
axioms

Article

Existence of Solutions for Nonlinear Fractional
Differential Equations and Inclusions Depending
on Lower-Order Fractional Derivatives

Subramanian Muthaiah 1 and Dumitru Baleanu 2,3*
1 Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science,

Coimbatore 641020, India; subramanianmcbe@gmail.com
2 Department of Mathematics, Cankaya University, Balgat 06530, Ankara, Turkey;
3 Institute of Space Science, 077125 Magurele-Bucharest, Romania
* Correspondence: dumitru@cankaya.edu.tr

Received: 23 March 2020; Accepted: 13 April 2020; Published: 25 April 2020
����������
�������

Abstract: This article deals with the solutions of the existence and uniqueness for a new class
of boundary value problems (BVPs) involving nonlinear fractional differential equations (FDEs),
inclusions, and boundary conditions involving the generalized fractional integral. The nonlinearity
relies on the unknown function and its fractional derivatives in the lower order. We use fixed-point
theorems with single-valued and multi-valued maps to obtain the desired results, through the support
of illustrations, the main results are well explained. We also address some variants of the problem.

Keywords: single-valued map; multi-valued map; Caputo derivative; generalized Riemann–
Liouville integral

1. Introduction

The subject of the fractional boundary value problem (BVP) has been intensively discussed in
recent years by several researchers and in the literature, for example [1–19] and the references cited
therein, where a variety of findings relevant to both the theoretical and implementation aspects of the
topic can be found. It has improved the classic modeling of many significant materials and processes
with the use of fractional calculus tools as a fractional-order operator can take the history of the
phenomena involved into account. The extensive applications of fractional calculus can easily be seen
in many engineering and technical sciences such as biology, environmental problems, aerodynamics,
electron-analytic chemistry, etc. We direct the viewer to the article [20–28] and the references listed in it
for examples and information. Recently, some authors analyzed the problems of fractional differential
equations and inclusions. Ahmad et al. discussed in [29] the fractional differential equations (FDEs)
and inclusions with nonlocal Erdelyi–Kober integral conditions:

CDq
x(t) = f (t, x(t)), τ ∈ [0, T] := K,

x(0) = g(x), x(T) = α J γ,δ
η x(ξ).

and:

CDq
x(t) ∈ f (t, x(t)), τ ∈ [0, T] := K,

x(0) = g(x), x(T) = α J γ,δ
η x(ξ).

Ntouyas et al. [30] investigated the existence of solutions for fractional differential inclusion.
Salem et al. [31] studied the FDEs and inclusions, under integral-multipoint conditions.

Axioms 2020, 9, 44; doi:10.3390/axioms9020044 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
https://orcid.org/0000-0001-5281-0935
https://orcid.org/0000-0002-0286-7244
http://dx.doi.org/10.3390/axioms9020044
http://www.mdpi.com/journal/axioms
https://www.mdpi.com/2075-1680/9/2/44?type=check_update&version=2


Axioms 2020, 9, 44 2 of 17

In this article, we examine a new BVP of FDEs and inclusions:

CDς
y(τ) = g(τ, y(τ), CD$

y(τ), CD$+1
y(τ)), τ ∈ [0, T] := K, (1)

CDς
y(τ) ∈ G(τ, y(τ), CD$

y(τ), CD$+1
y(τ)), τ ∈ [0, T] := K, (2)

augmented with the boundary conditions given by:

y(0) = 0, y
′
(0) = 0,

∫ T

0
y(σ)dσ = ξ ρJ ωy(ζ), y

′
(T) = 0, (3)

where CD(·) denotes the Caputo fractional derivatives (CFDs) of order (·), 3 < ς ≤ 4, 0 < $ ≤ 1, ρJ ω

denote the generalized Riemann–Liouville fractional integral (GRLFI) of order 0 < ω < 1, ρ > 0,
g : K × R3 → R is a continuous function, G : K × R3 → T (R) is a multivalued map, T (R) is all
nonempty subsets of R, and 0 < ζ < T, ξ is a real constant.

For 0 < $ ≤ 1, let Y = {y : y, CD$y, CD$+1y ∈ C(K,R)} denote the [0, T] → R continuous

function space of Banach endowed with the ‖y‖∗ = ‖y‖ + ‖CD$y‖ + ‖CD$+1y‖ = sup
τ∈K

{
|y(τ)| +

|CD$
y(τ)| + |CD$+1

y(τ)|} norm. For a normed space (Y , ‖ · ‖), let Tcld(Y) = {Z ∈ T (Y) :
Y is closed}, Tbd(Y) = {Z ∈ T (Y) : Y is bounded}, Tcpt(Y) = {Z ∈ T (Y) : Y is compact}, and
Tcpt,cx(Y) = {Z ∈ T (Y) : Y is compact and convex}. Define the set of choices G by each C(K,R),

WG,y = {φ : L1(K,R) : φ(τ) ∈ G(τ, y(τ), CD$
y(τ), CD$+1

y(τ)) for a.e. τ ∈ K}.

The remaining part of the article is structured accordingly. We recall some definitions in Section 2
and establish a lemma regarding the linear problem variant (1)–(3). Sections 3 and 4 include the
consequences of existence. We emphasize that the techniques used in these sections in fixed-point
theory are the standard. Finally, we glance at a new problem similar to (1)–(3) and discuss the approach
to solving them.

2. Preliminaries

Here, we are reminded of some basic concepts in the fractional calculus [23,32,33] and of the
results that we need to accomplish during the upcoming analysis.

Definition 1. A continuous function g : (0, ∞)→ R is defined by the RLFI of order ς > 0:

Iςg(τ) =
1

Γ(ς)

∫ τ

0
(τ − σ)ς−1g(σ)dσ,

provided the right-hand side (RHS) is point-wise defined on (0, ∞).

Definition 2. The CFD of order ς for a function g : [0, ∞)→ R can be written as:

CDς
g(τ) =

1
Γ(n− ς)

(τ − σ)n−ς−1gn(σ)dσ, n− 1 < ς < n, n = [ς] + 1,

where [ς] denotes the integer part of the real number [ς].

