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Abstract
We investigate some solitary wave results of time fractional evolution equations. By
employing the extended rational exp((–ψ ′

ψ
)(η))-expansion method, a few different

results including kink, singular-kink, multiple soliton, and periodic wave solutions are
formally generated. It is worth mentioning that the solutions obtained are more
general with more parameters. The exact solutions are constructed in the form of
exponential, trigonometric, rational, and hyperbolic functions. With the choice of
proper values of parameters, graphs to some of the obtained solutions are drawn. On
comparing some special cases, our solutions are in good agreement with the results
published previously and the remaining are new.
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1 Introduction
In the exceptional development of nonlinear sciences and engineering, during the last
few decades, many researchers seem to be interested in obtaining exact and numerical
solutions for nonlinear partial differential (NLPD) equations. One used the modified vari-
ational iteration algorithm-II [1], the direct algebraic method [2], the extended trial equa-
tion method [3], the enhanced ( G′

G )-expansion method [4], the GERFM method [5, 6] us-
ing generalized fractional integral conditions [7], applying the non-compact measure and
Monch’s theorem [8–10], the modified simple equation [11], the function transformation
method [12], the extended modified mapping method [13], the function transformation
method [14] and the reductive perturbation method [15]. The study of exact solutions
of nonlinear evolution equations plays a major role to explore the internal mechanism of
nonlinear phenomena [3, 13]. Fractional calculus is a dominant tool in several nonlinear
fields such as plasma physics, fluid mechanics, solid-state physics, optical fibers, quantum
field theory, biophysics, chemical kinematics, electricity, chemistry, biology, geochemistry,
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propagation of shallow water waves and engineering [7, 10, 16]. For this purpose many
techniques were used such as the homogeneous balance method [17], the exp-function
method [18], the improved extended F-expansion method [19], and the homotopy per-
turbation method [20]. The Camassa–Holm (CH) equation is

ut + 2kux – uxxt + βuux = 2uxuxx + uuxxx. (1)

The above equation gained the fame as a model describing the unidirectional propagation
of shallow water waves over a flat bottom [21] and in this perception, if β is positive, the
solitary solutions are smooth solitons. In Eq. (1) k and β are some parameters, u(x, t) is the
dependent variable, while x and t are the spatial and temporal variables. It is also consid-
ered as an equation with a bi-Hamiltonian structure, particularly, when β = 0, the above
stated equation has a peakon type solution. So, the CH equation has some other peakon
solutions and smooth solutions. Song and Tian investigated the modified Camassa–Holm
(MCHE) equation in [22],

ut + 2kux – uxxt + βunux = 2uxuxx + uuxxx. (2)

Further, one assumed that the soliton changes with η = x – Vt, where V is the speed of
wave propagation and t is the temporal variable. For V > 0, the wave moves in the positive
x-direction, whereas for V < 0, the wave moves in the negative x-direction, then the terms
2uxuxx + uuxxx of Eq. (2) will be very small and the above equation becomes

ut + 2kux – uxxt + βuux = 0. (3)

Consider Eq. (3), the modified Camassa–Holm (MCH) equation [22], which is known as
the simplified modified Camassa–Holm (SMCH) equation

ut + 2kux – uxxt + βunux = 0. (4)

In this paper, we consider n = 2,

ut + 2kux – uxxt + βu2ux = 0. (5)

With the help of He’s semi-inverse method [23] we have obtained the analytical solu-
tions of the CH equation and the SMCH equation, Abbasbandy via the homotopy method
[24] obtained traveling wave solutions of the SMCH equation. Recently many solitary so-
lutions of SMCH equation were obtained [25, 26]. Here, we utilize the extended ratio-
nal exp((– ψ ′

ψ
)(η))-expansion method for solving the simplified modified Camassa–Holm

(SMCH) equation.

