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a b s t r a c t 

Numerous natural phenomena display repeating self-similar patterns. Fractal is used when a pattern 

seems to repeat itself. Fractal and multifractal methods have extensive applications in neurosciences in 

which the prevalence of fractal properties like self-similarity in the brain, equipped with a complex struc- 

ture, in medical data analysis at various levels of observation is admitted. The methods come to the fore 

since subtle details are not always detected by physicians, but these are critical particularly in neurologi- 

cal diseases like stroke which may be life-threatening. The aim of this paper is to identify the self-similar, 

significant and efficient attributes to achieve high classification accuracy rates for stroke subtypes. Accord- 

ingly, two approaches were implemented. The first approach is concerned with application of the fractal 

and multifractal methods on the stroke dataset in order to identify the regular, self-similar, efficient and 

significant attributes from the dataset, with these steps: a) application of Box-counting dimension gen- 

erated BC _ stroke dataset b) application of Wavelet transform modulus maxima generated WTMM _ stroke 

dataset. The second approach involves the application of Feed Forward Back Propagation (FFBP) for stroke 

subtype classification with these steps: (i) FFBP algorithm was applied on the stroke dataset, BC _ stroke 

dataset and WTMM _ stroke dataset. (ii) Comparative analyses were performed based on accuracy, sensitiv- 

ity and specificity for the three datasets. The main contribution is that the study has obtained the iden- 

tification of self-similar, regular and significant attributes from the stroke subtypes datasets by following 

multifarious and integrated methodology. The study methodology is based on the singularity spectrum 

which provides a value concerning how fractal a set of points are in the datasets (BC_stroke dataset and 

WTMM_stroke dataset). The experimental results reveal the applicability, reliability and accuracy of our 

proposed integrated method. No earlier work exists in the literature with the relevant stroke datasets 

and the methods employed. Therefore, the study aims at pointing a new direction in the relevant fields 

concerning the complex dynamic systems and structures which display multifractional nature. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fractal geometry is regarded as a universal language employed

xtensively for analysing and quantifying geometric complexity of

atural objects among which the human brain is also included [1] .

s has been acknowledged, human brain is a complex system con-

erning its topological and functional structure, and for this rea-

on, human brain is under detailed investigation in different fields

1] . The fractal geometry notions are utilized in many areas of re-
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earch [2] and they have been proven to be beneficial quantitative

ethods for image analysis in the field of medical sciences. Com-

utational analyses based on fractal have also been applied to di-

erse subfields of neurosciences [3–5] . To illustrate, in many med-

cal data analysis applications, the methods are used for texture

nalysis, pattern recognition and segmentation. Thus, the quantifi-

ation and characterization of the brain through the fractal dimen-

ion analysis has been a field of growing interest over the recent

ears [6] . 

Fractal methods are appealing owing to their ability to describe

ragmented or irregular shape of natural features and also other

ypes of complex objects which traditional Euclidean geometry

ails to analyse. The fractal analysis is a contemporary method in

athematics used for measuring complexity in nature [7] , and this

nalysis is reliant on fractal geometry [2] . Fractal dimension is the

https://doi.org/10.1016/j.chaos.2020.109820
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Fig. 1. An MRI for an Ischemic Stroke Case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

d  

t  

d  

c  

d  

d  

o  

f  

g  

b  

t  

a  

g  

M  

i  

t  

s  

o  

a  

e  

p  

d  

p  

t  

w  

a  

e  

p

 

m  

o  

c  

t  

c  

b  

s  

o  

o  

o  

s  

t  

m  

c  

a  

[  

t  

n

 

estimate of the topological complexity of an object. With its com-

prehensive characteristic, fractal analysis encompasses some differ-

ent methods which calculate the fractal dimension of object in a

plane [7,8] . The concepts regarding fractal methods enable simple

geometrical interpretation required to be used in different realms

such as fluid mechanics, geophysics, biology and neurosciences, to

name just a few. Fractal method has been extensively used in re-

cent years in data analysis problems in general and particularly in

the medical field. 

Stroke is among the leading significant reasons for death fol-

lowing cancer and cardiovascular disorders (see Fig. 1 ). Being a

life-threatening neurological disease, stroke is ranked as the third

leading reason for death in developing countries and the US [9] .

It is characterized by the rapid loss of brain function due to the

disturbance occurring in the blood supply and oxygen to the brain

[10,11] . Stroke results in cognitive impairment and vascular demen-

tia [4,12] . In addition, it can bring about motor visual and speech

problems. Stroke generally may be categorized into two clinical

types: the ischemic stroke and hemorrhagic stroke [13] . 

This study is concerned with the dataset of individuals diag-

nosed with ischemic stroke: no stroke/TIA, large vessel, small ves-

sel, cardioembolic, cryptogenic, dissection, other (moyamoya, fi-

bromuscular dysplasia (FDM), hereditary, coagulopathy, vasculitis,

other rare). These eight subtypes were examined based on TOAST

Criteria [4] (For further detailed explanation of subtypes regarding

stroke, see [4,14–18] ). 

Diagnosing and future prediction regarding the development

and course of disorders play a critical role. As is the case with all

the other disorders, this also holds true for stroke, which proves

to be a critical medical concern. At this point, cooperation with

medical doctors comes to the fore. In order to assist and enhance

diagnosis, prediction and follow-up, numerous methods in diverse

fields have been developed so that the life quality of the patients is

maintained at a favourable level and enhance that quality further,

which requires an interdisiciplinary collaboration ultimately with

a holistic approach [3,19,20] . Accordingly, there has been a need

for practicable techniques and one of such practical methods can

be the Box-counting (BC) method, which is one of the multifrac-

tal methods. BC is based on the idea of “covering” the image with

rectangular coordinate grid [20] . It is considered to be a beneficial

method to estimate fractal dimension; therefore, BC is utilized ex-

tensively among other fractal techniques [20,21] as an appropriate

fractal dimension for the estimation of images that have or do not

have self-similarity. 

To cite relevant studies related to Box-counting, [22] worked on

characterization of stroke lesions with 15 different datasets by us-

ing fractal Box-counting analysis. The results of the study offer an

efficient scheme to characterize stroke lesions by means of fractal

parameters. The study of [23] is concerned with carotid atheroscle-
rotic lesions in cerebrovascular disease with the aim of devel- t  
ping and validating novel vulnerability biomarkers from three-

imensional ultrasound images (3DUS) using fractal geometry fea-

ures. Their fractal dimension analysis tool was employed in or-

er to assess the impact of atorvastatin that makes use of 3DUS

arotid images. Another study [24] concerned with biomarkers ad-

resses tissue multifractality and Born approximation for precancer

etection. The study demonstrates the useful ability of delineation

f the multifractal optical properties from light scattering signals

or the characterization of an extensive range of non-biological ori-

in. Correspondingly, the study of [25] developed a methodology

enefiting from multifractal parameters through the integration of

he HMM and support vector machine (SVM) for the optical di-

gnosis of cancer. The study results demonstrated that the inte-

rated Multifractal Detrended Fluctuation Analysis-Hidden Markov

odel attained better discrimination between normal and differ-

ng grades of cancer. [26] in their study, had the objective of de-

ermining the way to prepare an image for Box-counting analy-

is. They concluded that determining the most appropriate range

f box sizes is encountered as a common problem for any im-

ge type and the applications need to be conducted repeatedly for

ach of the individual images. [27] worked on the different mor-

hological forms where astrocytes occur in brain of Alzheimer’s

isease and ischemic/hemorrhagic stroke patients. The authors ap-

lied a fractal dimension analysis algorithm to differentiate be-

ween astroglia through their analysis of over 10 0 0 astroglia. Their

ork demonstrates that fractal dimension analysis of astroglia is

 benefcial method for describing gliosis quantitatively in differ-

nt pathologies, which may provide insight into the brain diseases’

athogenesis. 

