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Abstract In this paper, the new series solutions of some fractional cancer tumor models are inves-

tigated by using residual power series method (RPSM). The RPSM is explained with Maclaurin

expansion for the solution. One of the advantages of this method is quick and easy calculation

to find series solutions by using mathematica software package. Graphical presentations for series

solutions are given to explanation of the method. The obtained outcomes explain that process is

applicable and reliable method to obtain numerical solutions of fractional equations.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Tumours are dynamic systems in which cancer cells grow and
spread in the end killing good cells by deficiency of oxygen and

nutrients from the blood. The tumour cells spread around the
area where it is located and they usually die because oxygen
and nutrients in the blood are low. This movement can be
compared to a fire [1]. If it is desired to destroy the tumor in

an effective treatment, the treatment should move faster than
the spread of the tumor. However, it should be remembered
that tumors grow rapidly. In [2], the tumour growth is sup-
posed to be monoton and is claimed to be an treatment to

the assumption of monotony can be applied. Because many
issues need to be considered in such problems. So it is only nec-
essary to focus on the treatment aspect of the problem.

The importance of mathematical modeling in cancer treat-
ment is that it provides an analytical outline of which compo-
nents of the immune system are important in cancer treatment.

Gompertz first used mathematical modeling in cancer treat-
ment, in 1825. He modeled tumor growth taking into account
cell proliferation and death. According to his model, the more

cells, the faster the growth. Then, many mathematical models
have been developed to investigate the effects of different com-
ponents in tumor microenvironment studies [3–8]. The tumor
microenvironment contains growth elements (having hor-

mones and cytokines), the extracellular matrix, immune cells,
fibroblasts, signaling molecules (cytokines and chemokines),
and other connective tissue cells. These interactions are
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important to investigate effective cancer immunotherapies.
Here, mathematical modeling is important because it is neces-
sary to model real data in the most accurate way. From this

point, fractional calculus is more effective in modeling real
data [9]. Fractional derivatives are used effectively in almost
all biological systems contrary to the integer order derivatives.

Nonlinear partial differential equations and nonlinear evo-
lution equations form the basis of many researches in mathe-
matical physics [10–13]. In addition fractional calculus

gained considerable interests and significant theoretical devel-
opments in many fields and many studies have been done in
this field, recently [14–21]. Many studies have been made on
fractional differential equations and its applications. In [22];

researchers investigated the numerical solutions of time frac-
tional Jaulent-Miodek equations by using coupled fractional
reduced differential transform method and q-homotopy analy-

sis transform method, in [23]; local fractional wave equation is
analysed in fractal strings by using local fractional homotopy
perturbation Laplace transform scheme, in [24]; are studied

nonlinear Fisher’s equation of fractional order with q-
homotopy analysis transform method, in [25]; are investigated
the uniqueness of solutions for a fractional differential equa-

tion with dependence on the first order derivative, in [26];
authors analyzed the system of fractional Burger differential
equations gived as a new fractional form for Atangana-
Baleanu fractional derivative in the case of Mittag leffler ker-

nel, in [27]; is investigated theory and application for the time
fractional Gardner equation with the aid of Mittag-Leffler ker-
nel and in [28]; researchers obtained new soliton solutions of

the fractional Regularized Long Wave Burger equation with
the aid of conformable derivative. For further some articles,
Ref. [29–31] can be viewed.

In this article, we investigate RPSM to find influential series
solution for several nonlinear problems. The applied algorithm
gives the solutions in the form of a convergence series. An iter-

ated transactions are created for obtain the infinite series solu-
tions. The RPSM was expressed as an effectual algorithm for
Fuzzy differential equations [32]. Emad Az-Zo’bi generalized
the recently devised technique, known as the residual power

series method, for analytic treatment of higher-order non-
linear partial differential equations in [33], in [34] are studied
non-compound fractional differential equations, in [35]; the

residual power series scheme is developed for mixed-type sys-
tems of conservation laws, in [36], this algorithm is tested on
Fitzhugh–Nagumo and generalized Fisher equations with non-

linearity ranging, the comparative solution of the nonlinear
fractional KdV Burgers equation [37], in [38] is investigated
construction of fractional power series solutions to fractional
stiff system using residual functions algorithm and are

obtained analytic-approximate solution of time-fractional
Zakharov-Kuznetsov equation by using this method in [39].

RPSM is quick and easy calculation to find series solutions

by using mathematica software package. Also, unlike Taylor
series method, RPSM requires easy computation state with
high reliability and less time.

In this paper we investigate on a fractional diffusion model
by using estimate time and spatial dependency of concentra-
tion of tumor cells as well as that of the killing ratio. In [40],

Burgess et al. was presented a diffusion model. In this model,
is considered a globular tumor in which having the reproduc-
tion ratio p and therapy dependent killing ratio k.
@P x; sð Þ
@s

¼ D
1

r2
@

@r
r2
@P x; sð Þ

@r

� �
þ pP x; sð Þ � kP x; sð Þ; ð1:1Þ

where P x; sð Þ refer to the concentration of tumor cells at loca-
tion r and time t;D gives the diffusivity factor.