Definition 3. The GRLFI of order ς > 0 and ρ > 0, of a function g(τ), ∀ 0 < τ < ∞, is defined as:

ρIςg(τ) =
ρ1−ς

Γ(ς)

∫ τ

0

σρ−1

(τρ − σρ)1−ς
dσ,

provided the RHS is point-wise defined on (0, ∞).
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Definition 4. A multi-valued map G : K×R3 → T (R) is Caratheodory if:

• (i) τ 7−→ G(τ, y, z, w) is measurable for each y, z, w ∈ R;
• (ii) (y, z, w) 7−→ G(τ, y, z, w) is upper semicontinuous (USC) ∀ τ ∈ K; In addition, a G feature of

Caratheodory is called L1-Caratheodory, if:
• (iii) for each α > 0, there exists Λα ∈ L1(K,R+) such that ‖G(τ, y, z, w)‖ = sup{|φ| : φ ∈

G(τ, y, z, w) ≤ Λα(τ)} ∀ ‖y‖, ‖z‖, ‖w‖ ≤ α and for almost everywhere τ ∈ K.

Lemma 1. Let ĝ ∈ C[0, T]. Then, the unique solution of the linear FDE:

CDς
y(τ) = ĝ(τ), τ ∈ K, (4)

subject to the boundary condition (3) is given by:

y(τ) = Iς ĝ(τ) + κ1(τ)
[
ξρJ ωIς ĝ(ζ)−

∫ T

0
Iς ĝ(σ)dσ

]
+ κ2(τ)Iς−1 ĝ(τ), (5)

where:

κ1(τ) =
τ23T2 − 2Tτ3

ϑ
, κ2(τ) =

τ2ν2 − ν1τ3

ϑ
, ϑ = 3T2ν1 − 2Tν2, (6)

ν1 =
T3

3
− ξζρω+2

ρω

Γ( 2
ρ + 1)

Γ( 2
ρ + ω + 1)

, ν2 =
T4

4
− ξζρω+3

ρω

Γ( 3
ρ + 1)

Γ( 3
ρ + ω + 1)

. (7)

Definition 5. A multi-valued operator U : Y → Tcld(Y) is called:

(a) ι-Lipschitz iff there exists ι > 0 such that Ad(U (y),U (z)) ≤ ιd(x, y) for each y, z ∈ Y and
(b) a contraction iff it is ι-Lipschitz with ι > 1.

Definition 6. A function y ∈ C(K,R) is said to be a solution of the BVP y(0) = 0, y
′
(0) =

0,
∫ T

0 y(σ)dσ = ξ ρJ ωy(ζ), y
′
(T) = 0, and there exists a function φ ∈ WG,y such that φ(τ) ∈

G(τ, y(τ), CD$y(τ), CD$+1y(τ)), and:

y(τ) = Iςφ(σ)(τ) + κ1(τ)
[
ξρJ ωIςφ(σ)(ζ)−

∫ T

0
Iςφ(σ)dσ

]
+ κ2(τ)Iς−1φ(σ)(τ).

3. Single-Valued Maps for the Problem (1) and (3)

With respect to Lemma 1, the problem (1) and (3) is turned into a fixed point problem equivalent to:

y = Υy, (8)

where Υ : Y → Y is defined by:

(Υy)(τ) = Iςg(σ, y(σ), CD$
y(σ), CD$+1

y(σ))(τ)

+ κ1(τ)
[
ξρJ ωIςg(σ, y(σ), CD$

y(σ), CD$+1
y(σ))(ζ)

−
∫ T

0
Iςg(σ, y(σ), CD$

y(σ), CD$+1
y(σ))dσ

]
+ κ2(τ)Iς−1g(σ, y(σ), CD$

y(σ), CD$+1
y(σ))(τ). (9)
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We represent it as suitable for computing:

ψ1 =
Tς

Γ(ς + 1)
+

κ̃2Tς−1

Γ(ς)
+ κ̃1

(
ξζς+ρω

ρωΓ(ς + 1)

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

Γ(ς + 2)

)
, (10)

ψ2 =
Tς−$

Γ(ς− $ + 1)
+

ϕ1

Γ(ς + 1)

(
ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)
+

ϕ2Tς−1

Γ(ς)
, (11)

ψ3 =
Tς−$−1

Γ(ς− $)
+

δ1

Γ(ς + 1)

(
ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)
+

δ2Tς−1

Γ(ς)
, (12)

ψ̂1 = ψ1 −
Tς

Γ(ς + 1)
, ψ̂2 = ψ2 −

Tς−$

Γ(ς− $ + 1)
, ψ̂3 = ψ3 −

Tς−$−1

Γ(ς− $)
. (13)

Theorem 1. Assume that there exists λ ∈ C(K,R+) such that |g(τ, y(τ), CD$y(τ), CD$+1y(τ))| ≤ λ(τ)

for τ ∈ K with max
τ∈K
|λ(τ) = ‖λ‖. The problem (1) and (3) has at least one solution on K.

Proof. First, we demonstrate that operator Υ is completely continuous. LetH ⊂ Y be a bounded set.
Then, use the premise |g(τ, y(τ), CD$y(τ), CD$+1y(τ))| ≤ λ(τ), ∀ y ∈ H; we get:

|(Υy)(τ)| ≤ Iςλ(σ)(τ) + κ1(τ)
[
ξρJ ωIςλ(σ)(ζ)−

∫ T

0
Iςλ(σ)dσ

]
+ κ2(τ)Iς−1λ(σ)(τ),

which yields when taking the norm for τ ∈ K,

‖Υy‖ ≤ ‖λ‖
Γ(ς + 1)

[
(κ̃2ςTς−1 + Tς) + κ̃1

(
ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)]
= P1,

where max
τ∈K
|κi(τ)| = κ̃i, i = 1, 2 κi’s are given by (6). Similarly, we can obtain:

‖CD$
Υy‖ ≤ ‖λ‖

[
Tς−$

Γ(ς− $ + 1)
+

ϕ1

Γ(ς + 1)

(
ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)
+

ϕ2Tς−1

Γ(ς)

]
= P2,

where ϕi = max
τ∈K
|ϕi(τ), i = 1, 2 and:

ϕ1(τ) =
CD$

κ1(τ) =
6T2τ2−$

ϑΓ(3− $)
− 12Tτ3−$

ϑΓ(4− $)
, ϕ2(τ) = CD$

κ2(τ) =
2ν2τ2−$

ϑΓ(3− $)
− 6ν1τ3−$

ϑΓ(4− $)
.