Wavelet transform (WT) provides certain benefits, one of its re-

arkable properties is its ability to characterize the local regularity

f functions and the local regularity is often measured with Lips-

hitz exponents (LE) [28] . While locally investigating a fractal func-

ion, the Hölder exponent is governed by the singularities, which

auses oscillations around the WT amplitude’s expected power-law

ehavior. In such cases, WTMM method is preferred to be used

o that this exact calculation problem can be overcome. This is

ne advantage of WTMM method. Another major positive aspect

f using wavelets is that the wavelet transform modulus-maxima

ffers an adaptive space-scale partition to extract the singularity

pectrum by means of scaling behavior of some partition func-

ions defined on the WTMM [29] . There is further advantage to

odulus maxima proven by simulation experiments yielding ac-

eptable results of singularity decisions concerning the noisy signal

nd achieving better performance [30] . Furthermore, the studies of

31,32] have also proven that WTMM is possible to be utilized for

he definition of a multifractal-like formalism and for the determi-

ation of many signals’ multifractal nature [33] . 

WTMM has been used in several studies in the literature over

he recent years. The study by [34] concerns machinery health
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onitoring as a key step in the maintenance implementation in

ndustry. The study conducted presents that Lipschitz exponent

s the most popular measure regarding the regularity behaviour

f a signal; and wavelet transform has the ability of characteris-

ng the local regularity of machines. As a result of the analysing

nd diagnosing of measuring vibration signal with the use of LE

ased objective function, the algorithm they worked on proved to

ave reliability and effectiveness. In a study performed by [35] , in

hich medical data were used, WTMM approach was employed to

tudy the dynamics of cerebral blood flow (CBF) in rats. The re-

ults show that the wavelet-based multifractal formalism ensures

he quantifying of essentially different reactions concerning the

evel of large and small cerebral vessels. The authors put forth the

ajor significance of wavelet-based multifractal formalism, stat-

ng that it is likely to be the most powerful tool to do statistical

nalysis concerning inhomogeneous and nonstationary processes.

his particular approach is advantageous owing to its essential

otential of quantifying the natural systems’ complex dynamics.

nother study in engineering was conducted by [36] who anal-

sed the classical pulse superposition method based on wavelet-

odulus-maxima information. Their experiments based on prac-

ice demonstrated that the method proposed was straightfor-

ard and effective, which prove to be noteworthy for engineering

pplications. 

The use of WTMM in natural sciences, industry and engineer-

ng is seen in various fields and applications. To illustrate from

he recent works, [37] ’s work is concerned with time series in so-

ar wind speed. The authors investigated the existence of multi-

ractality within the boundaries of the signal. For this, they em-

loyed Continuous wavelet transforms modulus maxima method.

he span of the time series data examined is of 2492 days (be-

ween 01/01/1997 and 28/10/2003). The authors drew singularity

pectrum to assess qualitatively the level of multifractality existent

ithin the solar wind speed signal. Besides the use of WTMM in

atural sciences and engineering, its use in medical areas would

e worthy of being mentioned [38] ’s study also concerns one of

he medical issues, cardiac arrhythmia. It is stated by the au-

hors of the study that the wavelet transform is an effective tool

o extract discriminative features. The authors proposed an im-

roved algorithm based on multiresolution wavelet transform to

lassify four types of electrocardiogram (ECG) beats. Their results

howed that support vector machine (SVM) approach had a supe-

ior classification accuracy for the detection of detecting ECG ar-

hythmia beats. Concerning classification and artificial neural net-

orks (ANN), [9] ’s study is related to stroke by the classification

lgorithms (Neural Network, Decision Tree and Naive Bayes). They

sed the methods for the prediction of stroke presence including

elated number of attributes. In their study, the authors employed

he principle component analysis algorithm to reduce the dimen-

ions and they presented the predictions concerning whether the

atient is suffering from the stroke disease or not [39] proposed

 functional model of ANN to assist the already existing methods

f diagnosis. They examined the use of ANN for the prediction of

hrombo-embolic stroke disease. The work of the authors shows

hat the ANN based prediction of stroke disease enhances the accu-

acy for diagnosis, having attained a higher consistency, which sug-

ests that ANN performance is at a good level for the prediction of

troke in general. Another study on stroke and application of ANN

as done by [40] to predict the stroke outcomes through the use

f ANN, SVM models and knowledge discovery process methods.

heir data included 297 individuals and the findings of the study

emonstrated that ANN yielded a higher predictive performance in

omparison with SVM for stroke prediction. Finally, the study by

41] presents a development of a Mobile Cloud System (MCC) for

troke subtypes. The dataset was comprised of stroke patients with

ardioembolic (689) and cryptogenic (528) subtypes. One of the
NN algorithms, Multilayer Perceptron Algorithm (MLP), proved to

e beneficial for the classification of the two stroke subtypes. The

tudy findings and the proposed healthcare system revealed that

he model ensured security and scalability as a system for stroke

atients as a result of accurate classification process. 

By the same token, fractal and multifractal methods have been

pplied extensively over the last years in numerous analyses of

edical data. Application of this geometry relies heavily on the

stimation of the fractal features. Based on this, various methods

ave been proposed for the estimation of the fractal dimension

r multifractal spectral concerning medical data. To cite relevant

tudies, [4,41,42] did works by selecting the most significant at-

ributes for the early detection of stroke. [11] and [43,44] made the

election of the most significant stroke attributes and performed

he application by machine learning algorithms. [44] demonstrated

ne of the essential potentials of the Wavelet transform modu-

us maxima approach for the characterization of functional dis-

ortions in cerebrovascular dynamics for both small and large

essel. 

The approach in this study is more extensive when compared

ith other studies done with stroke datasets [4,39–44] in the lit-

rature. The reason why it is extensive is owing to the dimen-

ion of the dataset and the multifarious methods applied. Consid-

ring the dimension of 2242 (the number of patients with 8 differ-

nt stroke subtypes) and 23 attributes, the dataset is comprehen-

ive. The 8 stroke subtypes are no stroke/TIA, large vessel, small

essel, cardioembolic, cryptogenic, multiple coexisting, dissection, 

ther (moyamoya, FMD, hereditary, coagulopathy, vasculitis, other

are). The attributes consist of demographic information, medical

istory, results of laboratory tests, treatments as well as medica-

ions. This extensive data with 8 different stroke types and all the

ttributes handled in the study naturally fall into the category of

ig data; and when compared to other relevant studies in the lit-

rature, the data handled in this study is highly comprehensive.

he big data analysis in this respect is one contribution of the cur-

ent study. Among the previous researches conducted in this area,

here are extant analyses on stroke datasets. However, no work has

een reported yet which concerns the aforementioned attributes.

dditionally, in terms of method, this study is also the first in

he literature since Box-counting dimension (with least square re-

ression) and Wavelet transform modulus maxima (with Gaussian

avelet analysis) have been used for the identification of regular,

elf-similar, efficient and significant attributes. Methods utilized in

he study; therefore, are applicable to the case where the data

as irregular and differentiable f eatures with fractal structures. Re-

arding the methods used, the methods comprise a second con-

ribution of this study. The method provides two approaches. As

he first approach, in terms of identifying the significant, efficient,

elf-similar and regular attributes, the methods used facilitated the

lassification. Therefore, fractal and multifractal methods, BC and

TMM, were applied to identify the discriminating and significant

ingular attributes to diagnose stroke subtypes. To attain this aim,

he first step was to identify the significant, self-similar and regular

ttributes. For this, the Box-counting dimension (with least square

egression) was applied on the stroke dataset (see Tables 1 and 2

or further details). Thus, the new dataset was obtained (BC _ stroke

ataset). As the second step, the significant, self-similar and reg-

lar attributes were identified by the Wavelet transform modu-

us maxima (with Gaussian wavelet analysis) application. The new

ataset was obtained accordingly (WTMM _ stroke dataset). As the

econd approach of the method, FFBP algorithm, one of the ANN

lgorithms, was applied on the stroke dataset, BC _ stroke dataset as

ell as WTMM _ stroke dataset for the classification of stroke sub-

ypes. The classification by FFBP algorithm enabled the calculation

f overall accuracies based on sensitivity, specificity, accuracy rates.

ased on these elements, the accuracy rates of the three datasets
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Table 1 

Breakdown of stroke dataset attributes. 