2 Description of method
We will explain the extended rational exp((– ψ ′

ψ
)(η))-expansion method for establishing

solitary solutions. Suppose the fractional PDE is

ψ
(
u, Dá

t u, D2á
t u, Dá

t ux, ux, uxx, . . .
)

= 0, 0 ≤ α ≤ 1, t > 0, (6)
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where Dα
t u, Dα

x u, Dα
xxu, are fractional derivatives, u is any unknown function and ψ is

a polynomial involving u and its different derivatives. So as to solve (6), the steps are as
follows.

Step I: We assume the following equation:

η = x ± V
tα

Γ (α + 1)
, (7)

where V is the speed of the wave propagation, u = u(η).
Equations (6) and (7) yield the ODE

ψ
(
u,±Vu′, ku′, k2u′′, V 2u′′, . . .

)
= 0. (8)

Step II: Suppose the solution of Eq. (8) is expressed as

u(η) =
a[0] + d

dη
(
∑M

n=1 (an(eψ(η))n))
∑M

n=0 (bn(eψ(η))n)
, (9)

ψ ′(η) = μ exp
(
ψ(η)

)
+ exp

(
–ψ(η)

)
+ λ, (10)

while, an, bn are arbitrary constants and ψ(η), an �= 0, bn �= 0,ψ(η) satisfies Eq. (1), we got
solutions from Eq. (10) as follows.

Family I: When λ2 – 4μ > 0,

ψ(η) = ln

{(
–
√(

λ2 – 4μ
)

Tanh

(
(η + c)

√
(λ2 – 4μ)

2

)
–λ

)
1

2μ

}
.

Family II: When –4μ + λ2 < 0,

ψ(η) = ln

{(√(
–4μ + λ2

)
Tan

(
(η + c)

√
(λ2 – 4μ)

2

)
–λ

)
1

2μ

}
.

Family III: When λ �= 0, μ = 0 and λ2 – 4μ > 0,

ψ(η) = – ln

{
λ

e(λ(η+k1))–1

}
.

Family IV: When μ �= 0, λ �= 0 and λ2 – 4μ = 0,

ψ(η) = ln

{
(2λ(η + k1) + 4)

(λ2(η + k1))

}
.

Family V: When μ = 0, λ2 – 4μ = 0 and λ = 0,

ϕ(η) = ln(η + k1).

Step III: Exploring the value of M from Eq. (8). From Eq. (8) and Eq. (10), we have a
polynomial of eMϕ(η). By comparing, we get a system of equations with V , λ, μ, an, and
putting in Eq. (9) all cases of Eq. (10), we obtain traveling wave results of Eq. (6).
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3 Caputo’s fractional derivative
Definition 3.1 ([27]) A real function, h(x), x > 0, is supposed to be in space Cα if there
exists any real number p (> α), such that

h(x) = xph1(x), where h1(x) ∈ C[0,∞).

Definition 3.2 ([27]) A real function h(x), x > 0, is assumed to be in space if any real
number Cm

α , m ∈N∪ {0}, if h(m) ∈ Cα .

Definition 3.3 ([27]) Let h ∈ Cα and α ≥ –1, then for the Riemann–Liouville (R–L) (left-
sided) integral of left-sided order μ, μ > 0, we get

Iμ
t h(x, t) =

1
Γ (μ)

∫ t

0
(t – T)μ–1h(x, T) dT , t > 0,

where Γ (μ) is the Gamma function.

Definition 3.4 ([27]) The Caputo fractional derivative of the left-sided function h(x) with
respect to t, h ∈ Cm

–1, m ∈N∪ {0}, is given as

Dμ
t h(x, t) =

∂m

∂tm h(x, t), μ = m

= Im–μ
t

∂m

∂tm h(x, t), m – 1 ≤ μ < m, m ∈N,

Iμ
t Dμ

t h(x, t) = h(x, t) –
m–1∑

k=0

∂kh
∂tk (x, 0)

tk

k!
, m – 1 < μ ≤ m, m ∈N,

Iμ
t tν =

Γ (ν + 1)
Γ (μ + ν + 1)

tμ+ν .

