
Keller–Segal equations are presented to verify the reliability
of the suggested method. (e graphical and tabular repre-
sentation has confirmed that the derived results are in close
agreement with the solution of the Laplace Adomian de-
composition method. Moreover, the current technique
needs very small calculations and has a higher degree of
accuracy for the targeted problems. In conclusion, the
present technique is found to be an accurate and effective
analytical technique to solve high nonlinear fractional sys-
tems of partial differential equations.
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