Number of Main Headings of 

Stroke Subtypes/TOAST Attributes Data Size 

Demographic information 

(Age, Gender) 

No Stroke /TIA (167) Medical history 

Large Vessel (481) (HTN, hyperlip, DM, 

Small Vessel (228) H/O Stroke/TIA, AtrialFib, 

Cardioembolic (689) CAD, CHF, PAD/Carotid 2242x23 

Cryptogenic (528) disease, tobacco, ETOH) 

Multiple Coexisting (38) 

Dissection (59) Results of laboratory test 

Other (52) (mRS 90 days, hemorrhagic 

conversion, NIHSS admission, 

TPA) 

Treament and medication data 

(Statin, antiHTN, antidiabetic, 

anticoagulation, CT perfusion, 

neurointervention) 

TOAST: type/etiology of stroke; TIA: ischemic attack; HTN: hypertension; 

DM: diabetes mellitus; CAD: coronary artery disease; 

AtrialFib: atrial fibrillation stroke; CAD: coronary artery disease; 

CHF: congestive heart failure; PAD/carotid disease: peripheral artery disease; 

NIHSS 90 days: National Institutes of Health Stroke Scale 90-day mortality; 

CT perfusion: computer tomography perfusion; 

ETOH: alcohol; antiHTN: antihypertensive drugs after acute ischemic stroke; 

NIHSS discharge: National Institutes of Health Stroke Scale; 

H/O stroke/TIA: history of transient ischemic attack. 

 

 

 

 

Table 3 

The stages of the proposed approach. 

Input : stroke dataset = [2242 × 23] 

Place the stroke subtypes as target data into a matrix O [8 × 1] 

Stage 1. stroke dataset 

Stage 2. stroke dataset applied to Box Dimension as 1-D attributes 

Estimate log ( N ( r ))/log ( r ) ( r = 1 to 2242) 

Obtained (BC _ stroke dataset = [2242 × 12]) 

Apply FFBP algorithm on the BC _ stroke dataset = [2242 × 12] 

for the classification of stroke subtypes 

Stage 2. stroke dataset applied to WTMM method as 1-D attributes 

Applied Gaussian wavelet as 1-D 

Obtained (WTMM _ stroke dataset = [2242 × 12]) 

Apply FFBP algorithm on the WTMM _ stroke dataset = [2242 × 12] 

for the classification of stroke subtypes 

Stage 3. FFBP Classification 5 × 5 cross validation 

Divide input data (stroke −dataset = [2242 × 23], 

BC −stroke dataset = [2242 × 12], WTMM −stroke dataset = [2242 × 12]) 

randomly for 70% training, 15% test, 

15% validation and target data O [8 × 1] into 5 different folds. 

for j = 1 . 5 

Use the j = th fold for test, and the rest two folds are merged 

as the training set. 

Record the classification results over jth fold. 

end 

Output: 

Make the sum of the classification results over each fold 

for the subtypes of stroke 

Report overall accuracy 

1

 

i  

e  

b  

t  
were compared with one another. Therefore, the most significant

attributes were revealed as a result of these applications and cal-

culations. 

In that regard, the study is novel and can contribute to the lit-

erature by abridging the gap with its big data analysis on stroke

subtypes and the multistage methods employed (see Table 3 ). 
Table 2 

Description of the stroke dataset. 

Attributes Stats Number of P

Values (%) 

HTN Yes 1593 (72%) 

Hyperlip Yes 1197 (54%) 

DM Yes 602 (27%) 

H/Stroke/TIA Yes 546 (25%) 

AtrialFib Yes 541 (25%) 

CAD Yes 513 (23%) 

CHF Yes 229 (10%) 

PAD/Carortid disezse Yes 318 (14%) 

Tobacco Yes 520 (23%) 

ETOH Yes 308 (1.7%) 

Statin Yes 1000 (45%) 

AntiHTN Yes 1332 (60%) 

Antidiabetic Yes 454 (20%) 

Antiplatelet Yes 1031 (47%) 

Anticoagulation Yes 242 (10%) 

CT Perfusion Yes 137 (0.06%)

NeuroIntervention Yes 271 (12%) 

mRS 90 Days Low 2007 

High 197 

Haemorrhagic con. Yes 204 (0.09%)

NIHSS admission 9.3 + /-8.3 

TPA Yes 413 (19%) 
.1. Motivations of the proposed method 

The originality of this study is due to the fact that no study ex-

sts in the literature in which BC andWTMM methods have been

mployed. Besides this, it is the first time these methods have

een employed on such an extensive stroke data (2242 × 23) for

he detection of the singularities in the stroke datasets. The sin-
atients/ Descriptions 

Hypertersion 

High levels of lipid 

(fat) in blood 

Diabetes 

History of Strake/TIA 

Abnorlal heart rhythm 

Coronary Artery Disezse 

Congentive Heart Failure 

Peripharela Artery Disezse 

Cigarette addict 

Alcohol addict 

Medications given to 

the patiant are grouped 

into five broad categories 

 Procedures used 

for treatment 

Dichotomized into 

Low (0-2) High (3-6) 

 Whether the ischemic 

stroke turned to 

hemorrhagic 

Measures the severity 

of stroke 

TPA (Tissue 

Plaeminogen Activator) 

is used to break 

down blood clots 
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ularity spectrum provides a value concerning how fractal a set of

oints are in the BC_stroke dataset (2242 × 12) and WTMM_stroke

ataset (2242 × 12). With the application of multifractal and

ultifractional BC and WTMM methods on the stroke dataset

2242 × 23), the two datasets, namely BC_stroke dataset and

TMM_stroke dataset, have been obtained. The comparative anal-

ses have been performed with FFBP, which one of the ANN algo-

ithms. With this integrated multifarious methodology, this present

tudy differs from the earlier ones which employed standard ap-

roaches. 

Wavelet transform maxima modulus method has provided

igher results in the study since the Wavelet transform which

tilizes the Wavelet transform maxima modulus method (wavelet

ased method of multifractal analysis for the detection of the sin-

ularities in the stroke datasets) proves to be a highly efficient and

ovel approach to provide the significant attributes of multifractal

ontent. Besides this, it has also ensured an efficient and reliable

ay in order to detect the singularities. 

Stroke concerns brain which is an intriguing complex struc-

ure within a complex system. The complexity of the brain re-

uires sophisticated means and interventions to comprehend its

tructure and dynamics. Within this framework, complexity anal-

sis enables to understand the structure and function of the brain

s a complex system. Problems concerning complex systems tend

o be multidimensional, dynamic, nonlinear, non-differentiable and

haotic. In this regard, through such a multifarious approach used

n this study, it could be possible to establish innovative systems

nd provide global optimal solutions in the relevant field both for

troke and other life-threatening medical problems. All such in-

ovative solutions will definitely serve to improve diagnostic pro-

esses, treatment courses and ultimately the life quality of the pa-

ients. 

Considering all these novel aspects and complexity analysis, the

tudy aims at pointing a new frontier in the relevant fields, includ-

ng modern neurosciences, concerning the complex dynamic sys-

ems and structures which display multifractional content. 

The paper is organized as follows: Section 2 provides Data and

ethodology. Methods of the approach include BC and WTMM,

ollowed by Numerical Experiments (stroke dataset experiments on

C and WTMM methods) and explanation of the Artificial Neural

etwork Algorithm (FFBP). As the last sections, Experimental Re-

ults, Discussion and Conclusion and Limitations are presented in

ections 3 , 4 and 5 , respectively. 

