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A B S T R A C T

The Riemann wave equation and the Novikov-Veselov equation are interesting nonlinear equations in the sphere
of tidal and tsunami waves in ocean, river, ion and magneto-sound waves in plasmas, electromagnetic waves in
transmission lines, homogeneous and stationary media etc. In this article, the generalized Kudryashov method is
executed to demonstrate the applicability and effectiveness to extract travelling and solitary wave solutions of
higher order nonlinear evolution equations (NLEEs) via the earlier stated equations. The technique is enucleated
to extract solitary wave solutions in terms of trigonometric, hyperbolic and exponential function. We acquire bell
shape soliton, consolidated bell shape soliton, compacton, singular kink soliton, flat kink shape soliton, smooth
singular soliton and other types of soliton solutions by setting particular values of the embodied parameters. For
the precision of the result, the solutions are graphically illustrated in 3D and 2D. The analytic solutions greatly
facilitate the verification of numerical solvers on the stability analysis of the solution.

Introduction

The nonlinear evolution equations (NLEEs) are the special form of
the partial differential equations (PDEs). These equations are widely
used as models to describe the physical significance in various branches
of mathematical and physical sciences, especially in applied and pure
mathematics, physics, chemistry, biology, biochemistry and many other
subjects [1]. Therefore, in order to comprehend the qualitative features
of these phenomena properly analytic solutions of NLEEs play a sig-
nificant role. Analytic solutions of nonlinear wave equations graphi-
cally demonstrate and allow unscrambling the mechanisms of many
intricate phenomena. Since the NLLEs describe many physical and
mathematical incidents, the analytic solutions of such equations are of
fundamental importance [2,3]. Particularly, the soliton solutions of the
NLEEs play a significant role in the dynamic of pulse propagation
through optical fibers for transcontinental trans-oceanic distance.

Therefore, searching the travelling wave solutions is becoming at-
tractive research area in nonlinear science. However, not all equations
posed of these models are solvable. Consequently, many new techni-
ques have been developed by mathematicians, engineers and physicists,
like as the Sine-Gordon expansion method [4], the solitary wave ansatz

method [5–7], the homogeneous balance method [8], the finite dif-
ference method [9], the tanh function method [10], the generalized
Kudryashov method [11], the modified simple equation method [12],
the dual mode Burgers equation [13], the F-expansion method [14,15],
the rational exp-function method [16], Caputo fractional partial deri-
vatives [17], the Durboux transformation method [18], the improved
Kudryashov method [19], the first integral method [20], shehu trans-
form [21], the G G( / )' -expansion method [22], the dual-mode Schro-
dinger equation [23], the tanh-method [24], the −φ ξexp( ( ))-expansion
method [25], the exp-function method [26–28], local fractional
homotopy analysis method [29], the trial equation method [30], the
improved F-expansion method [31] etc.

The generalized Kudryashov method is an important and powerful
method to accomplish analytic solutions to the NLEEs. To the best of
our understanding, the Riemann wave equation and the NV equation
yet have not been investigated by the generalized Kudryashov method.
Therefore, in this study, we put in use the generalized Kudryashov
method [32–37] to construct the soliton solutions to the Riemann wave
equation and the Novikov-Veselov equation. Through implementing the
aforesaid method, we found scores of solitary wave solutions. Analytic
solutions permit researchers to plan and carry on experiments by
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building suitable environment to find out the parameters or functions of
the NLEEs. Recently, many authors find exact solutions; general solu-
tions; lumps solutions and interaction solutions by transformed rational
function method, generalized Kudryashov method applied and ex-
tended modified direct algebraic method, extended mapping method
and Seadawy techniques to find solutions for some nonlinear PDEs
[38–45]. Finally, there are many methods to find solutions to nonlinear
differential equations, see [46–55].

Methodology

The generalized Kudryashov method is an influential technique to
constitute the analytic solutions to the NLEEs. Using this method, we
examine the travelling wave solutions as a general case. We will ana-
lyze the travelling wave solutions systematically and graphically by
making use of the generalized Kudryashov method.

We presume a NLEE associated with a function =v v x t( , )as follows
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wherein =v v x t( , ) is not a known function, G is a polynomial of the
variable v and its derivatives and ∂

∂
v
t
, ⋯∂

∂
v
x be the partial derivatives with

respect to t , x respectively in which highest order linear term and
nonlinear term are engaged.

The generalized Kudryashov method arise some steps as follows:

First step

At the beginning, we assume the wave variable

= = + −v x t v ξ ξ x y ct( , ) ( ), (2)

where into μ is the wave number and c is the travelling wave velocity.
When we put in use the above wave variable, the Eq. (1) is transformed
into the subsequent ordinary differential equation (ODE),
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Second step

According to the generalized Kudryashov method, we look for the
analytic solution of the Eq. (3) in the following form
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wherein = ⋯a r N( 0, 1, 2, )r and = ⋯b s M( 0, 1, 2, )s are unknown
constants to be investigated such that ≠a 0N and ≠b 0.M

The engaged entity Q ξ( ) satisfies the following ODE

= −
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Q ξ Q ξ

( )
( ) ( )2

(5)

The solution of Eq. (5) can be written as

=
+

Q ξ
De

( ) 1
1 ξ (6)

where D is a constant of integration.

Third step

Compute the positive integer numbers N and M present in the Eq.
(4) by using the homogeneous balance between the highest order linear
term and nonlinear term occurring in the Eq. (3).

