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Abstract
The present article aims to present a comprehensive study on a nonlinear
time-fractional model involving the Caputo–Fabrizio (CF) derivative. More explicitly, a
new (2 + 1)-dimensional mKdV (2D-mKdV) equation involving the Caputo–Fabrizio
time-fractional derivative is considered and an analytic approximation for it is
retrieved through a systematic technique, called the homotopy analysis transform
(HAT) method. Furthermore, after proving the Lipschitz condition for the kernel
ψ (x, y, t;u), the fixed-point theorem is formally utilized to demonstrate the existence
and uniqueness of the solution of the new 2D-mKdV equation involving the CF
time-fractional derivative. A detailed study finally is carried out to examine the effect
of the Caputo–Fabrizio operator on the dynamics of the obtained analytic
approximation.

Keywords: (2 + 1)-dimensional mKdV equation; Caputo–Fabrizio time-fractional
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1 Introduction
The classical KdV equation is a nonlinear partial differential equation to model waves on
shallow water surfaces that was established by Korteweg and de Vries in 1895. This exactly
solvable model has been the topic of many research works. Nowadays, unique applications
of the classical KdV equation have been suggested by many scholars as it can be used to
describe long internal waves in a density-stratified ocean, ion-acoustic waves in a plasma,
and acoustic waves on a crystal lattice. The mathematical form of the classical KdV equa-
tion is given by [1]

ut + α1uxxx + α2uux = 0.
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There are different variations of the classical KdV equation, some of those reported in the
literature are [2, 3]:

ut + α1uxxx + α2u2ux = 0, (modified KdV),

ut + α1uxxx + α2unux = 0, (generalized KdV),

and the (2 + 1)-dimensional KdV equation

⎧
⎨

⎩

ut – uxxx + 3(uv)x = 0,

ux – vy = 0.

Many efforts have been devoted to studying the KdV-type equations, for example, Wazwaz
[2] used different reliable methods to obtain solitons and periodic solutions of the KdV,
modified KdV, and generalized KdV equations, and Wang [3] derived lump solutions of the
(2+ 1)-dimensional KdV equation by means of an ansatz based on the quadratic functions.
Recently, the fractional forms of the KdV-type equations have been explored using a series
of systematic methods in [4, 5].

Our aim of this paper is studying a new (2 + 1)-dimensional mKdV equation involving
the Caputo–Fabrizio time-fractional derivative as follows:

CF
0 Dα

t u = 6u2ux – 6u2uy + uxxx – uyyy – 3uxxy + 3uxyy, 0 < α ≤ 1, (1)

through a systematic technique called the homotopy analysis transform method [6–11].
The classical form of the new 2D-mKdV Eq. (1) was first proposed by Wang and Kara
[12] in 2019 using the extended Lax pair. Wang and Kara in [12] extracted a group of
solitary wave solutions of the new 2D-mKdV equation (its classical form) through the Lie
symmetry method.

Recently, nonlinear ODEs/PDEs involving the Caputo–Fabrizio fractional derivative
have gained significant attention owing to their potential to describe many complicated
physical phenomena. In this respect, Shah et al. [13] analyzed a nonlinear model of dengue
fever disease with the CF fractional derivative using the Laplace Adomian decomposition
method. Owolabi and Atangana [14] explored a series of nonlinear fractional parabolic
differential equations involving the CF derivative thought a numerical scheme. In another
work performed by Arshad et al. [15], the CD4+ T-cells model of HIV infection with the
CF fractional derivative was studied using an effective numerical scheme. Shaikh et al.
[16] employed the iterative Laplace transform method to analyze a group of fractional
reaction-diffusion equations involving the CF derivative. More articles can be found in
[17–45].

The rest of this paper is as follows: In Sect. 2, the Caputo–Fabrizio fractional opera-
tors are reviewed in detail. In Sect. 3, the Lipschitz condition for the kernel ψ(x, y, t; u)
is proved, then the fixed-point theorem is formally applied to show the existence and
uniqueness of the solution of the new 2D-mKdV equation involving the CF time-fractional
derivative. In Sect. 4, an analytic approximation for the new 2D-mKdV equation involv-
ing the Caputo–Fabrizio time-fractional derivative is acquired using the HAT method.
The results of this paper are summarized in the last section.
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2 Basic definitions and features
This section presents the basic definitions and features of the Caputo–Fabrizio fractional
operators. In this respect, first the Caputo–Fabrizio fractional derivative and integral are
defined, then the Laplace transform of the Caputo–Fabrizio fractional derivative is given.

