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A versatile integration tool, namely the protracted (or extended) Fan sub-equation (PFS-E)

technique, is devoted to retrieving a variety of solutions for different models in many fields

of the sciences. This essay presents the dynamics of progressive wave solutions via the

2D-chiral nonlinear Schrödinger (2D-CNLS) equation. The solutions acquired comprise

dark optical solitons, periodic solitons, singular dark (bright) solitons, and singular

periodic solutions. By comparing the results gained in this work with other literature,

it can be noticed that the PFS-E method is an useful technique for finding solutions to

other similar problems. Furthermore, some new types of solutions are revealed that will

help us better understand the dynamic behaviors of the 2D-CNLS model.

Keywords: 2D-CNLS equation, PFS-E algorithm, solitons, analytical solutions, waves structures

1. INTRODUCTION

The attainment of analytical solutions for different models described by NLPDEs plays a major
role in applied mathematics, fluid mechanics, fluid dynamics, plasma and solid-state physics,
nonlinear optics, and chemistry. Among these solutions, the optical solitons, which have significant
applications in modern communication systems, and have attracted particular attention from
physicists as well as mathematicians [1–5]. Optical solitons can propagate over extremely large
distances without shape change when a balance between the linear dispersion and nonlinear effects
is achieved. There are many types of solitons, including bright, dark, anti-dark, and singular
solitons, amongst many others. Bright solitons exist on a zero-intensity background, while dark
solitons arise as an intensity dip in an infinitely extended constant background. Moreover, dark
solitons are less influenced by the perturbations, which means that dark solitons could be more
preferable than bright ones in optical communication systems. The anti-dark solitons have profiles
similar to those of the bright ones but exist on a nonzero background like the dark ones [6, 7]. Many
effective methods have been presented to solve these equations [8–26].
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The PFS-E method [27, 28] is a direct and concise method
to solve nonlinear evolution equations. It is employed to find
and study the wave solutions of the 2D-CNLS equation. The
predominating equation is described by [29–32]:

i 8t + µ1

(

8xx +8yy

)

+ i

(

µ2

(

88∗
x +8

∗8x

)

+ µ3

(

88∗
y +8

∗8y

)

)

8 = 0,

(1)

where 8 = 8(x, y, t) refers to the complex-valued function,
µ1 is the second-order dispersion coefficient, and µ2, µ3

are the self-steepening coefficients. The 2D-CNLS equation
has been established by a one-dimensional reduction of the
structure that defines the fractional quantum Hall effect (it
is a quantum-mechanical version of the Hall effect existing
in 2D electron systems related to strong magnetic fields and
low temperatures). An extraordinary characteristic of Equation
(1) is the nonlinearity of the current density, which informs
the new execution for the SPM and self-focusing through
the current [29–32]. This equation cannot pass the Painlevè
test of integrability and is not invariant under the Galilean
transformation [32].

Bulut et al. [30] discussed Equation (1) in 1D and 2D and
found bright and dark soliton solutions via the extended sinh-
Gordon equation method. Nishino et al. [33] solved Equation
(1) in 1D only and introduced two categories of wave solutions
like bright and dark soliton trains. Very recently, Raza and Javid
[32] investigated the singular and dark solitons for the 2D-
CNLS equation by two different approaches, namely the extended
direct algebraic and trial equation methods. To the best of our
knowledge, no studies have found optical wave solutions for (1)
via the extended Fan sub-equation method.

The paper is organized as follows. Different solutions for
the 2D-CNLS equation are evaluated in section 2. The physical
interpretation of the solutions is discussed in section 3. The main
deductions are presented in section 4.

2. MATHEMATICAL ANALYSIS

In this section, we use the PFS-E technique to find more forms of
exact solutions for Equation (1) by considering a more general
transformation stated in [34, 35]. The PFS-E method includes
an algebraic strategy to find different analytical solutions for
NLPDEs that can be expressed as a polynomial in the variable
that satisfies the general Riccati equation. The most significant
achievement of this approach is that it offers all the solutions
that can be found by the use of other methods such as processes
using the Riccati equation, an elliptic equation of the first kind, an
auxiliary ordinary equation, or the generalized Riccati equation
as mapping equation.