4 The simplified modified Camassa–Holm (SMCH) equation
Consider the simplified modified Camassa–Holm (SMCH) equation

Dα
t u + 2kux – uxxt + βu2ux = 0, (11)

where k ∈R and β > 0 are parameters. We obtain

η = x – V
tα

Γ (α + 1)
, u(x, t) = u(η),

we can convert Eq. (11) into an ODE,

(2k – V )u – Vu′′ +
1
3
βu3 + P = 0, (12)

therefore the trial solution of suggested algorithm is

u(η) =
d

dη
(
∑M

n=1 (an(eY (η))n)) + a[0]
∑M

n=0 (bn(eY (η))n)
. (13)
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From (10), (12) and (13), we get

H0 + H1eϕ(η) + H2e2ϕ(η) + H3e3ϕ(η) + H4e4ϕ(η) + H5e5ϕ(η) + H6e6ϕ(η) = 0, (14)

where H1, H2, H3, H4, H5, H6 are given as follows:

H1 = 3Vλ3a1b0
2 – 3Vλ2a0b0b1 – 12Vλ2a1b0b1,

H2 = –3Vλ3a1b0b1 + 21Vλ2μa1b0
2 + 3Vλ2a0b1

2,

H3 = 6Vλ2μa1b0b1 + 36Vμ2λa1b0
2 + 3Vλ2μa0b1

2,

H4 = 3Vλ2μa1b1
2 + 27Vμ2λa1b0b1 + 18Vμ3μa1b0

2,

H5 = 9Vμ2λa1b1
2 + 18Vμ3a1b0b1 + 3βμ2λa1

3,

H6 = 6Vμ3a1b1
2 + βμ3a1

3.

We obtained the coefficients of algebraic equations:

[H0 = 0, H1 = 0, H2 = 0, H3 = 0, H4 = 0, H5 = 0, H6 = 0]. (15)

Solving these algebraic equations by using Maple, we obtain the solution sets, and by
choosing some specific cases we get the following.

Solution 1

a0 =
a1(λb0 – b1)

b1
, P = –

λa1(–βλ2a1
2 + 3Vb1

2 – 6kb1
2)

3b1
3 ,

λ = λ, b0 = b0, b1 = b1, a1 = a1, β = β , μ = 0.

Case III: Whenever μ = 0 and λ �= 0, and λ2 – 4μ > 0,

u1(η) =
a1(λb0 – b1)λ

b1(b1e–λ( Vtα
Γ (α+1) –x) + λb0 – b1)

.

Case IV: When, λ �= 0, λ2 – 4μ = 0 and μ �= 0,

u2(η) =
a1(λb0 – b1)λ2( Vtα

Γ (α+1) – x)

b1(λ2tb0
Vtα

Γ (α+1) – 2λb1
Vtα

Γ (α+1) – λ2xb0 + 2λxb1 + 2b1)
.

Case V: If μ = 0, and λ = 0,

u3(η) =
a1(λb0 – b1)

b1(b1
Vtα

Γ (α+1) – xb1 – b0)
.

Solution 2

b1 = b1, a1 = 0, a0 = a0, P = 0, β = 0,
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λ =
√

V (V – 2k)
V

, b0 =
b1

√
V (V – 2k)
V – 2k

, μ = 0.

Case III: Whenever μ = 0 and λ �= 0, and λ2 – 4μ > 0,

u4(η) =
√

V (V – 2k)a0e
( Vtα
Γ (α+1) –x)

√
V (V –2k)

V

Vb1
.

Case IV: When λ �= 0, λ2 – 4μ = 0, and μ �= 0,

u5(η) = –
a0(V – 2k)( Vtα

Γ (α+1) – x)

b1(
√

V (V – 2k) Vtα
Γ (α+1) –

√
V (V – 2k)x – 2V )

.