Definition 1 Suppose that u(t) ∈ H1(a, b), b > a and α ∈ (0, 1]. Then, the Caputo–Fabrizio
fractional derivative of u(t) of order α is given by [17]

CF
a Dα

t u(t) =
M(α)
1 – α

∫ t

a
u′(ε)e– α

1–α (t–ε) dε,

where M(α) is a normalized function satisfying M(0) = M(1) = 1.

Definition 2 The Caputo–Fabrizio fractional integral of u(t) of order α (α ∈ (0, 1]) is given
by [18]

CF
0 Iα

t u(t) =
2(1 – α)

(2 – α)M(α)
u(t) +

2α

(2 – α)M(α)

∫ t

0
u(ε) dε, t ≥ 0.

Definition 3 The Laplace transform of CF
0 Dα

t u(t) is given as [17]

L
[CF

0 Dα
t u(t)

]
(s) =

sL[u(t)](s) – u(0)
s + α(1 – s)

,

and in the general case, we have

L
[CF

0 D(α+n)
t u(t)

]
(s) =

sn+1L[u(t)](s) – snu(0) – sn–1u′(0) – · · · – u(n)(0)
s + α(1 – s)

.

Theorem 1 The following Lipschitz condition holds for the Caputo–Fabrizio fractional
derivative given in Definition 1:

∥
∥CF

a Dα
t u(t) – CF

a Dα
t v(t)

∥
∥ ≤ λ

∥
∥u(t) – v(t)

∥
∥.

Proof In a similar manner as in [23], it is easy to show that

∥
∥CF

a Dα
t u(t) – CF

a Dα
t v(t)

∥
∥ =

∥
∥
∥
∥

M(α)
1 – α

∫ t

a
u′(ε)e– α

1–α (t–ε) dε –
M(α)
1 – α

∫ t

a
v′(ε)e– α

1–α (t–ε) dε

∥
∥
∥
∥

=
∥
∥
∥
∥

M(α)
1 – α

(∫ t

a
u′(ε)e– α

1–α (t–ε) dε –
∫ t

a
v′(ε)e– α

1–α (t–ε) dε

)∥
∥
∥
∥

=
∥
∥
∥
∥

M(α)
1 – α

e– α
1–α (t–ε)

(∫ t

a

(
u′(ε) – v′(ε)

)
dε

)∥
∥
∥
∥

≤ M(α)
1 – α

μe– α
1–α (t–α)∥∥u(t) – v(t)

∥
∥

= λ
∥
∥u(t) – v(t)

∥
∥. �
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3 The model and the existence and uniqueness of its solution
To start, let us consider

ψ(x, y, t; u) = 6u2ux – 6u2uy + uxxx – uyyy – 3uxxy + 3uxyy.

This suggests that Eq. (1) can be rewritten as

CF
0 Dα

t u(x, y, t) = ψ(x, y, t; u). (2)

Applying the CF fractional integral to both sides of Eq. (2) results in

u(x, y, t) – u(x, y, 0) =
2(1 – α)

(2 – α)M(α)
ψ(x, y, t; u) +

2α

(2 – α)M(α)

∫ t

0
ψ(x, y, ε; u) dε. (3)

In order to show that the kernel ψ(x, y, t; u) satisfies the Lipschitz condition, we first con-
sider bounded functions u(x, y, t) and v(x, y, t). Using the triangle property of norms, one
can find

∥
∥ψ(x, y, t; u) – ψ(x, y, t; v)

∥
∥

=
∥
∥
(
6u2ux – 6v2vx

)
–

(
6u2uy – 6v2vy

)
+ (uxxx – vxxx) – (uyyy – vyyy)

– (3uxxy – 3vxxy) + (3uxyy – 3vxyy)
∥
∥

=
∥
∥
∥
∥2

∂

∂x
(
u3 – ν3) – 2

∂

∂y
(
u3 – ν3) +

∂3

∂x3 (u – v) –
∂3

∂y3 (u – v)

– 3
∂3

∂y ∂x2 (u – v) + 3
∂3

∂y2 ∂x
(u – v)