Let the wave profile be defined as

8(x, y, t) = eiψ�(ξ ), (2)

while the amplitude

ξ = α1x+ β1y− λt, (3)

and

ψ = α0x+ β0y+ λ0t + η0. (4)

Inserting (2) into (1) and separating its real and imaginary parts,
we get

δ1�− δ2�3 − δ3�′′ = 0, (5)

where

δ1 = µ1

(

α20 + β
2
0

)

+ λ0,
δ2 = 2 (α0µ2 + β0µ3) ,

δ3 = µ1

(

α21 + β
2
1

)

, (6)

and

(2µ1 (α0α1 + β0β1)− λ)
∂�

∂ξ
= 0. (7)

From (7), we have

λ = 2µ1 (α0α1 + β0β1) . (8)

From the homogeneous balance condition on (5), the general
solution can be written as

� = a0 + a1φ(ξ ), (9)

where φ is given by the following auxiliary equation,

(

dφ(ξ )

dξ

)2

= ζ0+ ζ1φ(ξ )+ ζ2φ2(ξ )+ ζ3φ3(ξ )+ ζ4φ4(ξ ), (10)

where ζi(i = 0, 1, 2, 3, 4) are free parameters.
Plugging (9) and (10) into (5) and setting the coefficients of
φj, j = 0, 1, · · · , 4 identical zero, we get

a30 (−δ2)+ a0δ1 −
1

2
a1δ3ζ1 = 0,

−3a1a
2
0δ2 + a1δ1 − a1δ3ζ2 = 0,

−3a0a
2
1δ2 −

3

2
a1δ3ζ3 = 0,

−a31δ2 − 2a1δ3ζ4 = 0. (11)

Here, suitable values are selected for ζi, (i = 0, 1, 2, 3, 4).

ζ0 = ζ0,

ζ1 = −
2
(

a30δ1 + 3a0δ3
)

3a1δ2
,

ζ2 = −
a20δ1 + δ3

δ2
,

ζ3 = −
2a0a1δ1

3δ2
,

ζ4 = −
a21δ1

6δ2
, (12)
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which give

a0 =
√
δ1 − δ3ζ2√
3
√
δ2

,

a1 =
√
2
√
−δ3

√
ζ4√

δ2
. (13)

Different cases [34, 35] can be introduced to obtain the
following solutions.

Case I.
If ζ0 = ϑ2

3 , ζ1 = 2ϑ1ϑ3, ζ2 = 2ϑ2ϑ3 + ϑ2
1 , ζ3 =

2ϑ1ϑ2, ζ4 = ϑ2
2 , we get the solution of (1) in the form

8I
η, (η = 1, 3, 5, 10, 13, 20, 24). A variety of significant solitons

are obtained below.
Type I: when ϑ2

1 − 4ϑ2ϑ3 > 0, ϑ1ϑ2 6= 0, ϑ2ϑ3 6= 0. A set of
dark optical solitons is acquired as

8I
1(ξ ) =

[

a0

+ a1

(

−

√

ϑ2
1 − 4ϑ2ϑ3 tanh

(

1
2 ξ

√

ϑ2
1 − 4ϑ2ϑ3

)

+ ϑ1

2ϑ2

)]

× eiψ .

(14)

A variety of bright-dark optical soliton is gained as

8I
3(ξ ) =

[

a0 −
a1

2ϑ2

(

√

ϑ2
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(
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(

ξ

√
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)

+ tanh

(

ξ

√

ϑ2
1 − 4ϑ2ϑ3

))

+ ϑ1

)]

× eiψ .

(15)

A set of singular dark optical solitons is obtained as

8I
5(ξ ) =

[

a0 −
a1

2ϑ2

(
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(

1

4
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√
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(

1

4
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√
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+ ϑ1

)]

× eiψ .

(16)

The family of solitons is obtained as

8I
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(17)

Type II: when ϑ2
1 − 4ϑ2ϑ3 < 0, ϑ1ϑ2 6= 0, ϑ2ϑ3 6= 0. The

following collections of periodic solitons are given by

8I
13(ξ ) =

[
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(

−

√
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(

1
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√
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1

)
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(18)
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(20)

Case II.
If ζ0 = ϑ2

3 , ζ1 = 2ϑ1ϑ3, ζ2 = 0, ζ3 = 2ϑ1ϑ2, ζ4 = ϑ2
2 , we get

the solution of (1) in the form 8II
η , (η = 1, 5). A collection of
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dark optical solitons is given by

8II
1 (ξ ) =

[

a0 + a1

(

−

√
−6ϑ2ϑ3 tanh

(

1
2ξ

√
−6ϑ2ϑ3

)

+
√
−2ϑ2ϑ3

2ϑ2

)]

× eiψ .

(21)

Also, a different shape of singular dark optical soliton is acquired

8II
5 (ξ ) =

[

a0 + a1

(

−

√
−6qr

(

tanh
(

1
4 ξ

√
−6qr

)

+ coth
(

1
4 ξ

√
−6qr

))

+ 2
√
−2qr

4q

)]

× eiψ ,

(22)

Case III.
If ζ0 = ζ1 = 0, we get the solution of (1) in the form

8III
η , (η = 1, 2, 3, 4, 6, 8, 9).