Likewise, we can obtain:

‖CD$+1
Υy‖ ≤ ‖λ‖

[
Tς−$−1

Γ(ς− $)
+

δ1

Γ(ς + 1)

(
ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)
+

δ2Tς−1

Γ(ς)

]
= P3,

where δi = max
τ∈K
|ϑi(τ), i = 1, 2 and:

δ1(τ) =
CD$+1

κ1(τ) =
6T2τ1−$

ϑΓ(2− $)
− 12Tτ2−$

ϑΓ(3− $)
, δ2(τ) = CD$+1

κ2(τ) =
2ν2τ1−$

ϑΓ(2− $)
− 6ν1τ2−$

ϑΓ(3− $)
.
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For 0 < τ1 < τ2 < T and ∀ y ∈ H, we have:

|(Υy)(τ2)− (Υy)(τ1)| ≤ ‖λ‖
{[
|τς

2 − τ
ς
1 |+ 2(τ2 − τ1)

ς

Γ(ς + 1)

]
+

∣∣∣∣∣
(
(τ2

2 − τ2
1 )ν2 − ν1(τ

3
2 − τ3

1 )

ϑ

)
Tς−1

Γ(ς)

∣∣∣∣∣
+

∣∣∣∣∣ (τ2
2 − τ2

1 )3T2 − 2T(τ3
2 − τ3

1 )

ϑΓ(ς + 1)

×
(

ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)∣∣∣∣∣
}

. (14)

Similarly, we can accomplish:

|(CD$
Υy)(τ2)− (CD$

Υy)(τ1)| ≤ ‖λ‖
{[
|τς−$

2 − τ
ς−$
1 |+ 2(τ2 − τ1)

ς−$

Γ(ς− $ + 1)

]

+

∣∣∣∣∣
(

2ν2(τ
2−$
2 − τ

2−$
1 )

ϑΓ(3− $)
−

6ν1(τ
3−$
2 − τ

3−$
1 )

ϑΓ(4− $)

)
Tς−1

Γ(ς)

∣∣∣∣∣
+

∣∣∣∣∣6T2(τ
2−$
2 − τ

2−$
1 )

ϑΓ(3− $)
−

12T(τ3−$
2 − τ

3−$
1 )

ϑΓ(4− $)

×
(

ξζς+ρω

ρωΓ(ς + 1)

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

Γ(ς + 2)

)∣∣∣∣∣
}

. (15)

Likewise, we obtain:

|(CD$+1
Υy)(τ2)− (CD$+1

Υy)(τ1)| ≤ ‖λ‖
{[
|τς−$−1

2 − τ
ς−$−1
1 |+ 2(τ2 − τ1)

ς−$−1

Γ(ς− $)

]

+

∣∣∣∣∣
(

2ν2(τ
1−$
2 − τ

1−$
1 )

ϑΓ(2− $)
−

6ν1(τ
2−$
2 − τ

2−$
1 )

ϑΓ(3− $)

)
Tς−1

Γ(ς)

∣∣∣∣∣
+

∣∣∣∣∣6T2(τ
1−$
2 − τ

1−$
1 )

ϑΓ(2− $)
−

12T(τ2−$
2 − τ

2−$
1 )

ϑΓ(3− $)

×
(

ξζς+ρω

ρωΓ(ς + 1)

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

Γ(ς + 2)

)∣∣∣∣∣
}

. (16)

The RHS of the inequalities (14)–(16) tends to zero as τ2 − τ1 → 0 independently of y. Thus, Υ is
equicontinuous. Therefore, by the lemma (see Lemma 1.2 [21]), {Υy : y ∈ H}, {CD$Υy : y ∈ H},
and {CD$+1Υy : y ∈ H} are relatively compact in C(K). Hence, Υ(H) is a relatively compact subset of
Y . Next, we take the set V = {y ∈ Y|y = µΥy, 0 < µ < 1}, into consideration and prove it is bounded.
Let y ∈ V . Then, y = µΥy, 0 < µ < 1. For any τ ∈ K, it follows from y(τ) = µ|Υy(τ)| that:

‖Υy‖ ≤ ‖λ‖
Γ(ς + 1)

[
(κ̃2ςTς−1 + Tς) + κ̃1

(
ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)]

This indicates that the set V is bounded. Thus, operator Υ has at least one fixed point by Theorem (see
Theorem [20]) The problem (1) and (3) has at least one solution on K.

Theorem 2. Let g : K×R3 → R be a continuous function that holds the following conditions:

(G1) |g(τ, y1, y2, y3) − g(τ, z1, z2, z3)| ≤ P(|y1 − z1| + |y2 − z2| + |y3 − z3|), ∀ τ ∈ K,
y1, z1, y2, z2, y3, z3 ∈ R, P > 0.
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(G2) |g(τ, y(τ), CD$y(τ), CD$+1y(τ))| ≤ Λ(τ) for τ ∈ K and Λ ∈ C(K,R+) with max
τ∈K
|Λ(τ)| = ‖Λ‖.

(G3) P ψ̂ < 1, where ψ̂ = max{ψ̂1, ψ̂2, ψ̂3} and ψ̂1, ψ̂2 and ψ̂3 are given by (13). The problem (1) and (3) has
at least one solution on K.

Proof. Define Bε = {y ∈ Y : ‖y‖ ≤ ε}, where ε ≥ ‖Λ‖ψ with:

ψ = max{ψ1, ψ2, ψ3}, (17)

where ψ1, ψ2, and ψ3 are defined by (10)–(12), respectively. In order to demonstrate the premise of
Theorem (see Theorem 4.4.1 [20]), the operator Υ provided by (9) is divided into Υ = Υ1 + Υ2 by Bε.

(Υ1y)(τ) = Iςg(σ, y(σ), CD$
y(σ), CD$+1

y(σ))(τ)

(Υ2y)(τ) = |κ1(τ)|
[
ξρJ ωIςg(σ, y(σ), CD$

y(σ), CD$+1
y(σ))(ζ)

−
∫ T

0
Iςg(σ, y(σ), CD$

y(σ), CD$+1
y(σ))dσ

]
+ |κ2(τ)|Iς−1g(σ, y(σ), CD$

y(σ), CD$+1
y(σ))(τ).