∥
∥
∥
∥

≤ 2
∥
∥
∥
∥

∂

∂x
(
u3 – ν3)

∥
∥
∥
∥ + 2

∥
∥
∥
∥

∂

∂y
(
u3 – ν3)

∥
∥
∥
∥ +

∥
∥
∥
∥

∂3

∂x3 (u – v)
∥
∥
∥
∥ +

∥
∥
∥
∥

∂3

∂y3 (u – v)
∥
∥
∥
∥

+ 3
∥
∥
∥
∥

∂3

∂y ∂x2 (u – v)
∥
∥
∥
∥ + 3

∥
∥
∥
∥

∂3

∂y2 ∂x
(u – v)

∥
∥
∥
∥

≤ 2A
∥
∥u3 – ν3∥∥ + 2B

∥
∥u3 – ν3∥∥ + C‖u – ν‖ + D‖u – ν‖ + 3E‖u – ν‖ + 3F‖u – ν‖

≤ (2A + 2B)
(
μ2 + μυ + υ2)‖u – ν‖ + C‖u – ν‖ + D‖u – ν‖ + 3E‖u – ν‖ + 3F‖u – ν‖

=
(
(2A + 2B)

(
μ2 + μυ + υ2) + C + D + 3E + 3F

)‖u – ν‖, ‖u‖ ≤ μ,‖v‖ ≤ υ.

Therefore

∥
∥ψ(x, y, t; u) – ψ(x, y, t; v)

∥
∥ ≤ λ‖u – v‖,

which

λ =
(
(2A + 2B)

(
μ2 + μυ + υ2) + C + D + 3E + 3F

)
.

This confirms that the Lipschitz condition is satisfied for the kernel ψ(x, y, t; u).
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Now, based on the Eq. (3) and the fixed-point theorem, an iterative scheme is established
as follows:

un+1(x, y, t) =
2(1 – α)

(2 – α)M(α)
ψ(x, y, t; un) +

2α

(2 – α)M(α)

∫ t

0
ψ(x, y, ε; un) dε,

where

u0(x, y, t) = u(x, y, 0).

It is clear that

en(x, y, t) = un(x, y, t) – un–1(x, y, t)

=
2(1 – α)

(2 – α)M(α)
(
ψ(x, y, t; un–1) – ψ(x, y, t; un–2)

)

+
2α

(2 – α)M(α)

∫ t

0

(
ψ(x, y, ε; un–1) – ψ(x, y, ε; un–2)

)
dε,

and

un(x, y, t) =
n∑

i=0

ei(x, y, t). (4)

Theorem 2 If the function u(x, y, t) is bounded, then

∥
∥en(x, y, t)

∥
∥ ≤

(
2(1 – α)

(2 – α)M(α)
λ +

2α

(2 – α)M(α)
λt

)n∥
∥u(x, y, 0)

∥
∥.

Proof by induction Suppose that n = 1. Then, one can write

∥
∥e1(x, y, t)

∥
∥ =

∥
∥u1(x, y, t) – u0(x, y, t)

∥
∥

≤ 2(1 – α)
(2 – α)M(α)

∥
∥ψ(x, y, t; u0) – ψ(x, y, t; u–1)

∥
∥

+
2α

(2 – α)M(α)

∫ t

0

∥
∥ψ(x, y, ε; u0) – ψ(x, y, ε; u–1)

∥
∥dε

≤ 2(1 – α)
(2 – α)M(α)

λ‖u0 – u–1‖ +
2α

(2 – α)M(α)

∫ t

0
λ‖u0 – u–1‖dε

=
2(1 – α)

(2 – α)M(α)
λ
∥
∥u(x, y, 0)

∥
∥ +

2α

(2 – α)M(α)

∫ t

0
λ
∥
∥u(x, y, 0)

∥
∥dε

=
2(1 – α)

(2 – α)M(α)
λ
∥
∥u(x, y, 0)

∥
∥ +

2α

(2 – α)M(α)
λ
∥
∥u(x, y, 0)

∥
∥

∫ t

0
dε

=
2(1 – α)

(2 – α)M(α)
λ
∥
∥u(x, y, 0)

∥
∥ +

2α

(2 – α)M(α)
λ
∥
∥u(x, y, 0)