. Data and method 

.1. Data 

The dataset is made up of 2242 individuals who had been taken

nder observation at Massachusetts Medical School University of

orcester, Massachusetts, USA and were diagnosed with absolute

linic stroke subtypes. The study has been ethically approved by

niversity of Massachusetts Medical School and Stroke Services

t UMass Memorial Medical Center. Data for stroke dataset were

ollected between March 9, 2007 and October 2, 2016. The total

242 Ischemic stroke (see Fig. 1 ) subtypes include No Stroke/TIA

167), Large Vessel (481), Small Vessel (228), Cardioembolic (689),

ryptogenic (528), Multiple Coexisting (38), Dissection (59), Others

moyamoya, FMD, hereditary, coagulopathy, vasculitis, other rare)

52). Fig. 1 depicts an example MRI of an ischemic stroke case. 

A total of 2242 patients were included in the applications. Is-

hemic stroke patients, aged between 0 and 104 (see Table 1 ), with

ight subtypes of ischemic stroke were taken under examination in

his study. The ischemic strokes in the dominant hemisphere lead

o more functional deficits compared to the strokes in the non-
ominant hemisphere as they are evaluated on the National Insti-

utes of Health Stroke Scale (NIHSS). 

Table 1 provides the main headings of attributes that are de-

ographic information, medical history, results of laboratory tests,

reatments and medication data, (see further details in [4,11–

8,41] ) handled for the stroke subtypes. 

The patients’ baseline characteristics as stratified by infarct side

re summarized in Table 2 . 

.2. Methodology 

This study presents the contributions in two approaches. Based

n this, the aim of the paper is to determine the self-similar, reg-

lar, significant and efficient attributes to achieve high rates of ac-

uracy classification for stroke subtypes which are No Stroke/TIA,

arge Vessel, Small Vessel, Cardioembolic, Multiple coexisting,

ryptogenic, Dissection, Other (moyamoya, FMD, hereditary, coag-

lopathy, vasculitis, other rare). The steps in this study can be in-

icated in the following way: 

The first approach is the application of Box-counting dimen-

ion and Wavelet transform modulus maxima which are two of the

ractal and multifractal methods. The steps for the application of

his approach are provided in detail below: 

(a) Box-counting dimension (with least square regression) was

pplied on the stroke dataset in order to identify the regular, self-

imilar, efficient and significant attributes from the stroke dataset.

n this way, the dataset named BC _ stroke dataset was generated. 

(b) Wavelet transform modulus maxima (with Gaussian wavelet

nalysis) was applied on the stroke dataset in order to identify

he regular, self-similar, efficient and significant attributes from the

ataset. Thus, the dataset WTMM _ stroke dataset was generated. 

The second approach of the study involves the application of

eed Forward Back Propagation (FFBP), which is one of the ANN

lgorithms. The steps for this application are as follows: i) FFBP

lgorithm was applied on the stroke dataset, BC _ stroke dataset as

ell as WTMM _ stroke dataset. ii) FFBP algorithm was used for the

lassification of stroke subtypes. The classification ensured the cal-

ulation of overall accuracies based on sensitivity, specificity, accu-

acy rates; hence, comparative analyses were performed in terms

f accuracy rates. iii) By following the steps mentioned above, the

ttributes which have proven to be most effective for the stroke

ubtype classification were based on the results with regard to

ensitivity, specificity and accuracy rates. 

Computations and figures for this study were performed on

atlab [45] and Fraclab [46] . 

.2.1. Fractal analysis 

A “fractal” designates a fragmented or rough geometric shape

hich may be divided into subparts each of which is (at least ap-

roximately) a reduced size copy of the whole thing [47] . The in-

erpretation of medical data for diagnosis is a task with multiple

teps. The purpose is to detect the potential abnormalities. For this

urpose, the clinician makes use of the integration of two pro-

esses, the first process involves data perception to identify the

nique data patterns, the second process involves the detection

f the relationship between perceived patterns and potential diag-

oses. The achievement of the two processes is mainly dependent

n the skill of the clinician at work. Texture, as rich visual source

nd a major element in image analysis, is one of the utilized fea-

ures [48] . 

.2.2. Fractal dimension 

Fractal frequently comes to the fore with regard to the evalua-

ion of the fractal dimension (named as FD or D). FD is considered

o be a useful concept for the description of natural objects, in-

icating their degree of complexity. Mandelbrot (1983) introduced
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the term to reflect objects which have complex geometry and that

kind of geometry cannot be characterized by an integral dimension

[21] . 

In order to compute this dimension, several methods with their

own theoretical basis are applicable, and it is due to this fact that

enables one to obtain different dimensions for the same feature

through different methods. The difference may be observed since

the Hausdorff-Besicovitch dimension Eq. (1) is not computable in

this form in majority of the cases [48–51] . 

D h = 

ln (N) 

ln 

(
1 
r 

) (1)

The homothety term may be linked with a reduction term. For

instance, a fractal according to Eq. (1) is made up of patterns

whose size has been reduced of a factor (for homothety). Hence,

the methods approximate it with the use of several different al-

gorithms for the estimation of parameter. Despite the differing ap-

plied algorithms, they comply with the same basis which can be

outlined in the following three steps [21] : 

• The quantities of the object are measured by utilizing different

step sizes. 
• Log (measured quantities) is plotted versus log (step sizes) and 

• A least-squares regression line is fitted throughout the data

points. 

FD needs to be estimated as the slope of the regression line.

Data are represented on a finite scale grid in Box-counting meth-

ods, and the grid effects interact with computing fractal dimension.

2.2.3. Box-counting method 

As one of the most frequently used methods for the FD calcula-

tion, the Box-counting method was defined by Russell et al. (1980)

[6,21] . In Box-counting approach, the curve is covered with a col-

lection of square boxes. The number of elements for a given size

is counted so that how many of them are necessary to cover the

curve completely can be seen. When the size of the area element

comes closer to zero, the total area covered by the area elements

converges to the measure of the curve [52,53] . The FD is estimated

as Eq. (2) covering a binary data with the boxes of length r , 

F D = − lim 

r→ 0 

log (N(r)) 

log (r) 
(2)

Here, N ( r ) refers to the number of boxes which are required to

cover the data completely. Since this method needs data binariza-

tion, it comes with many limitations. For instance, the method is

not well established in terms of theoretic foundation, and it is valid

merely for statistically self-similar data. Besides this, the grid needs

to be relocated randomly at each iteration since the reiteration for

different sizes of r may yield different sizes of N r . 

In the present study, the Box-counting method, whose aim is

to consider the average number, notes N ( r ) of boxes with a fixed

side length r , which is required to cover the data. Therefore, the

estimation of P ( m, r ), the probability that one box of size r , is done,

which is centred on arbitrary point of data, including m points of

the set Eq. (3) shows this situation: [52,53] 

∀ r, 

N p ∑ 

m =1 

P (m, r) = 1 (3)

Here, N p refers to the number of possible points in the R 3 which

refers to space. The estimation of the average number of disjoined

boxes required to cover the surface is denoted as in Eq. (4) . 

N(r) = 

N p ∑ 

m =1 

N(m, r) = 

N p ∑ 

m =1 

P (m, r) 

m 

(4)
The estimation through the least squares method of the group

f dots’ slope (log(r)) , −log(N(r)) , obtained by the boxes of in-

reasing size r , yields the fractal dimension for stroke dataset (with

3 attributes). The Algorithm 1 [54–56] provides this calculation as

lgorithm 1 . 

lgorithm 1 The Box-counting method Algorithm. 

or r= 1 to rmax and m =1 to r 

(m,r)=0 

or any site s of the stroke dataset (23 attributes){ 

or r=1 to { 

enter a 1-D r on [s, A[s]] 

ount the number m of data of the stroke 

ataset which belongs to the r 

ncrement P(m,r) of 1 

 

 

or r=1 to rmax 

(r) = 

N p ∑ 

m =1 

P(m,r) 
m 

stimate by the method of least squares the slope 

 of the curve (log(r), -log(N(r))) 

.2.4. Multifractal analysis 

Multifractals can be regarded as an extension of fractals. An ob-

ect that is multifractal is more complex since it is all the time in-

ariant by translation even though the dilatation factor required to

istinguish the detail from the whole object is reliant on the detail

hat is being observed. Regarding the FD estimation, many meth-

ds are applicable to make the approximation of the multifractal

pectrum as wavelets [51–58] . 