Case V: While μ = 0, and λ = 0,

u6(η) = –
a0(V – 2k)

b1(2k Vtα
Γ (α+1) + Vx – V 2tα

Γ (α+1) – 2kx +
√

V (V – 2k))
.

Solution 3

b1 = b1, a1 = 0, a0 = a0, b0 = –
b1

√
V (V – 2k)
V – 2k

,

P = 0, λ = –
√

V (V – 2k)
V

, β = 0, μ = 0.

Case III: Whenever μ = 0 and λ �= 0, and λ2 – 4μ > 0,

u7(η) = –
a0e–

√
V (V –2k)( Vtα

Γ (α+1) –x)
V (

√
V (V – 2k))

Vb1
.

Case IV: When μ �= 0, and λ �= 0, λ2 – 4μ = 0,

u8(η) =
a0(V – 2k)( Vtα

Γ (α+1) – x)

b1(
√

V (V – 2k) Vtα
Γ (α+1) –

√
V (V – 2k)x + 2V )

.

Case V: When μ = 0, and λ = 0,

u9(η) = –
a0(V – 2k)

b1(–Vx + 2kx + V 2tα
Γ (α+1) +

√
V (V – 2k)) – 2k Vtα

Γ (α+1)

.

Solution 4

b1 = b1, a1 = 0, a0 = a0, λ = λ, b0 =
2λb1V

Vλ2 + 2V – 4k
,

P = 0, β = –
24V (V 2 – 4kV + 4k4)b1

2

(Vλ2 + 2V – 4k)2a02
, μ =

Vλ2 + 2V – 4k
4V

.

Case II: Whenever μ �= 0, and λ2 – 4μ < 0,

u10(η) = –
a0(Vλ2 + 2V – 4k)

√
2

4b1V tan( 1
2 ( Vtα

Γ (α+1) – x)
√

2
√

V –2k
V

√
V –2k

V )
.
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Case III: While λ �= 0, and μ = 0,

u11(η) = –
(Vλ2 + 2V – 4k)λa0

b1(e–λ( Vtα
Γ (α+1) –x)Vλ2 + Vλ2 + 2e–λ( Vtα

Γ (α+1) –x)V – 4e–λ( Vtα
Γ (α+1) –x)k – 2V + 4k)

.

Case IV: When μ �= 0, λ2 – 4μ = 0, and λ �= 0,

u12(η) = –
a0(Vλ2 + 2V – 4k)λ2( Vtα

Γ (α+1) – x)

2b1(–Vλ2 – 2λV – 4λk Vtα
Γ (α+1) – 4xkλ – 2V + 4k + 2λ2 Vtα

Γ (α+1) )
.

Case V: When μ = 0, and λ = 0,

u13(η) = –
(Vλ2 + 2V – 4k)a0

b1(–xVλ2 – 2Vλ – 4k Vtα
Γ (α+1) – 2Vx + 2λ2 tα

Γ (α+1) + 4kx + λ2 V 2tα
Γ (α+1) )

.

Solution 5

b1 =
b0(Vλ +

√
V 2 – 2kV )

2V
, P = –

a0(λ(Vλ +
√

V 2 – 2kV ) – Vλ2 – V + 2k)
2b0

,

λ = λ, b0 = b0, β = 0, μ =
Vλ2 – V + 2k

4V
, a1 = 0, a0 = a0.

Case I: Whenever μ �= 0, and λ2 – 4μ > 0,

u14(η) = –
a0(Vλ2 – V + 2k)

b0

√
V –2k

V tan( 1
2 ( –x+Vtα

Γ (α+1) )
√

V –2k
V )Vλ

+
√

V (V – 2k)
√

– V –2k
V tan( 1

2

√
V –2k

V ( –x+Vtα
Γ (α+1) )) – λ

√
V (V – 2k)) – V + 2k

.