In Ref. [41] are researched the one dimensional form for
above model by using variable killing ratio with the aid of

Lie symmetry method,

@2P x; sð Þ
@x2

� K x; sð ÞP x; sð Þ � @P x; sð Þ
@s

¼ 0; ð1:2Þ

where K x; sð Þ refers to the temporary view of the treatment. It
is the clear ratio of remove of the tumor cells. The therapy

dependent kill ratio Kcan be expressed in three cases: (1)
may be constant, (2) may be a function of time, (3) may not
be dependent solely on time.

Additionally, In [42–44] are investigated Eq. (1.2) for causes
where the killing ratio of cancer cells K depends on the concen-
tration of cells. Therefore this model was converted to nonlin-
ear partial differential equation to study many different

situations.
The majority of nonlinear phenomena are modelled by the

aid of differential and integral equations of fractional order.

Fractional calculus is more effective in modeling real data.
Fractional derivatives are used effectively in almost all biolog-
ical systems contrary to the integer order derivatives. Many

physical phenomena modeled with fractional derivatives have
been investigated. One of them is Caputo’s modeling of the
term memory from a different angle [45]. In [44], also is studied
the super diffusion of cancer on the comb construction. In this

study, tumor improving was shown to correspond to fractional
transport of cells and obtained several analytical solutions of
discussed problem.

In this paper, we investigated some fractional order cancer
tumor models [42–44]. We studied in three cases of the therapy
dependent kill ratio K, because of, it helps explain the growth

or deterioration of the tumor. It can also help a person prefer a
specific treatment type. We obtained numerical solutions for
this problem by using the Residual power series method

(RPSM) and we presented the convergence anaysis of the
method.

The main aim of our article is to analyse processes of
RPSM with the aid of the Caputo’s fractional differential

operators to obtain approximate solutions of several test prob-
lems [42–44]

@aP x; sð Þ
@sa

¼ @2P x; sð Þ
@x2

� s2P x; sð Þ; ð1:3Þ

@aP x; sð Þ
@sa

¼ @2P x; sð Þ
@x2

� 2

x2
P x; sð Þ; ð1:4Þ

@aP x; sð Þ
@sa

¼ @2P x; sð Þ
@x2

� 2

x

@P x; sð Þ
@x

� P x; sð Þ2: ð1:5Þ

Our aim in this work is to obtain new series solutions of the

(1.1), (1.2) and (1.3) equations with some initial conditions by
using Caputo’s fractional derivatives. We use the RPSM to
produce series solutions. Several graphical expressions are pre-
sented to show the reliableness and efficiency of the method.

Furthermore, results are presented in last section.
This work is prepared as follows. Formulation of fractional

order cancer tumor models are given in section introduction.
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Section 2 describes the some important definitions and several
statements for the fractional calculus. Convergence of RPSM
algorithm are given in Section 3. In Section 4, applications

of RPSM algorithm are investigated for three examples. Phys-
ical Reviews and graphics are given in the last section.

2. Some necessary definitions and results from fractional

calculus theory

In this section, we first give the important definitions and sev-

eral statements for the fractional calculus [11].
Definition 2.1. The Riemann-Liouville fractional integral

operator for order a a P 0ð Þ is given by [34,37],

Jap xð Þ ¼ 1

C að Þ
Z x

0

x� sð Þa�1
p sð Þds; a > 0; x > 0; ð2:1Þ

J0p xð Þ ¼ p xð Þ:
Definition 2.2. The Caputo fractional derivatives for order a

is below,

Dap xð Þ ¼ Jn�aDnp xð Þ ¼ 1

C n� að Þ
Z x

0

x� sð Þn�a�1 dn

dsn
p sð Þds;

ð2:2Þ
x > 0; n� 1 < a 6 n;

where Dn is the classic differential operator for order n [34,37].
One of the features of the Caputo derivative is written is

below,

Daxg ¼ 0; g < a;

Daxg ¼ C gþ1ð Þ
C gþ1�að Þ x

g�a; g P a:

Definition 2.3. When n < a, the Caputo time-fractional
diffrential operator with order afor P x; sð Þ is defined as follows
[34,37],

Da
sP x; sð Þ ¼ @aP x;sð Þ

@sa ¼ 1
C n�að Þ

R s
0

s� sð Þn�a�1 @nP x;sð Þ
@sn ds;

n� 1 < a < n;
ð2:3Þ

Dn
sP x; sð Þ ¼ @nP x; sð Þ

@sn
; n 2 N;

and the space–time fractional differential for order gof P x; sð Þ
is defined as follows,

Dg
xP x; sð Þ ¼ @gP x;sð Þ

@xg
¼ 1

C n�gð Þ
R x

0
x� sð Þn�g�1 @nP s;sð Þ

@sn ds;

n� 1 < g < n;
ð2:4Þ

Dn
xP x; sð Þ ¼ @nP x; sð Þ

@xn
; n 2 N;

Definition 2.4. A power series (PS) are expressed as follows,P1
n¼0cn s� s0ð Þna ¼ c0 þ c1 s� s0ð Þa þ c2 s� s0ð Þ2a þ . . . ;

0 6 n� 1 < a 6 n; s P s0;

This is called fractional PS at s ¼ s0 [30].