It can be easily shown that for y, z ∈ Bε, and using (17), ‖(Υ1y) + (Υ2z)‖ ≤ ‖Λ‖ψ ≤ ε, ‖(CD$Υ1y) +
(CD$Υ2z)‖ ≤ ‖Λ‖ψ ≤ ε and ‖(CD$+1Υ1y) + (CD$+1Υ2z)‖ ≤ ‖Λ‖ψ ≤ ε, that means Υ1y + Υ2z ∈
Bε. Next, we are going to show that Υ2 is a contraction. Let y, z ∈ R, τ ∈ K. Then, we use the
statement (G1),

‖Υ2y− Υ2z‖ ≤ P‖y− z‖ sup
τ∈K

[
|κ1(τ)|

[
ξρJ ωIς(1)(ζ) +

∫ T

0
Iς(1)dσ

]
+ |κ2(τ)|Iς−1(1)(τ)

]
≤ P ψ̂1‖y− z‖ ≤ P ψ̂‖y− z‖.

Similarly,

‖CD$
Υ2y− CD$

Υ2z‖ ≤ P ψ̂2‖y− z‖ ≤ P ψ̂‖y− z‖.

Likewise,

‖CD$+1
Υ2y− CD$+1

Υ2z‖ ≤ P ψ̂3‖y− z‖ ≤ P ψ̂‖y− z‖.

This follows from the observation (G3) that the Υ2 operator is a contraction. Next we are going to
show the Υ1 is compact and continuous. The continuity of g means operator Υ1 is continuous. Υ1 is

uniformly bounded on Bε as ‖Υ1y‖ ≤ ‖Λ‖Tς

Γ(ς+1) , ‖CD$Υ1y‖ ≤ ‖Λ‖Tς−$

Γ(ς−$+1) and ‖CD$+1Υ1y‖ ≤ ‖Λ‖Tς−$−1

Γ(ς−$)
.

Furthermore, with sup
(τ,y,z,w)∈K×Bε

|g(τ, y, z, w)| = ĝ < ∞ and τ2 > τ1, we have:

|(Υ1y)(τ2)− (Υ1y)(τ1)| ≤
[

ĝ|τς
2 − τ

ς
1 |+ 2(τ2 − τ1)

ς

Γ(ς + 1)

]
. (18)

Similarly, we can obtain:

|(CD$
Υ1y)(τ2)− (CD$

Υ1y)(τ1)| ≤
[

ĝ|τς−$
2 − τ

ς−$
1 |+ 2(τ2 − τ1)

ς−$

Γ(ς− $ + 1)

]
. (19)
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Likewise, we obtain:

|(CD$+1
Υ1y)(τ2)− (CD$+1

Υ1y)(τ1)| ≤
[

ĝ|τς−$−1
2 − τ

ς−$−1
1 |+ 2(τ2 − τ1)

ς−$−1

Γ(ς− $)

]
. (20)

The RHS of the inequalities (18)–(20) tend to zero as τ2 − τ1 → 0 independently of y. Thus, Υ1 is
relatively compact on Bε. Hence, by the lemma (see Lemma 1.2 [21]), Υ1 is compact on Bε. Therefore,
all the claims of the theorem (see Theorem 4.4.1 [20]) are fulfilled. Therefore, at least one solution exists
(1) and (3) for the problem on K.

Theorem 3. Assume that g : K×R3 → R is a continuous function satisfying condition
|g(τ, y1, y2, y3)− g(τ, z1, z2, z3)| ≤ Q(|y1− z1|+ |y2− z2|+ |y3− z3|), ∀ τ ∈ K, y1, z1, y2, z2, y3, z3 ∈ R,
with Q < 1

ψ , where ψ = max{ψ1, ψ2, ψ3}, and ψ1, ψ2 and ψ3 are respectively given by (10)–(12). Therefore, a
unique solution exists (1) and (3) for the problem on K.

Proof. We demonstrate that ΥBε ⊂ Bε, where Υ is described by (9), Bε = {y ∈ Y : ‖y‖ ≤ ε} with
ε ≥ Mψ

1−Qψ ,M = sup
τ∈K
|g(τ, 0, 0, 0)|. For y ∈ Bε, τ ∈ K, we have that:

|g(τ, y, z, w)| = |g(τ, y, z, w)− g(τ, 0, 0, 0) + g(τ, 0, 0, 0)|
≤ |g(τ, y, z, w)− g(τ, 0, 0, 0)|+ |g(τ, 0, 0, 0)| ≤ Q(|y|+ |z|+ |w|) +M
≤ Q‖y‖+M≤ Qε +M,

which yields along with the given conditions:

‖Υy‖ ≤
[

Tς

Γ(ς + 1)
+

κ̃2Tς−1

Γ(ς)
+

κ̃1

Γ(ς + 1)

(
ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)]
≤ (Qε +M)ψ1 ≤ (Qε +M)ψ ≤ ε.

Similarly, we can obtain:

‖CD$
Υy‖ ≤ (Qε +M)ψ2 ≤ (Qε +M)ψ ≤ ε.

Likewise, we obtain:

‖CD$+1
Υy‖ ≤ (Qε +M)ψ3 ≤ (Qε +M)ψ ≤ ε.

Therefore, we get Υy ∈ Bε, which means ΥBε ⊂ Bε. Then, for y, z ∈ Y , for each τ ∈ K, we have:

‖Υy− Υz‖ ≤ Q‖y− z‖ sup
τ∈K

{
Iς(1)(τ) + κ1(τ)

[
ξρJ ωIς(1)(ζ)−

∫ T

0
Iς(1)dσ

]
+ κ2(τ)Iς−1(1)(τ)

}
≤ Qψ1‖y− z‖ ≤ Qψ‖y− z‖.

Similarly,

‖CD$
Υ2y− CD$

Υ2z‖ ≤ Qψ2‖y− z‖ ≤ Qψ‖y− z‖.

Likewise,

‖CD$+1
Υ2y− CD$+1

Υ2z‖ ≤ Qψ3‖y− z‖ ≤ Qψ‖y− z‖.
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Therefore, the operator Υ is a contraction in the light of conditionQ < 1
ψ . Thus, Theorem (see Theorem

1.2.2 [20]) follows that the problem (1) and (3) has a unique solution on K.

4. Multi-Valued Maps for the Problem (2) and (3)

Theorem 4. Assume that:
(F1) G : K×R3 → T (R) is L1-Caratheodory and has nonempty compact and convex values;
(F2) there exists a function γ ∈ C(K,R), and a nondecreasing, sub-homogeneous function ∆ : R+ → R+

such that (i.e., ∆(βy) ≤ β∆(y) ∀ β ≥ 1 and y ∈ R+):

‖G(τ, y)‖T := sup{|q| : q ∈ G(τ, y, z, w)} ≤ γ(τ)∆(‖y‖+ ‖z‖+ ‖w‖)

for each (τ, y, z, w) ∈ K ×R3;
(F3) there exists a constant E > 0 such that:

E
‖γ‖ψ∆(E) > 1,

Then, there is at least one solution for the BVP (2) and (3) on K.