Case II: If μ �= 0, and λ2 – 4μ < 0,

u15(η) = –
a0(Vλ2 – V + 2k)

b0

√
– V –2k

V tan( 1
2 ( –x+Vtα

Γ (α+1) )
√

– V –2k
V )Vλ

+
√

V (V – 2k)
√

– V –2k
V tan( 1

2

√
– V –2k

V ( –x+Vtα
Γ (α+1) )) + λ

√
V (V – 2k)) + V – 2k

.

Case III: Whenever μ = 0 and λ �= 0, and λ2 – 4μ > 0,

u16(η) =
2a0Vλ

b1(Vλe–λ( –x+Vtα
Γ (α+1) ) +

√
V (V – 2k)e–λ( –x+Vtα

Γ (α+1) ) + Vλ –
√

V (V – 2k))
.

Case IV: When μ �= 0, λ �= 0, and λ2 – 4μ = 0,

u17(η) = –
a0Vλ2(–x + Vtα

Γ (α+1) )

b0(
√

(V – 2k)Vλ Vtα
Γ (α+1) –

√
V (V – 2k)λx – Vλ –

√
V (V – 2k))

.

Case V: Whenever μ = 0, and λ = 0,

u18(η) = –
2a0V

b0(λ2 Vtα
Γ (α+1) +

√
V (V – 2k) Vtα

Γ (α+1) – Vλx – 2V –
√

V (V – 2k)x)
.
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Solution 6

λ =
√

2
√

V (2Vμ – V + 2k)
V

, b0 =
√

2b1
√

V (2Vμ – V + 2k)
2μV

,

b1 = b1, a1 = a1, a0 =
–(V – 2k)

2Vμ
, P = 0, β = –

6V b1
2

a12 , μ = μ.

Case I: If μ �= 0 and λ2 – 4μ > 0,

u19(η) = –
(V – 2k)a1

Vb1 tanh( 1
2 ( –x+Vtα

Γ (α+1) )
√

– 2V –4k
V

√
– 2V –4k

V )
.

Case II: If μ �= 0 and λ2 – 4μ < 0,

u20(η) =
(V – 2k)a1

√
2

2Vb1

√
V –2k

V tan( 1
2 ( –x+Vtα

Γ (α+1) – x)
√

2
√

V –2k
V )

.

5 Analogy and analysis
Several authors have been discussed the simplified modified Camassa–Holm (SMCH)
equation by using different techniques for finding exact traveling wave results. Particularly,
Liu et al. [22] used the (G′/G)-expansion method, Najafi et al. [23], used He’s semi-inverse
method applied exp(–ϕ(η))-expansion method and Redi et al. [19] applied an improved
(G′/G)-expansion method; Gundogdu et al. [28] applied the elliptic function expansion
method to get the traveling wave solutions. Akber et al. [26] obtained solutions u1(φ),
u3(φ), u6(φ), u7(φ) and u8(φ) that are equivalent to our solutions u10(η), u19(η) and u20(η).
For instance, Akber et al. [26] obtained solutions u1(φ) with suitable values of m2 = 0, d = 0,
B = 0,

√
Ω = 1, A = 1 matching with our solution u19(η) (see Table 1). In the same manner

Akber et al. [26] obtained solutions u3(φ) with suitable values of m2 = 0, d = 0,
√

 = 1,
A = 2 matching with our obtained solution u10(η) (see Table 1). Mohyud-Din et al. [29]
obtained solutions u4(η) and u10(η), for k = 1, b0 = 1

2 , β = –1, η = 0, c1 = 1 that are equiva-
lent to our obtained solution u1(η) for λ = 1, μ = –1, k = 1, a1 = 2

√
3, b0 = 2, b1 = 1, t = 0,

x = 0. Similarly for different values of Mohyud-Din et al. [29] obtained solutions u2(η),
u4(η), u8(η), u9(η), u18(η) and u23(η) that are equivalent to our solutions u1(η), u3(η) and
u7(η) (see Table 2). In Table 3, our solutions and those of Lu et al. [25] are compared. For
instance, Lu et al. [25] addressed solution u4 for the particular choices of β1 = 1,

√
β1 = 5,√

β3 = 1/2, ε = 1, k = –1, ω = 1 and ξ0 = 0 is equivalent to our obtained solution u19(η) (see
Table 3). The rest of the solutions are new. Hence, our method produces more solutions
than other methods existing in the current literature. In our work all the results obtained
have been verified through Maple to be found to be correct.