Definition 2.5. A PS can express as follows,

X1
n¼0

pn xð Þ s� s0ð Þna ¼ p0 xð Þ þ p1 xð Þ s� s0ð Þa

þ p2 xð Þ s� s0ð Þ2a þ . . . ;

ð2:5Þ
0 6 n� 1 < a 6 n; s P s0;

This is called fractional PS at s ¼ s0 [30].
Theorem 2.1. Only if P x; sð Þ is a polynomial fractional
PS at point s ¼ s0 of the form

P x; sð Þ ¼
X1
n¼0

pn xð Þ s� s0ð Þna; ð2:6Þ

0 6 n� 1 < a 6 n; x 2 I; s0 6 s < s0 þ R:

If Dna
s P x; sð Þ are continuous on I� s0; s0 þ Rð Þ, coefficients

pn xð Þ are expressed as follows

pn xð Þ ¼ Dna
s P x; s0ð Þ
C naþ 1ð Þ ; n ¼ 0;1:

where Dna
s ¼ @na

@sna ¼ @a

@sa :
@a

@sa . . .
@a

@sa (n-times) and R ¼ minc2IRc.

Where Rcis domain of convergency for the fractional PSP1
n¼0pn cð Þ s� s0ð Þna. The function p xð Þ is analytic on x > 0.

(see [37] for proof.)
Result 2.1. The fractional PS expanded of P x; sð Þ s ¼ s0ð Þ is

given by,

P x; sð Þ ¼
X1
n¼0

Dna
s P x; s0ð Þ
C naþ 1ð Þ s� s0ð Þna; ð2:7Þ

0 6 n� 1 < a 6 n; x 2 I; s0 6 s < s0 þ R;

This is a Generalized Taylor’s series expansion. To particu-

larise, if a ¼ 1 in Eq. (2.7), this equaition is the classical Tay-
lor’s series expansion as follows [37],

P x; sð Þ ¼
X1
n¼0

@nP x; s0ð Þ
@sn

s� s0ð Þ
n!

; x 2 I; s0 6 s < s0 þ R;
3. Convergence of RPSM algorithm

Theorem.When 0 < K < 1; Pmþ1 x; sð Þk k 6 K Pm x; sð Þk kgives
8m 2 N and 0 < s < T < 1, then the series of numerical solu-
tions converges to an exact solution.

Proof. We can consider

P x; sð Þ � Pm x; sð Þk k ¼ P1
n¼mþ1Pn x; sð Þ�� ��

6
X1

n¼mþ1

Pn x; sð Þk k; 8 0 < s < T < 1:

6 g yð Þk k P1
n¼mþ1K

n
�� ��

¼ Kmþ1

1�K
g yð Þk k ! 0 asm ! 1:

Lemma. When �1 < x < 1, the classical power series

expansion
P1

n¼0Pn x; sð Þxn has a range of convergence T, if

the fractional power series
P1

n¼0Pn x; sð Þxn; x P 0 has a range

of convergence T
1
a. (See [34] for proof.).
4. Applications of RPSM algorithm

In this section, our aim is to apply the proposed algorithm for
(1.1) cancer tumor models

Da
sP x; sð Þ ¼ @2P x;sð Þ

@x2
� K x; sð ÞP x; sð Þ;

s > 0; 0 < a 6 1:

with the initial conditions

P x; 0ð Þ ¼ f xð Þ and Ps x; 0ð Þ ¼ g xð Þ:
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4.1. Example 1.

The clear killing ratio of the cancer cells is just time dependent

@aP x; sð Þ
@sa

¼ @2P x; sð Þ
@x2

� s2P x; sð Þ; ð4:1Þ
s P 1; 0 < a 6 1;

subjected to the initial conditions

P x; 0ð Þ ¼ ekx: ð4:2Þ
The RPSM gives the series solutions for Eqs. (4.1) and

(4.2).This solutions is form a fractional PS at point s ¼ 0

[32]. Suppose that the solution is expansion form as follows,

P x; sð Þ ¼
X1
n¼0

pn xð Þ sna

C 1þ nað Þ 0 < a 6 1; x 2 I; 0

6 s < R: ð4:3Þ
We consider that Pj x; sð Þ is j. truncated series of P x; sð Þ,

Pj x; sð Þ ¼
Xj

n¼0
pn xð Þ sna

C 1þ nað Þ ; 0 < a 6 1; x 2 I; 0

6 s < R: ð4:4Þ
where P0 x; sð Þ ¼ p0 xð Þ ¼ P x; 0ð Þ ¼ p xð Þ.

Then, Eq. (4.4) can express as follows

Pj x; sð Þ ¼ p xð Þ þ
Xj

n¼1
pn xð Þ sna

C 1þ nað Þ ; ð4:5Þ

0 < a 6 1; 0 6 s < R; x 2 I; j ¼ 1;1:

To obtain the value of coefficients pn xð Þ; n ¼ 1; 2; 3; . . . ; j in
series expanded of Eq. (4.5), Residual function Res is given by

Res x; sð Þ ¼ @aP x; sð Þ
@sa

� @2P x; sð Þ
@x2

þ s2P x; sð Þ;

and the j-th residual function, Resj is given by:

Resj x; sð Þ ¼ @aPj x; sð Þ
@sa

� @2Pj x; sð Þ
@x2

þ s2Pj x; sð Þ; j ¼ 1; 2; 3; . . .