Proof. Define an operator ∆G : C(K,R)→ T (C(K,R)) by ∆G(y) = {u ∈ C(K,R) : u(τ) = S(y)(τ)}
where:

S(y)(τ) =
{
Iςφ(σ)(τ) + κ1(τ)

[
ξρJ ωIςφ(σ)(ζ)−

∫ T

0
Iςφ(σ)dσ

]
+ κ2(τ)Iς−1φ(σ)(τ), φ ∈ WG,y.

We will prove that ∆G follows the theorem’s assumptions (see 8. Theorem 8.5 [22]). The proof requires
multiple measures. First, we demonstrate that for every C(K,R), ∆G is convex. This phase is evident
as WG,y is convex, so we skip the proof. Next, we show that ∆G maps in C(K,R) bounded sets to
bound sets. Let Bε = {y ∈ C(K,R) : ‖y‖ ≤ ε} be a bounded ball in C(K,R) for a positive number ε.
Then, for each u ∈ ∆G(y), y ∈ Bε, there exists φ ∈ WG,y such that:

S(y)(τ) = Iςφ(σ)(τ) + κ1(τ)
[
ξρJ ωIςφ(σ)(ζ)−

∫ T

0
Iςφ(σ)dσ

]
+ κ2(τ)Iς−1φ(σ)(τ), φ ∈ WG,y.

Then, we have for τ ∈ K:

|u(τ)| ≤ 1
Γ(ς + 1)

[
(κ̃2ςTς−1 + Tς) + κ̃1

(
ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)]
‖γ‖∆(‖y‖Y )

≤ ψ1‖γ‖∆(‖y‖Y ),

which yields on the norm for τ ∈ K,

‖u‖ ≤ ψ1‖γ‖∆(‖y‖Y ) ≤ ψ1‖γ‖∆(ε).

Similarly, we have:

‖CD$
u(τ)‖ ≤

[
Tς−$

Γ(ς− $ + 1)
+

ϕ1

Γ(ς + 1)

(
ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)
+

ϕ2Tς−1

Γ(ς)

]
‖γ‖∆(‖y‖Y )

≤ ψ2‖γ‖∆(‖y‖Y ),
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Likewise, we have:

‖CD$+1
u(τ)‖ ≤ ‖λ‖

[
Tς−$−1

Γ(ς− $)
+

δ1

Γ(ς + 1)

(
ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)
+

δ2Tς−1

Γ(ς)

]
‖γ‖∆(‖y‖Y )

≤ ψ3‖γ‖∆(‖y‖Y ).

As u ∈ ∆G(y), y ∈ Bε is arbitrary, so we have:

‖∆G(y)‖Y = ‖∆G(y)‖+ ‖CD$
∆G(y)‖+ ‖CD$+1

∆G(y)‖
≤ ‖γ‖∆(ε)(ψ).

Next, we demonstrate that ∆G maps bounded into equicontinuous sets of C(K,R). Let τ1, τ2 ∈ K with
τ2 > τ1 and y ∈ Bε. For each u ∈ ∆G(y), we obtain:

|u(τ2)− u(τ1)| ≤
{[
|τς

2 − τ
ς
1 |+ 2(τ2 − τ1)

ς

Γ(ς + 1)

]
+

∣∣∣∣∣
(
(τ2

2 − τ2
1 )ν2 − ν1(τ

3
2 − τ3

1 )

ϑ

)
Tς−1

Γ(ς)

∣∣∣∣∣
+

∣∣∣∣∣ (τ2
2 − τ2

1 )3T2 − 2T(τ3
2 − τ3

1 )

ϑΓ(ς + 1)

×
(

ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)∣∣∣∣∣
}
‖γ‖∆(ε).

Similarly, we can obtain:

|CD$
u(τ2)− CD$

u(τ1)| ≤
{[
|τς−$

2 − τ
ς−$
1 |+ 2(τ2 − τ1)

ς−$

Γ(ς− $ + 1)

]

+

∣∣∣∣∣
(

2ν2(τ
2−$
2 − τ

2−$
1 )

ϑΓ(3− $)
−

6ν1(τ
3−$
2 − τ

3−$
1 )

ϑΓ(4− $)

)
Tς−1

Γ(ς)

∣∣∣∣∣
+

∣∣∣∣∣6T2(τ
2−$
2 − τ

2−$
1 )

ϑΓ(3− $)
−

12T(τ3−$
2 − τ

3−$
1 )

ϑΓ(4− $)

×
(

ξζς+ρω

ρωΓ(ς + 1)

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

Γ(ς + 2)

)∣∣∣∣∣
}
‖γ‖∆(ε).

Likewise, we obtain:

|CD$+1
u(τ2)− CD$+1

u(τ1)| ≤
{[
|τς−$−1

2 − τ
ς−$−1
1 |+ 2(τ2 − τ1)

ς−$−1

Γ(ς− $)

]

+

∣∣∣∣∣
(

2ν2(τ
1−$
2 − τ

1−$
1 )

ϑΓ(2− $)
−

6ν1(τ
2−$
2 − τ

2−$
1 )

ϑΓ(3− $)

)
Tς−1

Γ(ς)

∣∣∣∣∣
+

∣∣∣∣∣6T2(τ
1−$
2 − τ

1−$
1 )

ϑΓ(2− $)
−

12T(τ2−$
2 − τ

2−$
1 )

ϑΓ(3− $)

×
(

ξζς+ρω

ρωΓ(ς + 1)

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

Γ(ς + 2)

)∣∣∣∣∣
}
‖γ‖∆(ε).

Clearly, the RHS of the above-mentioned inequalities tends to be zero as τ2 − τ1 → 0. As ∆G fulfills
the premises, the lemma (see Lemma 1.2 [21]) follows that ∆G : C(K,R)→ T (C(K,R)) is completely
continuous. We demonstrate that the ∆G is USC at the end. It is enough to prove that ∆G has a closed
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graph in the lemma (see Proposition 1.2 [32]). Let yn → y∗, un ∈ ∆G(yn), and un → u∗. Then, we have
to prove that u∗ ∈ ∆G(y∗); there exists φn ∈ WG,yn such that for each τ ∈ K,

un(τ) = Iςφn(σ)(τ) + κ1(τ)
[
ξρJ ωIςφn(σ)(ζ)−

∫ T

0
Iςφn(σ)dσ

]
+ κ2(τ)Iς−1φn(σ)(τ).