6 Physical interpretation
Now we provide graphical representations of some results with different parametric val-
ues. Figure 1 shows the periodic wave profile of u1(η) for α = 0.2, a1 = 11, λ = 1, V = 12,
b0 = 1, b1 = 12. Figure 2 represents the multiple soliton solution of u3(η) for α = 0.25,
a1 = 11, V = 12, b1 = 11, μ = 3, while Fig. 3 displays the profile of solitary wave of u4(η) for
the choice of α = 0.30, a1 = 11, λ = 1, V = 12, b1 = 11, μ = 3.
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Table 1 Comparing the results of Akber et al. [26] and Liu et al. [22] with our results

Obtained results Results of Liu et al. and Akber et al.

Ifm1 =
(V–2k)a1

Vb1

√
– 2V–4k

V = 1, then the solution is

u19 =m1 coth(
x– Vt

Γ (α+1)
2 )

Ifm2 = 0, d = 0,
√

Ω = 1, Φ = x – Vt
Γ (α+1) , A = 1, then the

solution is u1 =m1 coth(
x– Vt

Γ (α+1)
2 )

Ifm1 =
(V–2k)a1

Vb1

√
– 2V–4k

V = 1, then the solution is

u19 =m2 coth(
x– Vt

Γ (α+1)
2 )

Ifm2 = 0, d = 0,
√

Ω = 1, Φ = x – Vt
Γ (α+1) , A = 2, then the

solution is u6 =m2 coth(
x– Vt

Γ (α+1)
2 )

If
√
– 2V–4K

V = 1√
2
andm1 =

a0(Vλ
2+2V+4K)
2Vb1

, then the

solution is u10 =m1 cot(
Vt

Γ (α+1) –x

2 )

Ifm2 = 0, d = 0, B = 0, ι
√

Ω = 1, Φ = Vt
Γ (α+1) – x, A = 1,

then the solution is u3 =m1 cot(
Vt

Γ (α+1) –x

2 )

If
√
– 2V–4K

V = 1√
2
andm2 =

a0(Vλ
2+2V+4K)
2Vb1

, then the

solution is u10 =m2 cot(
Vt

Γ (α+1) –x

2 )

Ifm1 = 1
2 , d = 0, ι

√
Ω = 1, Φ = Vt

Γ (α+1) – x, A = 2, then

the solution is u8 =m1 cot(
Vt

Γ (α+1) –x

2 )

If
√
– 2V–4K

V = 1 andm2 =
a1(2K+V)

Vb1
then the solution is

u19 =m2 coth(
Vt

Γ (α+1) –x

2 )

Ifm1 = 1
2 , d = 0,

√
 = 1, Φ = Vt

Γ (α+1) – x, A = 2, then the

solution is u7 =m2 coth(
Vt

Γ (α+1) –x

2 )

If
√
– 2V–4K

V = 1, a1 = 1 andm2 = 2K+V
Vb1

= 2
5 then the

solution is u20 = 2
5 coth(

Vt
Γ (α+1) –x

2 )

Ifm1 = 1
5 ,m2 = 0, d = 0,

√
 = 1, Φ = Vt

Γ (α+1) – x, A = 2,

then the solution is u6 = 2
5 coth(

Vt
Γ (α+1) –x

2 )

If
√
– 2V–4K

V = 1√
2
andm1 =

a1(–2K+V)
2Vb1

= 1 then we get

u20 = cot(
Vt

Γ (α+1) –x

2 )

Ifm1 = 1
2 ,m2 = 0, d = 0,

√
 = 1, Φ = Vt

Γ (α+1) – x, A = 2,

then the solution is u8 = cot(
Vt

Γ (α+1) –x

2 )

Table 2 Comparing the results of Mohyud-Din et al. [17] and Najafi et al. [30] with our results

Obtained results Results of Najafi et al. and Mohyud-Din et al.