.2.5. Wavelet transform 

Ψ be a real function, which is said to be a wavelet if its integral

s zero as Eq. (5) [28,56] . 

∞ ∫ 
∞ 

Ψ (x ) dx = 0 (5)

he continuous wavelet transform of a function f εL 2 ( R ) for the

avelet Ψ is defined in Eq. (6) . 

 f (u, s ) = 

∞ ∫ 
−∞ 

f (t) 
1 √ 

s 
Ψ ∗

(
t − u 

s 

)
dt (6)

ere Ψ ∗ refers to the complex conjugate of Ψ . 

A wavelet Ψ (x ) is stated to contain n vanishing moments if and

nly if for all positive integers k < n , it fulfills Eq. (7) [28,56] . 

∞ ∫ 
∞ 

x k Ψ (x ) dx = 0 (7)

 wavelet frequently applied is the nth derivation of the Gaussion

unction, and is indicated in Eq. (8) . 

n (x ) = − d n 

d x n 
e −

x 2 

2 (8)

The number of vanishing moments is significant while conduct-

ng the wavelet singularity analysis since it gives an upper bound

easurement for the singularity characterization [28,58–60] . 
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.2.6. Singular exponent 

A function f ( x ) is noted to be Lipschitz α, for 0 ≤ α ≤ 1, at a

oint x 0 , provided that a constant A such that for all points x in a

eighborhood of x 0 exists Eq. (9) [28,60] . 

 f (x ) − f (x 0 ) | ≤ A | x − x 0 | α (9) 

he function f ( x ) is Lipschitz α for any x 0 ∈ ( a, b ) and x ∈ ( a, b )

n a uniform way. It is stated that f ( x ) is singular in x 0 if it is not

ipschitz 1 in x 0 . If a function is Lipschitz α, for α > 0, it is con-

inuous in x 0 [60] . On the other hand, if f ( x ) is discontinuous in

 0 and bounded in a neighborhood of x 0 , it is then Lipschitz 0 in

 0 . If f ( x ) is continuously differentiable, then it is Lipschitz 1 and

ence it will not be singular. It is assumed that the Ψ (t) owns a

ompact support, is n times continuously differentiable and is the

 th derivatives concerning a smoothing function [60] . 

.2.7. The detection of singularity with wavelet 

The detection of singularity with wavelet is a measurement of

 singularity’s strength. When the theorems used in this study are

xamined, it is important to note that Jaffard (1991) [61] made the

eneralization of Mallat’s Theorem to pointwise Lipschitz regular-

ty. Mallat’s Theorem is considered to be an outcome of Jaffard’s

heorem (Jaffard, 1989 [62] ; Farge, et al., 1993 [63] ). In this regard,

affard’s Theorem presents a sufficient condition on the modulus of

he Wavelet transform to compute the Lipschitz regularity of x ( t ) at

oint τ . Accordingly, as shown by Mallat et al. [58] , it is possible

o compute by the WTMM of the data. Some relevant definitions

n this may be found [50,60,63] , below: 

Local maxima of wavelet transform modulus Wf ( u ) is the

avelet transform of a function f ( u ) [28,50,58] . 

• A local maximum is the point u 0 , s 0 in that 
(∂W f (u, s 0 )) 

∂u 
has a

zero-crossing at u = u 0 , when u changes. 
• A modulus maximum is the point u 0 , s 0 where 

| Wf ( u, s 0 )| < | Wf ( u 0 , s 0 )| when u goes either to right or left

neighborhood of u 0 and | Wf ( u, s 0 )| ≤ | Wf ( u 0 , s 0 )| when u goes

to the opposite neighborhood of u 0 . 
• A maxima line calls any linked curve in the scale space ( u, s )

throughout which all points are modulus maxima. 

We assume that the Ψ owns a compact support, with n times

eing continuously differentiable, and is the n th derivative for a

moothing function. 

Theorem 1: f is a tempered distribution and its wavelet trans-

orm is defined well over (a, b). Moreover, let u 0 ∈ ( a, b ). It is

ssumed there is a constant C and scale s 0 > 0, in addition to

his, for u ∈ ( a, b ) as well as s < s 0 , all the modulus maxima of

 Wf ( u, s )| belong to a cone whose definition has been provided in

q. (9) [28,58,62] . 

 u − u 0 | < Cs (10) 

n this case, u 1 ∈ ( a, b ), u 1 	 = u 0 , f is uniformly Lipchitz α
t u 0 at all points, and provided that at each modulus maxima

 u, s ) in the cone, there is a constant A , whose definition is in

q. (10) [28,31,64–69] . 

 W f (u, s ) | ≤ A s α (11) 

his theorem is the mathematical base for the estimation of LE

28,58,59,65] . 

By the substitution of the Si and Si+1 into Eq. (11) with simple

erivation, Lipschitz exponents can be stated in the following way

28,58,59] : 
= 

log 2 
∣∣W f ( s ( i +1 ) X ) 

W f ( s i X ) 

∣∣
log 2 

∣∣ S ( i +1 ) 
s i 

∣∣ (12) 

The value of Lipschitz exponent α can reflect the degree of fail-

re. If the Lipschitz exponent is smaller, then the curve deviates

ill be stronger. 

.2.8. Lipschitz exponent measuring with WTMM 

Based on the Theorem 1, the Lipschitz exponent can be mea-

ured by employing Algorithm 2 indicated below [28,50] : 

lgorithm 2 LE Measuring with WTMM. 

tep 1. Calculate the straight line l (l og 2 (s )) that links 

both (log 2 ( s small ) and log 2 | W f (u, s small ) | ) 
and (log 2 (s ) max log 2 | W f (u, s max ) | . 

f l (l og 2 (s )) ≥ log 2 | W f (u, s ) | return the intercept 

log 2 (A ) and slope α of l(lo g 2 (s )) , go along 

with step 6, if not, go along with step 2. 

tep 2. Let s = s max and f (A, α) = C where 

C is a constant that is large enough. 

tep 3. Compute tangent l (l og 2 (s ) at 

l o g 2 (s ) , l og 2 | W f (u, s ) | .If l (l o g 2 (s ) ≥ lo g 2 | W f (u, s ) | 
go along with Step 4. 

f not, continue with Step 6. 

tep 4. Compute record of the result f and 

intercept log 2 (A ) and slope α of l(log 2 (s )) . 

f f < f (A, α) , f (A, α) = f and LE = α. 

f s = s min , continue with Step 6, if not, continue 

with Step 5. 

tep 5. s = s − �lo g 2 (s ) , go along with Step 3. 

tep 6. Output LE = α

Since a priori knowledge of α is used, and the algorithm looks

or the optimal result along log 2 | Wf ( u, s ) 1 curve only. The problem

f initialization of A and α can be prevented [31,50,58,65] . 