Therefore, it is enough to prove that φ∗ ∈ WG,y∗ exists so that for each τ ∈ K,

u∗(τ) = Iςφ∗(σ)(τ) + κ1(τ)
[
ξρJ ωIςφ∗(σ)(ζ)−

∫ T

0
Iςφ∗(σ)dσ

]
+ κ2(τ)Iς−1φ∗(σ)(τ).

Consider the linear operator Ψ : L1(K,R)→ C(K,R) provided by:

φ 7→ Ψ(φ])(τ) = Iςφ(σ)(τ) + κ1(τ)
[
ξρJ ωIςφ(σ)(ζ)−

∫ T

0
Iςφ(σ)dσ

]
+ κ2(τ)Iς−1φ(σ)(τ).

Observe that:

‖un(τ)− un(τ)‖ = ‖Iς(φn − φ∗)(σ)(τ) + κ1(τ)
[
ξρJ ωIς(φn − φ∗)(σ)(ζ)

−
∫ T

0
Iς(φn − φ∗)(σ)dσ

]
+ κ2(τ)Iς−1(φn − φ∗)(σ)(τ)‖ → 0 as n→ ∞.

The lemma (see Lemma [34]) follows that Ψ ◦WG is a closed graph operator. We also have un(τ) ∈
Ψ(WG,yn). Therefore, since yn → y∗, we have:

u∗(τ) = Iςφ∗(σ)(τ) + κ1(τ)
[
ξρJ ωIςφ∗(σ)(ζ)−

∫ T

0
Iςφ∗(σ)dσ

]
+ κ2(τ)Iς−1φ∗(σ)(τ), for some φ∗ ∈ WG,y∗ .

Next, we demonstrate that an open set exists V ⊆ C(K,R) with y /∈ ∆G(y) for any ι ∈ (0, T) and all
y ∈ ∂V . Let ι ∈ (0, T) and y ∈ ι∆G(y). Then, there exists φ ∈ L1(K,R) with φ ∈ WG,y such that for
τ ∈ K, we can obtain:

‖y‖Y = ‖y‖+ ‖CD$
y‖+ ‖CD$+1

y‖ ≤ ‖γ‖∆(‖y‖Y)(ψ).

This ensures that ‖y‖Y
‖γ‖∆(‖y‖Y)(ψ)

≤ 1. With regard to (C3), there exists E such that ‖y‖ 6= E . Let us set

V = {y ∈ C(K,R) : ‖y‖ < E}. Remember that operator ∆G : V → T (C(K,R)) is USC and completely
continuous. There is no y ∈ ∂V of the choice of V such that y ∈ ι∆G(y) for some τ ∈ (0, T). Therefore,
we deduce from Theorem (see 8.Theorem 8.5 [22]) that ∆G has a fixed point V to the problem (2)
and (3).

Theorem 5. Assume that:
(F4) G : K×R3 → Tcp(R) is such that G(·, y(τ), CD$y(τ), CD$+1y(τ)) : K → Tcp(R) is measurable

for each y ∈ R;
(F5) Ad(G(τ, y, z, w),G(τ, ŷ, ẑ, ŵ)) ≤ s(τ)[|y− ŷ|+ |z− ẑ|+ |w− ŵ|] ∀ ∈ K and y, z, w, ŷ, ẑ, ŵ ∈

R with s ∈ C(K,R+) and d(0,G(τ, 0, 0, 0)) ≤ s(τ) ∀ τ ∈ K. Then, the problem (2) and (3) has at least one
solution for K if:

‖s‖ψ < 1. (21)

Proof. Consider operator ∆G : C(K,R) → T (C(K,R)) defined in Theorem 4 at the beginning of
the proof. Remember that for each C(K,R), set WG,y is not empty by Hypothesis (F4), so G has
a measurable range (see Theorem III.6 [35]). Now, we prove that the operator ∆G fulfills the lemma’s
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assumptions (see Lemma [36]). To show that ∆G(y) ∈ Tcl(C(K,R)) for each y ∈ C(K,R), let pnn≥0 ∈
∆G(y) be such that pn → p (n→ ∞) in C(K,R). Then, p ∈ C(K,R), and there exists φn ∈ WG,y such
that, for each τ ∈ K,

pn(τ) = Iςφn(σ)(τ) + κ1(τ)
[
ξρJ ωIςφn(σ)(ζ)−

∫ T

0
Iςφn(σ)dσ

]
+ κ2(τ)Iς−1φn(σ)(τ).

Since G has compact values, we move a subsequence (if required) to get pn converging to p in L1(K,R).
Therefore, φ ∈ WG,y, and for each τ ∈ K, we have:

pn(τ)→ p(τ) = Iςφ(σ)(τ) + κ1(τ)
[
ξρJ ωIςφ(σ)(ζ)−

∫ T

0
Iςφ(σ)dσ

]
+ κ2(τ)Iς−1φ(σ)(τ).

Thus, p ∈ ∆G(y). Now, we demonstrate that there exists ε := ‖s‖ψ < 1 such that Ad(∆G(y), ∆G(ŷ)) ≤
ε‖y− ŷ‖Y for each y, ŷ ∈ C(K,R). Let y, ŷ ∈ C(K,R) and u1 ∈ ∆G(y). Then, there exists φ1(τ) ∈
G(τ, y(τ), CD$y(τ), CD$+1y(τ)) such that, for each τ ∈ K,

u1(τ) = Iςφ1(σ)(τ) + κ1(τ)
[
ξρJ ωIςφ1(σ)(ζ)−

∫ T

0
Iςφ1(σ)dσ

]
+ κ2(τ)Iς−1φ1(σ)(τ).

By F2, we have:

Ad(G(τ, y, z, w),G(τ, ŷ, ẑ, ŵ)) ≤ s(τ)[|y− ŷ|+ |z− ẑ|+ |w− ŵ|].

Therefore, there exists l ∈ G(τ, ŷ, ẑ, ŵ) such that:

|φ1(τ)− l| ≤ s(τ)[|y(τ)− ŷ(τ)|+ |z(τ)− ẑ(τ)|+ |w(τ)− ŵ(τ)|], τ ∈ K.