If λ = 1, μ = –1, k = 1, a1 = 2
√
3, b0 = 2, b1 = 1, t = 0,

x = 0 then the solution is u1(η) = –2
√
3

If k = 1, b1 = 1
2 , β = –1, η = 0, c1 = 1 then the solution is

u4(η) = –2
√
3

If λ = 1, μ = –1, k = 1, a1 = 2
√
3, b0 = 2, b1 = 1, t = 0,

x = 0 then the solution is u1(η) = –2
√
3

If k = 1, b1 = 1
2 , β = –1, η = 0, c1 = 1 then the solution is

u10(η) = –2
√
3

If λ = 2√
2
, μ = –1, k = 1, a1 = 3

√
6, b0 =

√
2, b1 = 1,

V = 6
√
2, t = 1, x = 0 then the solution is u3(η) = 3

√
6

5
√
2

If λ = 1, k = 1, b0 = 1, β = –1, η = 0, c1 = 1,μ = 1 then the

solution is u4(η) = 3
√
6

5
√
2

If λ = 2√
2
, μ = –1, k = 1, a1 = 3

√
6, b0 =

√
2, b1 = 1,

V = 6
√
2, t = 1, x = 0 then the solution is u3(η) = 3

√
6

5
√
2

If λ = 1, k = 1, b0 = 1, β = –1, η = 0, c1 = 1,μ = 1 then the

solution is u9(η) = 3
√
6

5
√
2

If V = 6, a1 = 1, t = 0, x = 0, b1 = –1
6 , k =

5
2 then the

solution is u7(η) =
√
6

If λ =
√
–1, k = 1, b0 = 0, β = 1, k = 1 then the solution is

u2(η) =
√
6

If V = 6, a1 = 1, t = 0, x = 0, b1 = –1
6 , k =

5
2 then the

solution is u7(η) =
√
6

If λ =
√
–1, k = 1, b0 = 0, β = 1, k = 1 then the solution is

u8(η) =
√
6

If k = –6, b1 = 12√
6
, β = –1, k = –6, c1 =

√
6

12 then the

solutions are u18(η) = u23(η) = –2
√
3. It matches with

our obtained solution (i) in this table

Table 3 Comparing the results of Lu et al. [25] with our results

Obtained results Results of Lu et al.

If H1 =
a1(V–2k)

b1
√
V(V–2k)

, a = 0 and V = 5 then the solution is

u19 = H1 coth( 52 – x)

If H1 =
k
√

6β

β2
√

–δ(β1k
2+2)

, ε = 1, k = –1, ω = 1, β1 = 1,
√

β1 = 5,
√

β3 = 1
2 and ζ0 = 0 then the solution is

u4 = H1 coth( 52 – x)

If H1 =
a1(V–2k–)
b1

√
V(V–2k)

, a = 0 and V = 5 then the solution is

u19 = H1 coth( 52 – x)

If H1 =
2
√
3kβ1

√
β3β

β2
√

–δ(β1k
2+2)

, ε = 1, k = –1, ω = 1, β1 = 1,
√

β1 = 5,
√

β3 = 1
2 and ζ0 = 0, then the solution is

u7 = H1 coth( 52 – x)
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Figure 1 Periodic wave profile of u1(η) for α = 0.2, a1 = 11, λ = 1, V = 12, b0 = 1, b1 = 12

Figure 2 Multiple soliton solution of u3(η) for α = 0.25, a1 = 11, λ = 1, V = 12, b1 = 11, μ = 3

Figure 3 Solitary wave solution u2(η) for α = 0.30, a1 = 11, λ = 1, V = 12, b1 = 11, μ = 3