ð4:6Þ
lim
j!1

Resj x; sð Þ ¼ Res x; sð Þ for 8x 2 I and s P 0 and

Res x; sð Þ ¼ 0 [32–35].
Then, Dra

s Res x; sð Þ ¼ 0 and Resj x; sð Þ are at s ¼ 0 with

8r ¼ 0; j. To present RPS process: At first, we write the j-th
residual series expansion of P x; sð Þ in Eq. (4.1). Then, we

obtain the fractional derivative D j�1ð Þa
s of both

ResP;j x; sð Þ; j ¼ 1;1 and finally, we can solve obtained system

D j�1ð Þa
s ResP;j x; 0ð Þ ¼ 0; 0 < a 6 1; x 2 I; j ¼ 1;1: ð4:7Þ

to find the needed coefficients pn xð Þ for n ¼ 1; j. in Eq. (4.5).
To obtain p1 xð Þ, we consider j ¼ 1 in Eq. (4.6),

Res1 x; sð Þ ¼ @aP1 x; sð Þ
@sa

� @2P1 x; sð Þ
@x2

þ s2P1 x; sð Þ; ð4:8Þ

where

P1 x; sð Þ ¼ sa

C 1þ að Þ p1 xð Þ þ p xð Þ;

for

P x; 0ð Þ ¼ p0 xð Þ ¼ p xð Þ ¼ P x; 0ð Þ ¼ ekx:
where, we know that Res1 x; 0ð Þ ¼ 0 and thus,

p1 xð Þ ¼ ekxk2; ð4:9Þ
and

P1 x; sð Þ ¼ ekxk2
sa

C 1þ að Þ ; ð4:10Þ

Likewise, to obtain the form of the second unknown coef-
ficient p2 xð Þ, we write j ¼ 2 in Eq. (4.6)

Res2 x; sð Þ ¼ @aP2 x; sð Þ
@sa

� @2P2 x; sð Þ
@x2

þ s2P2 x; sð Þ;

where

P2 x; sð Þ ¼ ekx þ ekxk2
sa

C 1þ að Þ þ
s2a

C 1þ 2að Þ p2 xð Þ;

we know that Da
sRes2 x; 0ð Þ ¼ 0 and thus,

p2 xð Þ ¼ ekxk4; ð4:11Þ
and

P2 x; sð Þ ¼ ekx þ ekxk2
sa

C 1þ að Þ þ
s2a

C 1þ 2að Þ e
kxk4; ð4:12Þ

Similarly to obtain p3 xð Þ, we consider j ¼ 3 in Eq. (4.6),

Res3 x; sð Þ ¼ @aP3 x; sð Þ
@sa

� @2P3 x; sð Þ
@x2

þ s2P3 x; sð Þ;

where

P3 x; sð Þ ¼ ekx þ ekxk2
sa

C 1þ að Þ þ
s2a

C 1þ 2að Þ e
kxk4

þ s3a

C 1þ 3að Þ p3 xð Þ;

D2a
s Res3 x; 0ð Þ ¼ 0 and thus,

p3 xð Þ ¼ 1

2
ekx �2þ k6

� �
; ð4:13Þ

and

P3 x; sð Þ ¼ ekx þ ekxk2
sa

C 1þ að Þ þ
s2a

C 1þ 2að Þ e
kxk4

þ s3a

2C 1þ 3að Þ e
kx �2þ k6
� �

; ð4:14Þ

Repeating the above operation for j ¼ 4 we obtain p4 xð Þ,
p4 xð Þ ¼ 1

6
ekxk2 �8þ k6

� �
;

p5 xð Þ ¼ 1
24
ekxk4 �20þ k6

� �
;

ð4:15Þ

and

P5 x; sð Þ ¼ ekx þ ekxk2
sa

C 1þ að Þ þ
s2a

C 1þ 2að Þ e
kxk4

þ s3a

2C 1þ 3að Þ e
kx �2þ k6
� �

þ s4a

6C 1þ 4að Þ e
kxk2 �8þ k6

� �

þ s4a

24C 1þ 4að Þ e
kxk4 �20þ k6

� �
: ð4:16Þ



Fig. 2 The 2D graphics of the P5 x; sð Þ for different value of a in

Example 1 k ¼ �1; x ¼ 0:8ð Þ.
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4.2. Example 2.