Define V : K → T (R) by:

V(τ) = {l ∈ R : |φ1(τ)− l| ≤ s(τ)[|y(τ)− ŷ(τ)|+ |z(τ)− ẑ(τ)|+ |w(τ)− ŵ(τ)|]}.

As the V(τ) ∩ G(τ, ŷ, ẑ, ŵ) operator can be measurable (Proposition III.4 [35]), a φ2(τ) function exists,
which is a selection measurable for V(τ) ∩ G(τ, ŷ, ẑ, ŵ). Therefore, φ2(τ) ∈ G(τ, ŷ, ẑ, ŵ), and for each
τ ∈ K, we have |φ1(τ)− φ2(τ)| ≤ s(τ)[|y(τ)− ŷ(τ)|+ |z(τ)− ẑ(τ)|+ |w(τ)− ŵ(τ)|]. For each τ ∈ K,
define:

u2(τ) = Iςφ2(σ)(τ) + κ1(τ)
[
ξρJ ωIςφ2(σ)(ζ)−

∫ T

0
Iςφ2(σ)dσ

]
+ κ2(τ)Iς−1φ2(σ)(τ).

Thus,

|u1(τ)− u2(τ)| = Iς|φ1 − φ2|(σ)(τ) + κ1(τ)
[
ξρJ ωIς|φ1 − φ2|(σ)(ζ)−

∫ T

0
Iς|φ1 − φ2|(σ)dσ

]
+ κ2(τ)Iς−1|φ1 − φ2|(σ)(τ)

≤ ‖s‖
Γ(ς + 1)

[
(κ̃2ςTς−1 + Tς) + κ̃1

(
ξζς+ρω

ρω

Γ( ς
ρ + 1)

Γ( ς
ρ + ω + 1)

+
Tς+1

ς + 1

)]
‖y− ŷ‖Y ,

which yields ‖u1 − u2‖ ≤ ‖s‖ψ1‖y− ŷ‖Y . Furthermore, we have:

‖CD$
u1(τ)− CD$

u2(τ)‖ ≤ ‖s‖ψ2‖y− ŷ‖Y .
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In a similar manner, we have:

‖CD$+1
u1(τ)− CD$+1

u2(τ)‖ ≤ ‖s‖ψ3‖y− ŷ‖Y .

As a result, we get ‖u1 − u2‖ ≤ ‖s‖ψ‖y− ŷ‖Y . Likewise, swap the positions of y and ŷ; we can get
Ad(∆G(y), ∆G(ŷ)) ≤ ‖s‖ψ‖y− ŷ‖Y . Since ∆G is a contraction by (21), it follows that it has a fixed point
y by the lemma (see Lemma [36]), which is a solution of the problem (2) and (3).

5. Examples

Example 1. Consider a fractional BVP given by:

CD
94
25 y(τ) = g(τ, y(τ), CD

17
50 y(τ), CD

67
50 y(τ)), τ ∈ [0, 1], (22)

y(0) = 0, y
′
(0) = 0,

∫ 1

0
y(σ)dσ =

11
20

9
25J

23
50

y
(31

50

)
, y

′
(1) = 0. (23)

Here, ς =
94
25

, $ =
17
50

, ξ =
11
20

, ζ =
31
50

, T = 1, ρ =
9
25

, ω =
23
50

. We have that with
the data κ1 = 20.988457646948103, κ2 = 1.5906878444726738, ν1 = 0.1992226279453819, ν2 =

0.17972085404600993, ϑ = 0.2382261757441258. Now, we demonstrate the outcomes by selecting different

g(τ, y(τ), CD
17
50 y(τ), CD

67
50 y(τ)) values.

• (i) Consider:

g(τ, y(τ), CD
17
50 y(τ), CD

67
50 y(τ)) =

1√
τ2 + 64

(
|y(τ)|
|y(τ)|+ 1

+ cos2(CD
17
50 y(τ)) + sin(CD

67
50 y(τ))

)

Clearly, g(τ, y(τ), CD
17
50 y(τ), CD

67
50 y(τ)) = 3√

τ2+64
= λ(τ). Therefore, the assumption of Theorem 1

holds. Hence, in Theorem 1, at least one solution has been found for the problem (22)–(23) on [0, 1].

• (ii) To prove that Theorem 2 is valid, nonlinear function g is taken from the form:

g(τ, y(τ), CD
17
50 y(τ), CD

67
50 y(τ)) = 1

7(3+τ2)

(
y(τ) + |CD

17
50 y(τ)|

|CD

17
50 y(τ)|+1

+ cos(CD
67
50 y(τ))

)
. With the

data given, we get κ1 = 20.988457646948103, κ2 = 1.5906878444726738, ν1 = 0.1992226279453819,
ν2 = 0.17972085404600993, ϑ = 0.2382261757441258, ψ̂1 = 0.6727808331171499, ψ̂2 =

0.9525720580682466, ψ̂3 = 2.054165331280194, and ψ̂ = max{ψ̂1, ψ̂2, ψ̂3} = 2.054165331280194.
By the resulting inequalities

|g(τ, y(τ), CD
17
50 y(τ), CD

67
50 y(τ)) − g(τ, z(τ), CD

17
50 z(τ), CD

67
50 z(τ))| = 1

7(3+τ2)

(
|y − z| +

|CD
17
50 y(τ) − CD

17
50 z(τ)| + |CD

67
50 y(τ) − CD

67
50 z(τ)|

)
≤ 1

21‖y − z‖, we have P = 1
21 . Therefore,

the hypothesis of Theorem 2 is fulfilled. Consequently, Theorem 2’s assumption applies, and the problem
(22)–(23) has at least one solution on [0, 1].



Axioms 2020, 9, 44 13 of 17

• (iii) Let us consider:

g(τ, y(τ), CD
17
50 y(τ), CD

67
50 y(τ)) =

1

4
√

τ2 + 16

(
y(τ) + (CD

17
50 y(τ)) +

CD
67
50 y(τ)|

|CD
67
50 y(τ)|+ 1

+ 1

)
.