.3. Numerical experiments 

Results regarding the stroke dataset are presented and in all of

he cases, the outcome of the Box-counting dimension and Wavelet

ransform modulus maxima methods is presented. Regarding the

rocedures for stroke dataset, the attributes (see Table 1 and

able 2 ) are set so that the best fit to the known original data

an be obtained. An extensive range of sampled functions of 2242

ength are handled for the estimate of local regularity for each

f the 23 stroke attributes (see Table 1 ). In this study, numeri-

al experiments were obtained by BC and WTMM methods, which

ere applied to numerical experiments concerning the stroke

ataset (see Table 2 ). The fractal method and multifractal method

ere applied on the stroke dataset in order to attain the signif-

cant, self-similar and regular stroke datasets (BC _ stroke dataset,

TMM _ stroke dataset). The following steps were followed for this

urpose: 

Step 1 : The brutal fall of the number of boxes after the side

ength r = 1 is considered, which explains the existence of a sig-

ificant number of boxes 1-dimension for the attributes of stroke

ataset. 

Step 2 : For the capturing of pointwise LE, the maxima seem

o be sufficient while analysing regularity with Wavelet transform

odulus Maxima (WTMM). The detection of singularity is com-

uted by the LE Measuring with WTMM. 
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In this study, fractal method (the Box-counting dimension)

(with least square regression) and multifractal method Wavelet

transform modulus maxima (with Gaussian wavelet analysis) are

applied to identify the self-similar, efficient and significant at-

tributes (see Table 2 ) in the stroke subtypes. Stroke dataset,

BC _ stroke dataset and regular WTMM _ stroke dataset (BC _ stroke

dataset and WTMM _ stroke dataset are made up of significant at-

tributes) were classified with the FFBP algorithm. As a result of

the steps, WTMM yielded the most accurate results for the classi-

fication of the 8 subtypes of stroke based on sensitivity, specificity

and accuracy rate. 

2.4. Artificial neural network algorithm 

Neural networks are constructed based on simple units which

are linked with one another by a set of weighted connections. In

general, these units have their organization in the form of layers.

Every unit of the first layer, namely the input layer, refers to a fea-

ture of a pattern which will be taken under analysis. The units

concerning the last layer, namely the output layer, yields a deci-

sion following the information propagation. Accordingly, artificial

neural networks (ANNs), or systems that are known to be connec-

tionist, are computational systems that have been inspired by bi-

ological neural networks which imitate animal brains. The proce-

dure utilized to perform the learning process in a neural network

is named as the training algorithm. Feed Forward Back Propagation

algorithm is one of the ANN algorithms. 

2.4.1. Feed forward back propagation algorithm 

As one of the most frequently-used artificial neural networks,

feedforward neural network is an artificial neural network within

connections between the units which do not constitute a cycle [6] .

In this regard, it differs from the recurrent neural networks. The

feedforward neural network is known to be the first and simplest

type of artificial neural network that has been devised. Information

moves only in one direction forward from the input nodes through

the hidden nodes (if there is any) and to the output nodes. No cy-

cles or loops exist in the network [6] . 

The network architecture of the algorithm is defined and

the weights are involved [6,70] . When the input examples with

m-dimension is entered, x i = [ x 1 , x 2 , . . . , x m 

] T can be seen. Sim-

ilarly, the output examples for n-dimension is stated by d k =
[ d 1 , d 2 , . . . , d n ] 

T (see Fig. 2 ). x i values, the output values of the neu-

rons in the i th layer ( n ), the total input that will correspond to a

neuron in j layer is administered in line with the equation (13)

[6,70–72] (see Fig. 2 ). 

net j = 

m ∑ 

i =1 

w i j X i (13)
Fig. 2. FFBP algorithm general network structure. 
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The output of the j neuron in the hidden layer (transfer func-

ion output) is computed as indicated in Eq. (14) [6] . 

 j = f j (ne t j ) j = 1 , 2 , . . . , J (14)

he total input that will correspond to k neuron in the output layer

s computed based on Eq. (15) . 

et k = 

J ∑ 

j=1 

w k j . y j (15)

he computation of the non-linear output of a k neuron in the out-

ut layer is conducted in line with Eq. (16) . 

 k = f k ( ne t k ) , k = 1 , 2 , . . . , n (16)

The comparison of the output obtained from the network and

he actual output is done, and based on this, e k error is calculated

17) [6,70–72] . 

 k = ( d k − o k ) (17)

d k and o k signify the target of any k neuron in the output

ayer and the outputs obtained from the network, respectively. The

eights obtained from the output layer are also updated. The cal-

ulation of the total square error is performed as in Eq. (18) for

ach example [70–72] , 

 = 

1 

2 

∑ 

k 

( d k − o k ) 
2 

(18)

In this study, FFBP algorithm was applied to the three

atasets, which are stroke dataset (2242 × 23), BC _ stroke dataset

2242 × 12) and WTMM _ stroke dataset (2242 × 12), to classify the

ubtypes of stroke. 

. Experimental results and discussion 

This section of study has four main parts: 3.1 deals with the BC

imension the application of the BC method on the stroke dataset

in which least square regression, 1-D was used). 3.2 concerns the

pplication of the WTMM method on the stroke dataset with LE

easuring (in which the Gaussian wavelet analysis was employed)

nd 3.3. addresses the Application of the FFBP algorithm on the

troke datasets. 3.4 presents the classification results of the stroke

atasets with the FFBP algorithm. 

Two different approaches were employed in this study. As the

rst approach, BC method, one of the fractal methods, and WTMM

ethod which is one of the multifractal methods, were utilized.

nd for the second approach, FFBP algorithm, which is one of the

NN algorithms, was used. 

Table 2 provides the multi stages for the application of these

wo approaches in detail: 

The stages for application as presented in ( Table 3 ) are pre-

ented in the further sections (3.1., 3.2, 3.3. and 3.4). 

.1. Application of the box-counting method on the stroke dataset 

The attributes of the significant stroke dataset (with 23 at-

ributes) are detected by fractal dimension. The dimension of the

troke dataset is (2242 × 1). Fig. 3–6 provide the results of the

alculation of fractal dimension. Plot curves show the number of

oxes in comparison with their side length r . The straight regres-

ion line estimates possible log ( N ( r )) versus log ( r ), and the plot is

o be performed on all the points, outdistancing it between the

ize of boxes (equaling to 1) [56] . Fig. 4 indicates the number of

oxes based on their sizes ( r ), in this case r = 1 to 2242. It is no-

iced that the smaller the size is, the larger the number of boxes is.

imilarly, the more the size of the boxes is increased, the more the

umber of them approaches 0. Besides these, the brutal decline in
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Fig. 3. The plot regression of the curve versus by the least squares method. 



10 Y. Karaca, M. Moonis and D. Baleanu / Chaos, Solitons and Fractals 136 (2020) 109820 

Fig. 4. ( Fig. 3 Cont.) The plot regression of the curve versus by the least squares method. 
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Fig. 5. ( Fig. 3 Cont.) The plot regression of the curve versus by the least squares method. 
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Fig. 6. ( Fig. 3 Cont.) The plot regression of the curve versus by the least squares method. 
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Table 4 

Box Dimension results for the stroke dataset at- 

tributes. 

Attributes Box dimension (D) 

Gender 0.89546 

Hyperlip 0.95389 

DM 0.92445 

H/O Stroke/ TIA 0.85709 

AttrialFib 0.85048 

CAD 0.85668 

CHF 0.92449 

PAD / Carortid Disease 0.84108 

Tobacco 0.8488 

ETOH 0.82768 

Statin 0.99744 

AntiHTN 0.8644 

Antidiabetic 0.93629 

Antiplatelet 0.80829 

Anticoagulation 0.81818 
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Fig. 7. log-log characteristics Modulus Maxima for attributes of WTMM −stroke 

dataset. 
he number of boxes following the side length r = 1, explains the

xistence of a significant number of boxes dimension for the at-

ributes of the stroke dataset (for D < 0.86) (see Table 4 ). 

As can be seen from Table 4 , there is a variability of the values

f box dimension. A compromise between rmin and rmax is always

o be taken and these two parameters have impact on one another

nd also particularly on the FD calculation. For the choice of rmin

nd rmax following several tests, it can be stated that it is chosen

rom 2, which is to have a probability of finding at least one box

for D < 0.86). Table 4 presents the Box Dimension results of the

troke dataset based on D . 