Consider the following initial value problem

@aP x; sð Þ
@sa

¼ @2P x; sð Þ
@x2

� 2

x2
P x; sð Þ; ð4:17Þ

s > 0; 0 6 x 6 1; 0 < a 6 1;

by the initial condition

P0 x; sð Þ ¼ p0 xð Þ ¼ P x; 0ð Þ ¼ p xð Þ ¼ a

x
þ bx2;

To obtain p1 xð Þ, we consider j ¼ 1 in Eq. (4.6),

Res1 x; sð Þ ¼ @aP1 x; sð Þ
@sa

� @2P1 x; sð Þ
@x2

þ 2

x2
P1 x; sð Þ; ð4:18Þ

where

P1 x; sð Þ ¼ sa

C 1þ að Þ p1 xð Þ þ p xð Þ;

We know that Res1 x; 0ð Þ ¼ 0 and we obtain,

p1 xð Þ ¼ 0;

and

P1 x; sð Þ ¼ a

x
þ bx2; ð4:19Þ

Similarly, to find the second unknown coefficient p2 xð Þ, we
consider j ¼ 2 in Eq. (4.6)

Res2 x; sð Þ ¼ @aP2 x; sð Þ
@sa

� @2P2 x; sð Þ
@x2

þ 2

x2
P2 x; sð Þ; ð4:20Þ

where

P2 x; sð Þ ¼ a

x
þ bx2 þ s2a

C 1þ 2að Þ p2 xð Þ;

We know that Da
sRes2 x; 0ð Þ ¼ 0 and we obtain,

p2 xð Þ ¼ 0;

and

P2 x; sð Þ ¼ a

x
þ bx2:

Similarly to find p3 xð Þ, we consider j ¼ 3 in Eq. (4.6),

Res3 x; sð Þ ¼ @aP3 x; sð Þ
@sa

� @2P3 x; sð Þ
@x2

þ 2

x2
P3 x; sð Þ;

where
Fig. 1 (a) The 3D graphic for the P5 x; sð Þ in Example 1 k ¼ �1; a ¼ð
1 k ¼ �1; a ¼ 0:75; x ¼ 0:8ð Þ.
P3 x; sð Þ ¼ a

x
þ bx2 þ s3a

C 1þ 3að Þ p3 xð Þ;

D2a
s Res3 x; 0ð Þ ¼ 0 and thus,

p3 xð Þ ¼ 0;

and

P3 x; sð Þ ¼ a

x
þ bx2:

Repeating the above operation for j ¼ 4 we obtain p4 xð Þ,
p4 xð Þ ¼ 0;

p5 xð Þ ¼ 0;

and

P5 x; sð Þ ¼ a

x
þ bx2: ð4:21Þ
4.3. Example 3.

Consider the following initial value problem

@aP x; sð Þ
@sa

¼ @2P x; sð Þ
@x2

� 2

x

@P x; sð Þ
@x

� P x; sð Þ2; ð4:22Þ
s > 0; 0 6 x 6 1; 0 < a 6 2;

by the initial condition

P0 x; sð Þ ¼ p0 xð Þ ¼ P x; 0ð Þ ¼ p xð Þ ¼ xp:

If operations are performed as in the examples above, we
obtain that
0:75Þ, (b)2D graphics of Pn x; sð Þ for different value of n in Example
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p1 xð Þ ¼ x�2þp �3pþ p2 � x2þpð Þ;
p2 xð Þ ¼ x�4þp �10p3 þ p4 þ 2x4þ2p þ p2 31� 6x2þpð Þð

þ6p �5þ 2x2þpð ÞÞ;
p3 xð Þ ¼ � 1

2
x�6þp 840p� 1198p2 þ 651p3 � 169p4 þ 21p5ð

�p6 � 180px2þp þ 308p2x2þp � 164p3x2þp þ 28p4x2þp

þ54px4þ2p � 34p2x4þ2p þ 6x6þ3pÞ;
p4 xð Þ ¼ 1

6
x�8þp �45360pþ 77292p2 � 53964p3 þ 20089p4ð

�4320p5 þ 538p6 � 36p7 þ p8 þ 6720px2þp

�15520p2x2þp þ 14128p3x2þp � 6328p4x2þp

þ1392p5x2þp � 120p6x2þp � 1080px4þ2p þ 2492p2x4þ2p

þ404p4x4þ2p þ 288px6þ3p � 212p2x6þ3p þ 24x8þ4pÞ;
p5 xð Þ ¼ � 1

24
x�10þp 3991680p� 7663536p2 þ 6262740p3ð

�2870440p4 þ 815815p5 � 149513p6 þ 17710p7

�1310p8 þ 55p9 � p10 � 453600px2þp þ 1219824p2x2þp

�1409952p3x2þp þ 902384p4x2þp � 343504p5x2þp

þ77456p6x2þp � 9552p7x2þp þ 496p8x2þp

þ50400px4þ2p þ . . .Þ:

and the following solution is obtained;