Again the solitary wave solution of u4(η) for α = 0.75, a1 = 1, λ = –1, V = 0, b1 = 1 is ob-
tained in Fig. 4. Figures 5 and 6 represent soliton solutions of u4(η) and u14(η) for different
values of parameters. Solitons are special types of solitary waves that retain the identity
upon interaction with other solitons and have implications in the field of cosmology of
the universe. Figure 7 shows the kink wave solution of u9(η) for α = 0.30, a1 = 11, λ = 0.77,
b0 = 1, V = 10, b1 = 100. The kink waves are the solitary waves that are rise or descend
from one asymptote state to another. Figure 8 displays the periodic solution of u12(η) for
α = 0.9, a1 = 11, λ = –100, b0 = 1, V = 10. The periodic solutions are traveling wave results
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Figure 4 Solitary wave solution of u4(η) for α = 0.75, a1 = 1, λ = –1, V = 0, b1 = 1

Figure 5 Soliton solution of u6(η) for α = 0, a1 = 1, λ = –1, V = 0, b1 = 1, k = 3

Figure 6 Solitonic solution of u7(η) for α = 0.30, a1 = 11, λ = 0.77, b0 = 1, b1 = 100

that are periodic. Finally, Fig. 9 represents the periodic solution of u19(η) for α = 0.30,
a1 = 11, λ = 0.77, b0 = 1, V = 10, b1 = 100.

Figure 10 shows the soliton solution of u16(η) for the choice of α = 0.25, a0 = 0.5, λ = –1,
V = 0.1, b0 = 2, k = 3. Kink wave solution is obtained in Fig. 11 of u14(η) for α = 0.9, a0 =
0.5, λ = –1, V = 0.1, b0 = 11, k = 3. Figure 12 displays the periodic solution of u15(η) for
different values of α = 0.1, a11 = 11, λ = 3, V = 12, b0 = 1, b1 = 3. Finally in Fig. 13 we have
found solitonic solution of u19(η) for α = 0.25, k = 5, V = 12, a1 = 1, b1 = 1.
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Figure 7 Kink wave of u9(η) for α = 0.30, a1 = 11, λ = 0.77, b0 = 1, V = 10, b1 = 100

Figure 8 Periodic wave solution of u12(η) for α = 0.9, a1 = 11, λ = –100, b0 = 1, V = 10

Figure 9 Periodic wave solution of u19(η) for α = 0.30, a1 = 11, λ = 0.77, b0 = 1, V = 10, b1 = 100

7 Conclusions
We have successfully employed the proposed technique to gain the generalized solitary
solutions of the simplified modified Camassa–Holm (SMCH) equation in the article. The
solitary solutions are periodic, trigonometric, hyperbolic, and rational functions. The
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Figure 10 Solitonic solution of u16(η) for α = 0.25, a0 = 0.5, λ = –1, b0 = 2, V = 0.1, k = 3

Figure 11 Solitonic solution of u14(η) for α = 0.9, a0 = 0.5, λ = –1, b0 = 11, V = 0.1, k = 3

Figure 12 Periodic wave solution of u15(η) for α = 0.1, a11 = 11, λ = 3, b0 = 1, V = 12, b1 = 3

gained results may express a variety of new features of waves. By comparing our results,
we concluded that some of the results are similar to the current literature, while the others
are newly discovered, and were not explored elsewhere. The method is reliable in handling
to initiate new results and we selected a new class of exact solutions. It is investigated that
the physical parameters significantly modify the wave dynamics. The solutions formed
in this paper can be beneficial in the study of wave breaking. Wave breaking is used in
atmospheric gravity waves and in plasma physics. It is also utilized in the analysis for dis-
cussing local well-posedness and global existence in non-peaked solutions. The suggested
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Figure 13 Solitonic solution of u19(η) for α = 0.25, a1 = 1, b1 = 1, V = 12, k = 5

procedure fully approved the dependability of our computational work and could be im-
plemented to study other physical problems.
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