∥
∥t

=
(

2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λt

)
∥
∥u(x, y, 0)

∥
∥.
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Now, if the relation holds for n – 1, namely

∥
∥en–1(x, y, t)

∥
∥ ≤

(
2(1 – α)

(2 – α)M(α)
λ +

2α

(2 – α)M(α)
λt

)n–1∥
∥u(x, y, 0)

∥
∥,

then, we will prove that

∥
∥en(x, y, t)

∥
∥ ≤

(
2(1 – α)

(2 – α)M(α)
λ +

2α

(2 – α)M(α)
λt

)n∥
∥u(x, y, 0)

∥
∥.

To show this, we proceed as follows:

∥
∥en(x, y, t)

∥
∥ =

∥
∥un(x, y, t) – un–1(x, y, t)

∥
∥

≤ 2(1 – α)
(2 – α)M(α)

∥
∥ψ(x, y, t; un–1) – ψ(x, y, t; un–2)

∥
∥

+
2α

(2 – α)M(α)

∫ t

0

∥
∥ψ(x, y, ε; un–1) – ψ(x, y, ε; un–2)

∥
∥dε

≤ 2(1 – α)
(2 – α)M(α)

λ‖un–1 – un–2‖ +
2α

(2 – α)M(α)

∫ t

0
λ‖un–1 – un–2‖dε

=
2(1 – α)

(2 – α)M(α)
λ
∥
∥en–1(x, y, t)

∥
∥ +

2α

(2 – α)M(α)

∫ t

0
λ
∥
∥en–1(x, y, ε)

∥
∥dε

=
(

2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λt

)n–1∥
∥u(x, y, 0)

∥
∥

×
(

2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λ

∫ t

0
dε

)

=
(

2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λt

)n–1

×
(

2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λt

)
∥
∥u(x, y, 0)

∥
∥

=
(

2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λt

)n∥
∥u(x, y, 0)

∥
∥. �

Theorem 3 If at t = t0 we have

0 ≤ 2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λt0 < 1,

then the solution of the new 2D-mKdV equation involving the CF time-fractional derivative
exists.

Proof Based on Eq. (4), one can write

∥
∥un(x, y, t)

∥
∥ ≤

n∑

i=0

∥
∥ei(x, y, t)

∥
∥

≤
n∑

i=0

(
2(1 – α)

(2 – α)M(α)
λ +

2α

(2 – α)M(α)
λt

)i∥
∥u(x, y, 0)

∥
∥.
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For t = t0, one obtains

∥
∥un(x, y, t)

∥
∥ ≤ ∥

∥u(x, y, 0)
∥
∥

n∑

i=0

(
2(1 – α)

(2 – α)M(α)
λ +

2α

(2 – α)M(α)
λt0

)i

.

Consequently,

lim
n→∞

∥
∥un(x, y, t)

∥
∥ ≤ ∥

∥u(x, y, 0)
∥
∥

∞∑

i=0

(
2(1 – α)

(2 – α)M(α)
λ +

2α

(2 – α)M(α)
λt0

)i

.

Since

0 ≤ 2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λt0 < 1,

the above series is convergent, and therefore, un(x, y, t) exists and is bounded for any n.
Besides, by assuming

Rn(x, y, t) = u(x, y, t) – un(x, y, t),

one can easily prove that

∥
∥Rn(x, y, t)

∥
∥ ≤

(
2(1 – α)

(2 – α)M(α)
λ +

2α

(2 – α)M(α)
λt0

)n+1

μ,

and so

lim
n→∞

∥
∥Rn(x, y, t)

∥
∥ ≤ lim

n→∞

(
2(1 – α)

(2 – α)M(α)
λ +

2α

(2 – α)M(α)
λt0

)n+1

μ.

But

0 ≤ 2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λt0 < 1,

thus

lim
n→∞

∥
∥Rn(x, y, t)

∥
∥ = 0 or lim

n→∞ un(x, y, t) = u(x, y, t). �

Theorem 4 If at t = t0 we have

0 ≤ 2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λt0 < 1,

then the solution of the new 2D-mKdV equation involving the CF time-fractional derivative
is unique.
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Proof by contradiction To start, let us consider two solutions, say u(x, y, t) and v(x, y, t), for
the model (1). One can write

u(x, y, t) – v(x, y, t) =
2(1 – α)

(2 – α)M(α)
(
ψ(x, y, t; u) – ψ(x, y, t; v)

)

+
2α

(2 – α)M(α)

∫ t

0

(
ψ(x, y, ε; u) – ψ(x, y, ε; v)

)
dε.