P5 x; sð Þ ¼ xp þ x�2þp �3pþ p2 � x2þp
� � sa

C 1þ að Þ
þ s2a

C 1þ 2að Þx
�4þp �10p3 þ p4 þ 2x4þ2p

�

þp2 31� 6x2þp
� �þ 6p �5þ 2x2þp

� ��

þ s3a

C 1þ 3að Þ � 1

2
x�6þp 840p� 1198p2 þ 651p3

��

�169p4 þ 21p5 � p6 � 180px2þp þ 308p2x2þp

�164p3x2þp þ 28p4x2þp þ 54px4þ2p

�34p2x4þ2p þ 6x6þ3p

�

þ s4a

C 1þ 4að Þ
1

6
x�8þp �45360pþ 77292p2 � 53964p3

��

þ20089p4 � 4320p5 þ 538p6 � 36p7 þ p8 þ 6720px2þp

�15520p2x2þp þ 14128p3x2þp � 6328p4x2þp

þ1392p5x2þp � 120p6x2þp � 1080px4þ2p þ 2492p2x4þ2p

þ404p4x4þ2p þ 288px6þ3p � 212p2x6þ3p þ 24x8þ4p

�

þ s4a

C 1þ 4að Þ � 1

24
x�10þp 3991680p� 7663536p2

��

þ6262740p3 � 2870440p4 þ 815815p5 � 149513p6

þ 17710p7 � 1310p8 þ 55p9 � p10 � 453600px2þp

þ 1219824p2x2þp � 1409952p3x2þp þ 902384p4x2þp

� 343504p5x2þp þ 77456p6x2þp � 9552p7x2þp

þ 496p8x2þp þ 50400px4þ2p þ . . .

�
: ð4:23Þ
Fig. 3 The 3D graphic for the P5 x; sð Þ in Example 2

a ¼ 2:5; b ¼ 1:3ð Þ.
5. Physical reviews

In this section, we drawn some pictures to investigate the beha-
viour of the obtained solutions of Examples 1–3. We
researched how fractional derivative affects in time on the con-
centration of cancer cells.

In Fig. 1, we draw 2D and 3D graphics with 5-term of the

series solution for Example 1. We can see that good results are
obtained as the number of terms increases in serial solution.
The concentration of cancer cells decreases and finally arrives

zero over time.
In Fig. 2, we draw 2D graphics with 5-term of the series

solution for example 1. We can see that good results are

obtained as aapproaches 1 in serial solution. The concentra-
tion of cancer cells decreases and finally arrives zero over time.

In Fig. 3, we draw 3D graphic with 5-term of the series
solution for example 2. We can see the effect of afractional
order is not effective here but it is not right to say it is insignif-
icant. In Example 2, appropriate choices should be made in
specified factors and the initial case.

In Fig. 4, we draw 2D and 3D graphics with 5-term of the
series solution for Example 3. We can see that good results are
obtained as the number of terms increases in serial solution.

The concentration of cancer cells decreases and finally arrives
zero over time.

In Fig. 5, we draw 2D graphics with 5-term of the series

solution for example 3. We can see that good results are
obtained as aapproaches 2 in serial solution. In a very short
time, the concentration of cancer cells reduces for every
0 < a < 2 for the specified factors and the initial case. As time

goes by, the concentration of cancer cells increases for some a.
We can say that at a ¼ 0:9, the concentration of cancer cells
increase, as time goes by. However, at a ¼ 1:8, we cannot

say this. Therefore, a ¼ 1:8 can be recommended as the most
suitable case in time.

6. Final remarks

In this study, we have studied how fractional derivative will
affect as time goes by on the concentration of cancer cells.

The clear killing ratio of the cancer cells could also be based
on the concentration of the cells. We applied RPSM to obtain
numerical solutions for the different three cases: (1) K may be

constant, (2) K may be a function of time, (3) K may not be
dependent solely on time. We investigated these cases and we
obtained analytical solutions for these cases. The results indi-
cate that the killing rate K indicates that the appropriate

selected parameter and the starting condition are effective
for the concentration of cancer cells decreases and disappears
over time. RPSM provides almost accurate estimation of solu-

tions and is directly applicable without considering lineariza-



Fig. 5 The 2D graphics of the P5 x; sð Þ for different value of ain
Example 3 p ¼ 1:2;x ¼ 0:8ð Þ.

Fig. 4 (a) The 3D graphic for the P5 x; sð Þ in Example 3 a ¼ 0:75; p ¼ 1:2ð Þ, (b) 2D graphics of Pn x; sð Þ for different value of n in

Example 3 a ¼ 0:75; p ¼ 1:2;x ¼ 0:8ð Þ.
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tion, discretization or any other restrictive assumptions. We
say that this study is important, due to this method can be used

as an alternating to obtain analytic solutions of different types
of cancer tumor problems.

Declaration of Competing Interest

None.

References

[1] J.D. Murray, Mathematical Biology II: Spatial Models and

Biomedical Applications, Springer Verlag, New York, 2003.

[2] L. Wein, D. Koplow, Mathematical Modeling of Brain Cancer

to Identify Promising Combination Treatments, Preprint, D

Sloan School of Management, MIT, 1999.

[3] H. De Vladar, J. Gonza lez, Dynamic response of cancer under

the influence of immunological activity and therapy, J. Theor.

Biol. 227 (2004) 335–348.

[4] K. Diethelm, A fractional calculus based model for the

simulation of an outbreak of dengue fever, Nonlinear Dynam.

71 (2013) 613–619.

[5] A. D’Onofrio, A general framework for modeling tumorimmune

system competition and immunotherapy: mathematical analysis

and biomedical inferences, Physica D 208 (2005) 220–235.

[6] A. D’Onofrio, Metamodeling tumor–immune system

interaction, tumor evasion and immunotherapy, Math.