In this study, the BC method was employed since it is conve-

ient and automatically computable as well as applicable for pat-

erns which have or do not have self-similar attributes. 

As a result of the Box-counting application on the stroke

ataset, the significant, efficient, self-similar and regular attributes

ere identified. BC _ stroke dataset was obtained from this ap-

lication. The attributes identified are: Antiplatelet, mRS90 days,

emorhhagic Conversion, NIHSS Admission, AttrialFib, CAD, PAD /

arortid Disease, Tobacco, ETOH, Anticoagulation, Neurointerven-

ion, Age (see Table 4 ) ( Figs. 3–6 ). 

.2. The application of the WTMM method on the stroke dataset with

E measuring 

In this study, to capture the pointwise LE, the maxima are fo-

used on to identify the strongest singularity. Figs. 7–10 show the

TMM calculation with the continuous wavelet transform using

he second derivative of a Gaussian wavelet. The wavelet that ful-

lls this criterion is the Mexican hat wavelet. Subsequently, the

TMM determines the modulus maxima for each of the scale.

he WTMM is aimed to be employed with large stroke dataset

2242 × 23). The normal fluctuation is frequently characterized by

he positive LE; whereas the presence of strong local singularities

s characterized by the negative LE [31,44] . 

The modulus maximum at point definition x 0 [31,46,47,54,59] 

| Wf ( u, s 0 )| < | Wf ( u 0 , s 0 )| 

In which x is either in the left or right part of the neighborhood

f x 0 . When x is in the opposite neighborhood of x 0 , the definition

ill be as in [46,54,59] . 

| Wf ( u, s 0 )| ≤ | Wf ( u 0 , s 0 )| 

The WTMM to find the additional maxima reiterates for values

n the scale. The WTMM, then, continues up through the scales

hich are finer, by checking if the maxima align between the

cales or not. If a maximum comes closer to the finest scale, it

s a true maximum and shows a singularity at that point. Besides

ingularity, singularity spectrum is a function which is employed
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Fig. 8. ( Fig. 7 Cont.) log-log characteristics Modulus Maxima for attributes of 

WTMM −stroke dataset. 

Fig. 9. ( Fig. 7 Cont.) log-log characteristics Modulus Maxima for attributes of 

WTMM −stroke dataset. 
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Fig. 10. ( Fig. 7 Cont.) log-log characteristics Modulus Maxima for attributes of 

WTMM _ stroke dataset. 

Table 5 

FFBP algorithm training network properties. 

ANN Network Properties ANN Algorithms Network 

Properties Value 

stroke dataset (2242 × 23) 

Input Data BC _ stroke dataset (2242 × 12) 

WTMM _ stroke dataset (2242 × 12) 

Training Function Levenberg Marquardt 

Adaption Learning Function Learning Gradient Descent 

Transfer Function Tansig 

Performance Function Mean Squared Error 

Hidden Layer Numbers 10 

Transfer Function Sigmoid 

Epoch 1000 iteration 
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a

n multifractal analysis for the purpose of describing the fractal di-

ension in a subset of a function’s point that pertains to a point

roup with the same Hölder exponent. The singularity spectrum

rovides a value regarding how fractal a set of points are in a func-

ion. 

Figs. 7–10 present the WTMM _ stroke dataset, obtained by the

E and plot the modulus maxima. The stroke dataset is made up

f 2242 patients and 23 attributes (see Table 1 ). WTMM analysis

as evaluated each of the 2242 patients along with 23 attributes

o identify the significant attributes among them. As a result of

his analysis, it has been found out that as the Hölder value in-

reased, more differentiability was observed at the signal at that

oint. As the sample increased, the Hölder value decreased. When

 maximum approaches the finest scale, it becomes a true max-

mum, presenting a singularity at that point. For the estimation

f the differentiability degree of a signal’s all singularities regard-

ng the sample based on the stroke dataset. The LE at samples 1

nd 2242 are very close to the values specified in the strongest

egularity data (see Figs. 7–10 which depict the most significant

ttributes obtained). Among 23 attributes, 12 attributes (with the

losest Hölder exponent values due to being significant) were se-

ected and 11 were removed. The attributes’ sample and Hölder ex-

onent results in terms of the differentiable maxima lines directly

orrespond to figures and positions of singular points. 

As a result of the WTMM application on the stroke dataset,

he significant, efficient and regular attributes were identified.

TMM _ stroke dataset (2242 × 12) was obtained from this ap-

lication. The presence of strong local singularities is character-

zed by the negative LE. The attributes identified are: Age, ETOH,

emorhagic Conversion, HO/Stroke/TIA, Hyperlip, IV Tpa, mrs 90

ays, NIHSS Admission, PAD Carortid, Perfusion, Statin, Tobacco

see Figs. 7–10 ). For transient signals, the singularities usually carry

he most significant information in the transient signal’s analysis

54] . As can be observed from the results obtained, the applica-

ility and reliability of Mallat’s WTMM is verified due to the fact

hat the singularities could be calculated from the evolution of the

avelet transform maxima across scales. 

.3. The application of the FFBP algorithm on stroke datasets 

Table 5 presents the FFBP algorithm Training Network Prop-

rties used to attain high classification accuracy rates for stroke

ataset (2242 × 23), BC −stroke dataset (2242 × 12) and

TMM _ stroke dataset (2242 × 12). The common parameters that

ield the overall accuracy results (sensitivity, specificity, accuracy

ate) in the application can be seen in detail from Table 5 . 

The performance graph that has been obtained from the

lassification of stroke dataset (2242 × 23), BC _ stroke dataset

2242 × 12) and WTMM _ stroke dataset (2242 × 12) by the FFBP

lgorithm can be seen in Fig. 11 . 
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Fig. 11. FFBP algorithm performance graph (a) stroke dataset (b) BC _ stroke dataset 

(c) WTMM _ stroke dataset. 

Table 6 

Overall accuracy results of FFBP application on the stroke dataset, BC _ stroke dataset 

and WTMM _ stroke dataset. 

Stroke datasets Sensitivity (%) Specificity (%) Accuracy Rate (%) 

stroke dataset 90.32 ± 4.10 90.89 ± 2.13 90.72 ± 2.13 

(2242 × 23) 

BC _ stroke dataset 90.11 ± 3.40 90.18 ± 3.02 90.93 ± 3.23 

(2242 × 12) 

WTMM _ stroke dataset 91.07 ± 4.01 91.16 ± 0.12 91.025 ± 1.25 

(2242 × 12) 

 

t  

d  

v  

s  

f  

s  

t  

W

 

t  

B  

 

T  

F  

d  

t  

s

3

a

 

r  

d  

s

 

F  

9  

9  

9  

9  

o  

9  

d  

t  

W  

s

 

t  

a  

a  

v  

A  

h  

t  

t  

f  

t  

c  

f  

d

The results of the Mean Square Error (MSE) obtained from

he modelling of three stroke datasets (stroke dataset, BC _ stroke

ataset and WTMM _ stroke dataset) by the FFBP algorithm are pro-

ided in Fig. 11 . The best validation performance obtained from the

troke dataset is 0.098059 (see Fig. 11 (a)). The best validation per-

ormance obtained from the application of the FFBP on the BC _

troke dataset is 0.090794 (see Fig. 11 (b)). And the best valida-

ion performance obtained from the application of the FFBP on the

TMM _ stroke dataset is 0.089745 (see Fig. 11 (c)). 

Overall, the best validation performance was observed on

he WTMM _ stroke dataset compared to the stroke dataset and

C −stroke dataset. The comparative results are presented in Fig. 11 .