Type I: ζ2 = 1, ζ3 = −2λ3
λ1

, ζ4 = λ23−λ
2
2

λ21
, where λ1, λ2, λ3 are

arbitrary constants.

8III
1 (ξ ) =

[

a0 + a1

(

λ1sech(ξ )

λ2sech(ξ )+ λ3

)]

× eiψ . (23)

Type II: ζ2 = 1, ζ3 = −2λ3
λ1

, ζ4 = λ23+λ
2
2

λ21
, where λ1, λ2, λ3 are

arbitrary constants.

8III
2 (ξ ) =

[

a0 + a1

(

λ1csch(ξ )

λ2csch(ξ )+ λ3

)]

× eiψ . (24)

In particular, if we take λ2 = 0 in the above Equations (23), (24),
we get

8III
1 (ξ ) =

[

a0 + a1

(

λ1sech(ξ )

λ3

)]

× eiψ . (25)

8III
2 (ξ ) =

[

a0 + a1

(

λ1csch(ξ )

λ3

)]

× eiψ . (26)

Type III: ζ2 = 4, ζ3 = − 4(2λ2+λ4)
λ1

, ζ4 = 4λ22+4λ4λ2+λ23
λ21

, where

λ1, λ2, λ3, λ4 are arbitrary constants.

8III
3 (ξ ) =

[

a0 + a1

(

λ1sech
2(ξ )

λ2 tanh(ξ )+ λ3 + λ4sech2(ξ )

)]

× eiψ .

(27)

Type IV: ζ2 = 4, ζ3 = 4(λ4−2λ2)
λ1

, ζ4 = 4λ22−4λ4λ2+λ23
λ21

, where

λ1, λ2, λ3, λ4 are arbitrary constants.

8III
4 (ξ ) =

[

a0 + a1

(

λ1csch
2(ξ )

λ2 coth(ξ )+ λ3 + λ4csch2(ξ )

)]

× eiψ .

(28)

In particular, if we consider λ2 = λ4, we have another solution as

8III
4 (ξ ) =

[

a0 + a1

(

λ1csch
2(ξ )

λ2 coth(ξ )+ λ3 + λ2csch2(ξ )

)]

× eiψ .

(29)

Type V: ζ2 = −1, ζ3 = 2λ3
λ1

, ζ4 = λ23−λ
2
2

λ21
, where λ1, λ2, λ3 are

arbitrary constants.

8III
6 (ξ ) =

[

a0 + a1

(

−

λ1(sinh(λ1ξ )+ cosh(λ1ξ ))(sinh(λ1ξ )+ cosh(λ1ξ )+ λ2)
λ3

)]

× eiψ .

(30)

Type VI: ζ2 = 4, ζ3 = −2λ3
λ1

, ζ4 = λ23−λ
2
2

λ21
, where λ1, λ2, λ3 are

arbitrary constants.

8III
8 (ξ ) =

[

a0 + a1

(

λ1 csc(ξ )

λ2 csc(ξ )+ λ3

)]

× eiψ . (31)

Type VII: ζ2 = −4, ζ3 = 4(2λ2+λ4)
λ1

, ζ4 = − 4λ22+4λ4λ2−λ23
λ21

, where

λ1, λ2, λ3, λ4 are arbitrary constants.

8III
9 (ξ ) =

[

a0 + a1

(

λ1 sec
2(ξ )

λ2 tan(ξ )+ λ3 + λ4 sec2(ξ )

)]

× eiψ .

(32)

Case IV.
If ζ1 = ζ3 = 0, we get the solution of (1) in the form

8IV
η , (η = 3, 13).

For ζ0 = 1
4 , ζ2 = 1−2m2

2 , ζ4 = 1
4 , the solution of (1) of the

form

8IV
3 (ξ ) =

[

a0 + a1(cnξ )

]

× eiψ , (33)

leads to the bright optical soliton whenm → 1,

8IV
3 (ξ ) =

[

a0 + a1sech(ξ )

]

× eiψ , (34)

and the singular periodic solutions whenm → 0,

8IV
3 (ξ ) =

[

a0 + a1 cos(ξ )

]

× eiψ , (35)
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FIGURE 1 | |8(x, y, t)|I1 : ϑ1=1, ϑ2= −1, ϑ3 = 1, µ1 = 1, µ2 = 1, µ3 = 1, α0 = 1,

β0 = 2, λ0 = 3, α1 = 4, β1 = 5, λ = 6, η0 = 1, t = 0.01.