Comput. Model. 47 (2008) 614–637.

[7] A. Lin, A model of tumor and lymphocyte interactions, Discrete

Cont. Dyn.: B 4 (2004) 241–266.

[8] O. Sotolongo-Costa, L.M. Molina, D.R. Perez, et al, Behavior

of tumors under nonstationary therapy, Physica D 178 (2003)

242–253.

[9] L. Bolton, A.H. Cloot, S.W. Schoombie, J.P. Slabbert, A

proposed fractional-order Gompertz model and its application

to tumour growth data, Math. Meth. Biol. 32 (2015) 187–207.
[10] M.M.A. Khater, C. Park, D. Lu, R.A.M. Attia, Analytical,

semi-analytical, and numerical solutions for the Cahn-Allen

equation, Adv. Diff. Eqs. 2020 (2020) 9.

[11] M.M.A. Khater, R.A.M. Attia, D. Lu, Numerical solutions of

nonlinear fractional Wu–Zhang system for water surface versus

three approximate schemes, J. Ocean Eng. Sci. 4 (2019) 144–148.

[12] M.M.A. Khater et al, Analytical and semi-analytical ample

solutions of the higher-order nonlinear Schrödinger equation

with the non-Kerr nonlinear term, Results Phys. 16 (2020)

1030002.

[13] M.M.A. Khater, R.A.M. Attia, D. Baleanu, Abundant new

solutions of the transmission of nerve impulses of an excitable

system, Eur. Phys. J. Plus 135 (2020) 251.

[14] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and

Applications of Fractional Differential Equations, Elsevier,

Amsterdam, 2006.

[15] I. Podlubny, Fractional Differential Equation, Academic Press,

San Diego, 1999.

[16] J. Sabatier, O.P. Agrawal, J.A.T. Machado (Eds.), Advances in

Fractional Calculus: Theoretical Developments and

Applications in Physics and Engineering, Springer, Dordrecht,

2007.

[17] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals

and Derivatives: Theory and Applications, Gordon and Breach,

Switzerland, 1993.

[18] Z. Iqbal, N. Ahmed, D. Baleanu, et al, Positivity and

boundedness preserving numerical algorithm for the solution

of fractional nonlinear epidemic model of HIV/AIDS

transmission, Chaos Solitons Fract. 134 (2020) 109706.

[19] Z. Iqbal, N. Ahmed, Dumitru Baleanu, M. Rafiq, M.S. Iqbal,

M. Aziz-ur Rehman, Structure preserving computational

technique for fractional order Schnakenberg model, Comput.

Appl. Math. 39 (2020) 61.

[20] N. Ahmed, M. Fatima, D. Baleanu, K.S. Nisar, I. Khan, M.

Rafiq, M.A. Ur-Rahman, M.O. Ahmad, Numerical analysis of

susceptible exposed infected quarantined and vaccinated

(SEIQV) reaction-diffusion epidemic model, Front. Phys. 7

(2020) 220.

[21] N. Ahmed, M. Ali, M. Rafiq, I. Khan, K.S. Nisar, M.A.

Rehman, M.O. Ahmad, A numerical efficient splitting method

for the solution of two dimensional susceptible infected

recovered epidemic model of whooping cough dynamics,

Comp. Methods Prog. Biomed. 190 (2020) 105350.

[22] P. Veeresha, D.G. Prakasha, N. Magesh, M.M.

Nandeppanavar, A. John Christopher, Numerical simulation

for fractional Jaulent-Miodek equation associated with energy

dependent Schrödinger potential using two novel techniques,

Waves in Random and Complex Media (2019) 1745–5049.

[23] J. Singh, D. Kumar, D. Baleanu, S. Rathore, On the local

fractional wave equation in fractal strings, Math. Meth. Appl.

Sci. 42 (2019) 1588–1595.

[24] P. Veeresha, D.G. Prakasha, H.M. Baskonus, Novel simulations

to the time-fractional Fisher’s equation, Math. Sci. 13 (2019) 33–

42.

http://refhub.elsevier.com/S1110-0168(20)30162-9/h0005
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0005
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0005
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0015
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0015
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0015
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0020
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0020
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0020
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0025
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0025
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0025
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0030
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0030
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0030
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0035
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0035
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0040
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0040
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0040
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0045
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0045
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0045
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0050
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0050
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0050
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0055
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0055
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0055
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0060
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0060
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0060
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0060
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0065
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0065
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0065
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0070
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0070
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0070
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0070
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0075
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0075
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0075
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0080
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0080
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0080
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0080
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0080
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0080
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0080
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0085
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0085
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0085
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0085
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0090
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0090
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0090
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0090
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0095
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0095
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0095
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0095
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0100
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0100
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0100
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0100
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0100
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0105
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0105
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0105
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0105
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0105
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0110
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0110
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0110
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0110
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0110
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0115
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0115
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0115
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0120
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0120
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0120


1412 Z. Korpinar et al.
[25] Z. Yue, Y. Zou, New uniqueness results for fractional

differential equation with dependence on the first order

derivative, Adv. Difference Eqs. 2019 (2019) 38.