The results for Training ROC analysis, Validation ROC analysis,

est ROC analysis and All ROC analysis are presented in Fig. 12,

ig. 13 and Fig. 14 for three datasets (stroke dataset, BC _ stroke

ataset and WTMM _ stroke dataset). The results have been ob-

ained by the application of the FFBP algorithm regarding the clas-

ification of stroke subtypes. 

.4. The classification results of the stroke datasets with the FFBP 

lgorithm 

The overall accuracy results (sensitivity, specificity, accuracy

ate) regarding the application of the FFBP algorithm on the stroke

ataset, BC _ stroke dataset and WTMM _ stroke dataset for the clas-

ification of stroke subtypes are provided in Table 6 . 

The comparison results in Table 6 ( Fig. 12, Fig. 13 and

ig. 14 ) show that the stroke dataset achieved a sensitivity of

0.32 ± 4.10%, specificity of 90.89 ± 2.13%, and accuracy of

0.72 ± 2.13%. The BC _ stroke dataset achieved sensitivity of

0.11 ± 3.40%, specificity of 90.18 ± 3.02%, and accuracy of

0.93 ± 3.23%. The WTMM _ stroke dataset achieved a sensitivity

f 91.07 ± 4.01%, a specificity of 91.16 ± 0.12%, and an accuracy of

1.025 ± 1.25%. Therefore, it is obvious that using WTMM _ stroke

ataset obtained larger sensitivity, specificity, and accuracy than

he stroke dataset, BC _ stroke dataset. It may also be concluded that

TMM is superior to BC in terms of classification accuracy rate for

troke subtypes. 

Overall, the aim of this study is to classify the 8 stroke sub-

ypes based on the identification of efficient, regular, self-similar

nd significant attributes. Considering the life-threatening risk and

spect of stroke as a medical problem, accurate classification is of

ital importance for the survival and life quality of the patient.

ccurate classification means accurate and early diagnosis, thus, a

igher level of accuracy in classification. For this aim, identifying

he most significant, efficient, self-similar and regular attributes in

he stroke dataset (see Tables 1 and 2 ) will make a significant dif-

erence for both the patients and the clinicians. The results show

hat WTMM _ stroke dataset which comprised of significant, effi-

ient, self-similar and regular attributes yielded the highest results

or classification in terms of accuracy compared to the two other

atasets, which are stroke dataset and BC _ stroke dataset. 
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Fig. 12. Results of the Training ROC, Validation ROC analysis Test ROC analysis and All ROC analysis for (a) stroke dataset (b) BC _ stroke dataset (c) WTMM _ stroke dataset. 
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Fig. 13. ( Fig. 12 Cont.) Results of the Training ROC, Validation ROC analysis Test ROC analysis and All ROC analysis for (a) stroke dataset (b) BC _ stroke dataset (c) 

WTMM _ stroke dataset. 
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Fig. 14. ( Fig. 12 Cont.) Results of the Training ROC, Validation ROC analysis, Test ROC analysis and All ROC analysis for (a) stroke dataset (b) BC _ stroke dataset (c) 

WTMM _ stroke dataset. 

4

 

p  

f  

o  

a  

g  

t  

l  

o  

l  

s  

i  

T  

d  

t  

t  

s  

c  

(  

p  

n  

o  

c  

F  

i  

t  

s  

t  
. Conclusion 

The principal contribution the study has been to employ an ap-

licable approach with multifarious and integrated met- hodology

or the purpose of stroke subtypes’ classification. The originality

f this study is due to the fact that no study exists in the liter-

ture in which BC and WTMM methods have been employed. Re-

arding the contributions in terms of approaches in this study, ini-

ially, the Box-counting dimension and Wavelet transform modu-

us maxima, which are among the fractal and multifractal meth-

ds, were applied in order to calculate the self-similar and regu-

ar data from the stroke dataset (224 × 23). Thereby, regular, self-

imilar, efficient and significant attributes in stroke dataset were

dentified by the two initial methods, namely BC and WTMM.

wo datasets, BC_stroke dataset (2242 × 12) and WTMM_stroke
ataset (2242 × 12), were obtained accordingly. It is, therefore,

he first time these methods have been employed on such an ex-

ensive stroke data for the detection of the singularities in the

troke datasets. The singularity spectrum provides a value con-

erning how fractal a set of points are in the BC_stroke dataset

2242 × 12) and WTMM_stroke dataset (2242 × 12). When com-

ared with the other relevant works [11,39,41–44] done up until

ow, the present study has provided these novel aspects. The sec-

nd contribution in terms of the methods in the approach includes

lassification performed using one of the ANN algorithms, namely

FBP. The aim of using this algorithm in this second methodolog-

cal approach is to apply accurate classification of the stroke sub-

ypes. The applications ensure the attainment of the most regular,

elf-similar, efficient and significant attributes for the stroke sub-

ype classification. ANN was applied on stoke dataset, BC _ stroke
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dataset (2242 × 12) and WTMM _ stroke dataset (2242 × 12), thus,

classification has been done for the subtypes of stroke through ac-

curacy rates (based on sensitivity and specificity). The results of

the study demonstrated that the classification accuracy rate ob-

tained for WTMM _ stroke dataset (2242 × 12), has proven to be

higher than that of stroke dataset (2242 × 23) and BC _ stroke

dataset (2242 × 12). These results underline the importance of

selecting significant attributes for the classification of a critical

and potentially fatal disease which might end up with deaths. The

aforementioned methods have been used for the first time for this

particular stroke dataset in this study. Besides this, it is seen that

no work has been reported yet which examines such a compre-

hensive stroke dataset that relates attributes (demographic infor-

mation, medical history, results of laboratory tests, treatments, and

medications). The study also provides a novelty in this regard. Ex-

perimental results reveal the validity, accuracy and applicability of

the proposed method. 

Each data has a distinctive nature, in particular for data such

as stroke, which includes brain as a complex structure requiring

complexity analysis, the selection of right method to analyse the

data properly plays a critical role. Due to transient attributes of

stroke as well as other neurological handled in medical analyses,

fractal and multifractional approaches enable the development and

application of alternative adaptive models, which define modern

neuroscience. 

Based on these considerations, the following directions may be

provided for future research: 

1) The combination of methods and proposed model demonstrates

that WTMM is apparently a critical determining method com-

pared to BC method for enhancing classification with respect

to the identification of self-similar and regular attributes. With

this perspective, it could be possible for future research to focus

on different data sets in several other areas. 

2) Apart from the WTMM and Box-Counting used in this study

for the singularity spectrum detection, additional reliable frac-

tal and multifractional methods such as Modified Multifractal

Detrended Fluctuation Analysis (MFDFA), Diffusion Limited Ag-

gregation (DLA) and so forth can be employed for future work

to obtain comparative results. 

3) The proposed model can illustrate a direction for researchers to

pay attention to the selection of most significant attributes for

diagnostic purposes. 

4) The model presented in this study may be addressed as inter-

face(s) in the models to be used like the study in [41] in the

future. 

5) The results and the model constructed with the integrated

methodology may provide a direction for the diagnosis of dis-

eases, classification of them and robust prediction processes. 

6) The proposed model can present a novel direction for future

works and projects that will integrate advanced mathematical

models and artificial intelligence techniques. 

Taking all these into consideration, the study aims at pointing

a new direction in the relevant fields concerning the complex dy-

namic systems and structures. Considering the importance of ac-

curacy in classification and timely diagnosis for the life quality of

the stroke patients, the present study has attempted to abridge a

gap in the literature and provide a new frontier in modern neuro-

science. 

5. Limitation 

The stroke dataset in our study is big data (2242 patients and

23 attributes) (see Table 1 ). The results obtained from the WTMM

analyses shown in detail in Figs. 7–10 depict only the attributes
dentified as significant WTMM _ stroke dataset (2242 × 12). Due to

he space restriction for the figures to fit in, it has not been able

o depict all of the attributes’ sample and Hölder exponent results

n terms of the differentiable maxima lines. 
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