By the resulting inequalities,

|g(τ, y(τ), CD
17
50 y(τ), CD

67
50 y(τ)) − g(τ, z(τ), CD

17
50 z(τ), CD

67
50 z(τ))| = 1

4
√

τ2+16

(
|y − z| +

|CD
17
50 y(τ) − CD

17
50 z(τ)| + |CD

67
50 y(τ) − CD

67
50 z(τ)|

)
≤ 1

16‖y − z‖, we have Q = 1
16 . With the

data given, we get κ1 = 20.988457646948103, κ2 = 1.5906878444726738, ν1 = 0.1992226279453819,
ν2 = 0.17972085404600993, ϑ = 0.2382261757441258, ψ̂1 = 0.7322037594741672, ψ̂2 =

1.0485700387520187, ψ̂3 = 2.3824784252186952, and ψ̂ = max{ψ̂1, ψ̂2, ψ̂3} = 2.3824784252186952.
Therefore, the hypothesis of Theorem 3 is fulfilled. Consequently, Theorem 3’s assumption applies, and the
problem (22)–(23) has a unique solution on [0, 1].

Example 2. Consider the following problem of inclusions:

CD
94
25 y(τ) ∈ G(τ, y(τ), CD

17
50 y(τ), CD

67
50 y(τ)), τ ∈ [0, 1], (24)

y(0) = 0, y
′
(0) = 0,

∫ 1

0
y(σ)dσ =

11
20

9
25J

23
50

y
(31

50

)
, y

′
(1) = 0. (25)

• (i) To show the illustration of Theorem 4, we take G under consideration.

G(τ, y(τ), CD
17
50 y(τ), CD

67
50 y(τ)) =

1

3
√

625 + τ2

(
y(τ) + sin(CD

17
50 y(τ))

+ (
|CD

67
50 y(τ)|

|CD
67
50 y(τ)|+ 1

) + 1

)
. (26)

Apparently, γ = 1
75 , ∆(‖y‖Y ) = 1 + ‖y‖Y , and state (F3) with E > E1 is satisfied. Therefore, all criteria

of Theorem 4 have been fulfilled, and at least one solution exists to the problem (24)–(25) with G given in (26)
on [0, 1].

• (ii) Let us choose G for the example of Theorem 5.

G(τ, y(τ)) =

[
0,

1
8(4 + τ2)

(
y(τ) +

|CD
17
50 y(τ)|

|CD
17
50 y(τ)|+ 1

+ cos(CD
67
50 y(τ)) +

1
τ + 1

)]
. (27)

It is clear that:

Ad(G(τ, y),G(τ, ŷ)) ≤ 1
8(τ2 + 4)

‖y− ŷ‖Y .
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Allowing s(τ) = 1
8(τ2+4) , we can check easily that d(0,G(τ, 0)) ≤ s(τ) holds ∀ τ ∈ [0, 1] and that

‖s‖ψ < 1. Since we are satisfied with the assumptions of Theorem 5, we conclude that the problem
(24)–(25) with G as indicated by (27) has at least one solution for [0, 1].

6. Discussion

We discussed the solutions of the existence and uniqueness for FDEs and inclusions
supplemented by GRLFI boundary conditions. We used fixed point theorems for single-valued
and multi-valued maps to evaluate the desired results. When we fixed the parameters involved in the
problem (ρ, ω, ξ) (1)–(3), our results corresponded to certain specific problems. Suppose that taking
ρ = 1 in the results provided, we are given the problems (1) with the form:

y(0) = y
′
(0) = 0,

∫ T

0
y(σ)dσ = ξ J ωy(ζ), y

′
(T) = 0, (28)

while the results are:

y(0) = y
′
(0) = 0,

∫ T

0
y(σ)dσ = 0, y

′
(T) = 0, (29)

followed by ξ = 0. When ρ = ω = 1, we can obtain:

y(0) = y
′
(0) = 0,

∫ T

0
y(σ)dσ = ξ

∫ ζ

0
y(σ)dσ, y

′
(T) = 0. (30)

Concerning the problem (1) with (28) instead of (3), we obtained the operator Υ̂ : Y → Y defined by:

(Υ̂y)(τ) = κ1(τ)
[
ξIς+ωg(σ, y(σ), CD$

y(σ), CD$+1
y(σ))(ζ)

−
∫ T

0
Iςg(σ, y(σ), CD$

y(σ), CD$+1
y(σ))dσ

]
+ κ2(τ)Iς−1g(σ, y(σ), CD$

y(σ), CD$+1
y(σ))(τ)

+ Iςg(σ, y(σ), CD$
y(σ), CD$+1

y(σ))(τ),

where:

κ1(τ) =
τ23T2 − 2Tτ3

ϑ
, κ2(τ) =

τ2ν2 − ν1τ3

ϑ
, ϑ = 3T2ν1 − 2Tν2,

ν1 =
T3

3
− 2ξζω+2

Γ(3 + ω)
, ν2 =

T4

4
− 6ξζω+3

Γ(4 + ω)
.

Similarly, the problem (1) related to operator Υ : Y → Y with conditions (29) rather than (3) is:

(Υ̂y)(τ) = κ2(τ)Iς−1g(σ, y(σ), CD$
y(σ), CD$+1

y(σ))(τ)

− κ1(τ)
[ ∫ T

0
Iςg(σ, y(σ), CD$

y(σ), CD$+1
y(σ))dσ

]
+ Iςg(σ, y(σ), CD$

y(σ), CD$+1
y(σ))(τ),

where:

κ1(τ) =
τ23T2 − 2Tτ3

ϑ
, κ2(τ) =

τ2ν2 − ν1τ3

ϑ
, ϑ = 3T2ν1 − 2Tν2, ν1 =

T3

3
ν2 =

T4

4
.
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Likewise, the problem (1) related to operator Υ̃ : Y → Y with conditions (30) rather than (3) is:

(Υ̃y)(τ) = κ1(τ)
[
ξ
∫ ζ

0
Iςg(σ, y(σ), CD$

y(σ), CD$+1
y(σ))(τ)dσ

−
∫ T

0
Iςg(σ, y(σ), CD$

y(σ), CD$+1
y(σ))dσ

]
+ κ2(τ)Iς−1g(σ, y(σ), CD$

y(σ), CD$+1
y(σ))(τ)

+ Iςg(σ, y(σ), CD$
y(σ), CD$+1

y(σ))(τ),

where:

κ1(τ) =
τ23T2 − 2Tτ3

ϑ
, κ2(τ) =

τ2ν2 − ν1τ3

ϑ
, ϑ = 3T2ν1 − 2Tν2,

ν1 =
T3 − ξζ3

3
, ν2 =

T4 − ξζ4

4
.

The existence and uniqueness of solutions for the new problems can be defined by the Υ̂, Υ, and Υ̃
operators similar to those obtained for (1)–(3).
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