[26] Z. Korpinar, M. Inc, M. Bayram, Theory and application for

the system of fractional Burger equations with Mittag leffler

kernel, Appl. Math. Comput. 367 (2020) 124781.

[27] Z. Korpinar, M. Inc, D. Baleanu, M. Bayram, Theory and

application for the time fractional Gardner equation with

Mittag-Leffler kernel, J. Taibah Univ. Sci. 13 (2019) 813–819.

[28] Z. Korpinar, F. Tchier, M. Inc, L. Ragoub, M. Bayram, New

soliton solutions of the fractional Regularized Long Wave

Burger equation by means of conformable derivative, Results

Phys. 14 (2019) 102395.

[29] X.-J. Yang, D. Baleanu, W.-P. Zhong, Approximate solutions

for diffusion equations on cantor space-time, Proc. Roman.

Acad. 14 (2013) 127–133.

[30] R. Magın, X. Feng, D. Baleanu, Solving the Fractional Order

Bloch Equation, Concepts Magn. Reson. 34 (2009) 16–23.

[31] D. Baleanu, New applications of fractional variational

principles, Reports Math. Phys. 61 (2008) 199–206.

[32] O. Abu Arqub, Series solution of fuzzy differential equations

under strongly generalized differentiability, J. Adv. Res. Appl.

Math. 5 (2013) 31–52.

[33] E. Az-Zo’bi, Exact analytic solutions for nonlinear diffusion

equations via generalized residual power series method, Int. J.

Math. Comput. Sci. 14 (2019) 69–78.

[34] A. El-Ajou, O. Abu Arqub, Z. Al Zhour, S. Momani, New

results on fractional power series: theories and applications,

Entropy 15 (2013) 5305–5323.

[35] E.A. Az-Zo’bi, A. Yıldırım, W.A. Al Zoubi, The residual power

series method for the one-dimensional unsteady now of a van

der Waals gas, Physica A 517 (2019) 188–196.
[36] F. Tchier, M. Inc, Z. Korpinar, D. Baleanu, Solutions of the

time fractional reaction–diffusion equations with residual power

series method, Adv. Mech. Eng. 8 (2016) 1–10.

[37] A. El-Ajou, O. Abu Arqub, S. Momani, Approximate analytical

solution of the nonlinear fractional KdV-Burgers equation: a

new iterative algorithm, J. Comput. Phys. 293 (2015) 81–95.

[38] A. Freihet, S. Hasan, M. Al-Smadi, M. Gaith, S. Momani,

Construction of fractional power series solutions to fractional

stiff system using residual functions algorithm, Adv. Difference

Eqs. 2019 (2019) 95.

[39] M. Senol, M. Alquran, H.D. Kasmaei, On the comparison of

perturbation iteration algorithm and residual power series

method to solve fractional Zakharov-Kuznetsov equation,

Results Phys. 9 (2018) 321–327.

[40] P.K. Burgess, P.M. Kulesa, J.D. Murray, E.C. Alroid, The

interaction of growth rates and diffusion coefficients in a three

dimensional mathematical model of gliomas, J. Neuropath Exp.

Neur. 56 (1997) 704–713.

[41] S. Moyo, P.G.L. Leach, Symmetry methods applied to a

mathematical model of a tumour of the brain, Proc. Inst.

Math. NAS of Ukraine 50 (2004) 204–210.

[42] S.M. Ali, A.H. Bokhari, M. Yousuf, F.D. Zaman, A spherically

symmetric model for the tumor growth, J. Appl. Math. 726837

(2014).

[43] A.H. Bokhari, A.H. Kara, F.D. Zaman, On the solutions and

conservation laws of the model for tumor growth in the brain, J.

Math. Anal. Appl. 350 (2009) 256–261.

[44] O.S. Iyiola, F.D. Zaman, A fractional diffusion equation model

for cancer tumor, AIP Adv. 4 (2014) 107121.

[45] M. Caputo, Diffusion of fluids in porous media with memory,

Geothermics 28 (1999) 113–130.

http://refhub.elsevier.com/S1110-0168(20)30162-9/h0125
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0125
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0125
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0130
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0130
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0130
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0135
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0135
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0135
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0140
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0140
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0140
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0140
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0145
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0145
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0145
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0150
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0150
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0155
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0155
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0160
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0160
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0160
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0165
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0165
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0165
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0175
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0175
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0175
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0180
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0180
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0180
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0185
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0185
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0185
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0190
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0190
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0190
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0190
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0195
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0195
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0195
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0195
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0200
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0200
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0200
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0200
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0205
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0205
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0205
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0210
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0210
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0210
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0215
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0215
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0215
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0220
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0220
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0225
http://refhub.elsevier.com/S1110-0168(20)30162-9/h0225

	Residual power series algorithm for fractional cancer tumor models
	1 Introduction
	2 Some necessary definitions and results from fractional calculus theory
	3 Convergence of RPSM algorithm
	4 Applications of RPSM algorithm
	4.1 Example 1.
	4.2 Example 2.
	4.3 Example 3.

	5 Physical reviews
	6 Final remarks
	Declaration of Competing Interest
	References