Consequently,

∥
∥u(x, y, t) – v(x, y, t)

∥
∥ ≤ 2(1 – α)

(2 – α)M(α)
∥
∥ψ(x, y, t; u) – ψ(x, y, t; v)

∥
∥

+
2α

(2 – α)M(α)

∫ t

0

∥
∥ψ(x, y, ε; u) – ψ(x, y, ε; v)

∥
∥dε

≤ 2(1 – α)
(2 – α)M(α)

λ‖u – v‖ +
2α

(2 – α)M(α)

∫ t

0
λ‖u – v‖dε

=
(

2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λ

∫ t

0
dε

)

‖u – v‖

=
(

2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λt

)

‖u – v‖.

But

0 ≤ 2(1 – α)
(2 – α)M(α)

λ +
2α

(2 – α)M(α)
λt0 < 1,

therefore

∥
∥u(x, y, t) – v(x, y, t)

∥
∥ = 0,

and so, the solution of the new 2D-mKdV equation involving the CF time-fractional
derivative is unique. �

4 The new CF time-fractional 2D-mKdV equation and its analytical solutions
In the present section, first soliton solutions of the classical form of the model are extracted
using an ansatz method, then the HAT method is used to acquire an analytic approxima-
tion for the new CF time-fractional 2D-mKdV equation.

4.1 Soliton solutions of the classical form of the model
To find soliton solutions, a test function is considered as follows:

u(x, y, t) = A0 + A1 sech(α1x + α2y + α3t).

By substituting the above function into the classical form of the model, we obtain a non-
linear algebraic system as follows:

6A2
0α1 – 6A2

0α2 + α3
1 – 3α2

1α2 + 3α2
2α1 – α3

2 – α3 = 0,
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12A0A1α1 – 12A0A1α2 = 0,

6A2
1α1 – 6A2

1α2 – 6α3
1 + 18α2

1α2 – 18α2
2α1 + 6α3

2 = 0,

whose solution yields

A0 = 0, A1 = ∓α1 ± α2,α3 = α3
1 – 3α2

1α2 + 3α2
2α1 – α3

2 .

Now, the following soliton solutions to the classical form of the model (1) can be con-
structed:

u1,2(x, y, t) = (∓α1 ± α2) sech
(
α1x + α2y +

(
α3

1 – 3α2
1α2 + 3α2

2α1 – α3
2
)
t
)
.

For α1 = 1 and α2 = –1, the above solitons are reduced to

u1,2(x, y, t) = ∓2 sech(x – y + 8t) = ∓4
ex–y+8t

1 + e2(x–y+8t) .

4.2 The model and its analytic approximation
To obtain an analytic approximation, we apply the Laplace transform to both sides of
Eq. (1). Such an operation results in

L
[
u(x, y, t)

]
–

u(x, y, 0)
s

–
(

s + α(1 – s)
s

)

L
[
6u2(x, y, t)ux(x, y, t)

– 6u2(x, y, t)uy(x, y, t) + uxxx(x, y, t) – uyyy(x, y, t)

– 3uxxy(x, y, t) + 3uxyy(x, y, t)
]

= 0. (5)

Based on Eq. (5), the nonlinear operator can be defined as

Ω
[
φ(x, y, t; p)

]
= L

[
φ(x, y, t; p)

]
–

u0(x, y, t)
s

–
(

s + α(1 – s)
s

)

L
[
6φ2(x, y, t; p)φx(x, y, t; p)

– 6φ2(x, y, t; p)φy(x, y, t; p) + φxxx(x, y, t; p) – φyyy(x, y, t; p)

– 3φxxy(x, y, t; p) + 3φxyy(x, y, t; p)
]

= 0.

Now, the following mth order deformation equation is considered:

L
[
um(x, y, t) – χmum–1(x, y, t)

]
= hRm(
um–1),

where

Rm(
um–1) =
1

(m – 1)!
∂m–1Ω[φ(x, y, t; p)]

∂pm–1

∣
∣
∣
∣
p=0

,
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and

χm =

⎧
⎨

⎩

0 m ≤ 1,

1 m > 1.