FIGURE 2 | |8(x, y, t)|II5 : ϑ1=1, ϑ2 = −1, ϑ3 = 1, µ1 = 1, µ2 = 1, µ3 = 1, α0 =

1, β0 = 2, λ0 = 3, α1 = 4, β1 = 5, λ = 6, η0 = 1, t = 0.1.

For ζ0 = 1
4 , ζ2 =

1−2m2

2 , ζ4 = 1
4 , the solution of (1) of the form

8IV
13 (ξ ) =

[

a0 + a1(nsξ ± csξ )

]

× eiψ , (36)

leads to a collection of singular dark solutions whenm → 1,

8IV
13 (ξ ) =

[

a0 + a1(coth(ξ )+ csch(ξ ))

]

× eiψ , (37)

FIGURE 3 | |8(x, y, t)|III1 : λ1 = 1, λ2 = 2, λ3 = 3, µ1 = 1, µ2 = 1, µ3 = 1, α0 = 1,

β0 = 2, λ0 = 3, α1 = 4, β1=5, λ = 6, η0 = 1, t = 1.

FIGURE 4 | |8(x, y, t)|IV13 for m → 1: µ1 = 1, µ2 = 1, µ3 = 2, α0 = 1, β0 = 2, λ0

= 3, α1 = 0.1, β1 = 1, λ = 0.5, η0 = 1, t = 0.1.

and singular periodic solutions whenm → 0,

8IV
13 (ξ ) =

[

a0 + a1(cot(ξ )+ csc(ξ ))

]

× eiψ . (38)

3. RESULTS AND DISCUSSION

In this part, the physical aspects of the solutions obtained are
discussed by means of graphical 3D representations. Figures 1–4
show different categories of background for soliton solutions
classified into dark or singular soliton solutions.
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Figure 1 illustrates |8(x, y, t)|I1 established in Case I (Type I)
for ϑ1=1, ϑ2=−1, ϑ3= 1, µ1= 1, µ2= 1, µ3= 1, α0= 1, β0= 2, λ0=
3, α1= 4, β1= 5, λ= 6, η0= 1, t = 0.01.

Moreover, Figure 2 illustrates |8(x, y, t)|II5 found in Case II for
ϑ1= 1, ϑ2= −1, ϑ3= 1, µ1= 1, µ2= 1, µ3= 1, α0= 1, β0= 2, λ0= 3,
α1= 4, β1= 5, λ= 6, η0 = 1, t = 0.1.

Similarly, Figure 3 illustrates |8(x, y, t)|III1 found in Case III
(Type I) for λ1= 1, λ2= 2, λ3= 3, µ1= 1, µ2 = 1, µ3 = 1, α0 = 1, β0
= 2, λ0 = 3, α1 = 4, β1 = 5, λ = 6, η0 = 1, t = 1. Similarly, Figure 4
expresses |8(x, y, t)|IV13 observed in Case IV (m → 1) for µ1=1,
µ2=1, µ3 = 2, α0 = 1, β0 = 2, λ0 = 3, α1 = 0.1, β1 = 1, λ = 0.5, η0
= 1, t = 0.1.

Figure 1 represents the absolute value of the complex wave
solution given by Equation (14). We observe that this solution
is a dark (or kink) soliton wave propagating along the y-axis. The
kink wave is an essential aspect of numerous physical phenomena
containing self-reinforcing, impulsive systems, and reaction-
diffusion-advection. It is clear that there is a transmission of
the dark soliton with invariant amplitude (without any gain
or loss) in the homogeneous medium of motion. Due to the
homogeneous (constant) coefficients of Equation (1), we cannot
provide a possible way to control the propagation of the dark
solitons in this medium. Figures 2–4 represent the absolute value
of the complex wave solutions given by Equations (22), (23), and
(37), respectively. We observe that these solutions are singular

solitons that can be linked to a solitary wave when its center
becomes an imaginary position. Furthermore, It is clear that their
intensity gets Stronger, and consequently, they are not stable.
These solutions have a cusp, which may lead to the formation of
Rogue waves.

4. CONCLUSIONS

Herein, a large set of new analytical solutions with different
wave structures of the 2D-CNLS equation has been reproduced
with the aid of the PFS-E technique. As a positive result, a
wide variety of unprecedented exact solutions were gained in
an easy manner. Our study presents whether the suggested
approach is trustworthy in treatment NLPDEs to promote a
variety of exact solutions. Finally, we have plotted some 3D
graphs of these solutions and have shown that these graphs
can be controlled by adjusting the parameters. According to
our knowledge, the obtained solutions are likely to provide
a useful supplement to the existing literature on nonlinear
optics.
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