It is worth mentioning that by selecting

u(x, y, 0) = –4
ex–y

1 + e2(x–y)

and solving the resulting equations, one obtains

u0(x, y, t) = –4
ex–y

1 + e2(x–y) ,

u1(x, y, t) = –32
hex–y(αe2(x–y)t – αe2(x–y) + e2(x–y) – αt + α – 1)

(e2(x–y) + 1)2 ,

...

Therefore, the series solution of the new CF time-fractional 2D-mKdV equation is derived
as

u(x, y, t) = –4
ex–y

1 + e2(x–y) – 32
hex–y(αe2(x–y)t – αe2(x–y) + e2(x–y) – αt + α – 1)

(e2(x–y) + 1)2 + · · · .

It is noteworthy that for α = 1 and h = –1, the above series converges to the following exact
solution:

u(x, y, t) = –4
ex–y+8t

1 + e2(x–y+8t) .

Figure 1 presents the 3-order approximation of the new CF time-fractional 2D-mKdV
equation for α = 1, 0.99, and 0.98 against the exact solution. From this figure, a full agree-
ment between the 3-order approximation (when α = 1) and the exact solution is obviously
observed. The absolute error of the 3-order approximation (when α = 1) and the exact so-
lution has been presented in Table 1. The results confirm the efficiency of the HAT method

Figure 1 The 3th order approximation against the exact solution (a) y = 0.5, t = 0.01, h = –1, and
α = 1, 0.99, and 0.98; (b) x = 0.5, t = 0.01, h = –1, and α = 1, 0.99, and 0.98
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Table 1 The absolute error of the 3-order approximation and the exact solution

t Absolute error when y = 0.5, t = 0.01,
h = –1, and α = 1

Absolute error when x = 0.5, t = 0.01,
h = –1, and α = 1

0 9.921881× 10–7 2.607245× 10–7

0.5 1.702236× 10–5 1.702236× 10–5

1 2.607245× 10–7 9.921881× 10–7

1.5 6.913822× 10–6 7.076190× 10–6

2 2.534162× 10–6 2.783063× 10–6

2.5 2.305783× 10–7 3.045477× 10–7

3 2.741436× 10–7 2.651408× 10–7

3.5 2.706178× 10–7 2.751423× 10–7

4 1.884674× 10–7 1.936185× 10–7

4.5 1.198279× 10–7 1.235044× 10–7

5 7.391757× 10–8 7.627198× 10–8

Figure 2 (a) The exact solution for t = 0.01 against (b, c, d) the 3-order approximation when (b) t = 0.01,
h = –1, and α = 1; (c) t = 0.01, h = –1, and α = 0.99; (d) t = 0.01, h = –1, and α = 0.98

in deriving an analytic approximation with high accuracy. Finally, Fig. 2 shows the 3D plots
of the exact solution and the 3-order approximation for α = 1, 0.99, and 0.98.

It is believed that the analytic approximation given by the HAT method can precisely
predict the dynamics of the dark soliton solution of the new 2D-mKdV equation involving
the CF time-fractional derivative.

5 Conclusion
A thorough study on a nonlinear model involving the Caputo–Fabrizio time-fractional
derivative was carried out successfully in the current paper. In this respect, a new 2D-
mKdV equation designed with the CF time-fractional derivative was considered, and an
analytic approximation for it was formally derived using a systematic approach, named
the homotopy analysis transform method. The existence and uniqueness of the solution
of the new 2D-mKdV equation involving the Caputo–Fabrizio time-fractional derivative
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were studied by proving the Lipschitz condition for the kernel ψ(x, y, t; u) and applying the
fixed-point theorem. A detailed study was finally accomplished to investigate the effect of
the Caputo–Fabrizio operator on the dynamics of the obtained analytic approximation.
The results presented herein confirm the efficiency of the HAT method in deriving an
analytic approximation with high accuracy for nonlinear models involving the Caputo–
Fabrizio time-fractional derivative. Our future work is to obtain an analytic approximation
of the new 2D-mKdV equation with the Atangana–Baleanu time-fractional derivative and
study the effect of the Atangana–Baleanu operator on the dynamics of the approximate
solution.
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