Fourth step

Embedding the solution (4) into Eq. (3) and taking the assistance of
the Eq. (5), we receive a polynomial in Q ξ( ). Locating all the terms of
the same power and then equalizing the coefficient of Q ξ( ) to be zero,
we accomplish a system of algebraic equations for = ⋯a r N( 0, 1, 2, )r ,

= ⋯b s M( 0, 1, 2, )s , c and μ.
We can solve these algebraic equations with the help of

Mathematica software to compute the values of the unknown constants
= ⋯ = ⋯a r N b s M c( 0, 1, 2, ), ( 0, 1, 2, ),r s and μ. Having investigated

these unknown constants, the desired solutions of the NLEE (1) can be
found.

Determination of solutions

In this section, we implement the generalized Kudryashov method
for finding the broad-ranging solitary wave solutions to the Riemann
wave equation and the Novikov-Veselov (NV) equation.

The Riemann wave equation

Suppose that the Riemann wave equation [35] is in the following
form
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Consider the following wave variable

= = + −v x y t v ξ ξ μx αy ct( , , ) ( ), (9)

wherein c is the speed of the travelling wave which is determined later,
μ and α be the wave numbers. Implementing the wave variable (9), the
Riemann wave Eqs. (7) and (8) transformed into the following ODEs

+ + =αlμ d v
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0.2
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=α dv
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.
(11)

Integrating the Eq. (11) and omitting the constant of integration, we
attain

=w α
μ

v
(12)

Eliminating w and dw
dξ

from the Eq. (10), we secure the following
ODE
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Again, integrating once and omitting the constant of integration, we
acquire
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(14)

Taking the homogeneous balance between the highest order linear
term and nonlinear term into the Eq. (14), we obtain

= +N M 2 (15)

If we set =M 1, this yields =N 3.
Then the solution (4) can be written as

=
+ + +
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wherein a0, a1, a2, a3, b0 and b1 are the arbitrary constants to be cal-
culated.
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Inserting the Eq. (16) into the Eq. (14) and using the Eq. (5), we
obtain a polynomial in Q ξ( ). Equalizing the coefficient of the same
power of Q ξ( ), we accomplish a system of algebraic equations as fol-
lows:
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Solving all these algebraic equations, we attain the solutions as
follows:
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For evaluating the analytic solutions of the Eq. (14), we will use the
values of a0, a1, a2, a3, b0 and b1 into the solution (16). At first, we
substitute the values presented in set-1 and the value of Q ξ( ) into the
solution (16) and obtained the subsequent solutions:
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Converting the solution (25) from exponential function into hy-
perbolic function, yields
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Since D is an integral constant, so we can pick the values of B ar-
bitrarily. Therefore, if we pick =D 1, the solution (26) becomes
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From the above discussion, there are two cases arise:
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Here, we observed that the set-1 contains the solutions (26)–(30).
These solutions involve several parameters. The solution shape depends
on the parameters. When we choose the values of the parameters ar-
bitrarily, the several types of graphs are acquired.

On the contrary, placing the solution set-2 and the value ofQ ξ( ) into
the solution (16) we obtain the solution v ξ( ) as follows:
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Transforming the solution (32) from exponential function into hy-
perbolic function, yields

=
− + + +

+ + + − +
v ξ

lμ D ξ D ξ D
m n D ξ D ξ D

( )
2 (( 1)cosh( ) ( 1)sinh( ) 4 )

( )(( 1)cosh( ) ( 1)sinh( ) 2 )

2 2 2

2 2 (32)

Since D is an integral constant, so we can pick the values of D ar-
bitrarily. Therefore, if we pick =D 1, the solution (32) becomes
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Again, we observed that the set-2 contains the solutions (32)–(36).
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These solutions also contain several parameters. Since the solution
shape depends on the parameters, so when we choose the values of the
parameters arbitrarily, the several types of graphs are secured. From the
desired graph, we can discuss the nature of the solitary wave.

Similarly, for the other selection of the values of D, we obtain the
other types of solutions. But for simplicity, the other solutions are not
written here.

Alternatively, the values of the constants assembled in set-3 and set-
4, provide adequate new solutions but for minimalism, the solutions are
not documented here.

The Novikov-Veselov (NV) equation

We assume the family of Novikov-Veselov (NV) equations [36] with
constant coefficients is in the following form
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where into a b h, , and d be the nonzero parameters and v x y t( , , ) be an
unknown function which depends on the space coordinates x yand and
the temporal variable t.

Let us choose the wave transformation

= = + −v x y t v ξ ξ x y ct( , , ) ( ), , (40)

wherein c is the travelling wave velocity which is to be estimated.
Embedding the wave transformation (40), the wave Eqs. (38) and (39)
are changed into the ODEs as bellows:
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.
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Integrating once and taking the integral constant, we achieve

= +w v k1 (43)

= +z v k2 (44)

where k1and k2are integral constants.
At first, we neglect the integral constants and then inserting the

solutions (40), (43) and (44) into the Eq. (37), we attain the following
ODE
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Again, integrating once and omitting the constant of integration, we
achieve
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(46)

On account of the homogeneous balance between the highest order
linear term and nonlinear term occurring in the Eq. (46), we secure

= +N M 2, (47)

wherein M is the free parameter.
If we set =M 1, yields =N 3. For =M 1 and =N 3, the solution

shape is identical to the solution (16) and therefore the solution has not
been written in this section.

Setting the solution (16) into the Eq. (46) and taking the assistance
of the Eq. (5), we accomplish a polynomial in Q ξ( ). Equalizing the
coefficient of Q ξ( ) to be zero, we obtain the subsequent algebraic

equations:
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Resolving all these algebraic equations by using Mathematica, we
obtain the solutions as follows:

Set-1:

= + = = = = − =

= − +
+

c a b a a a a a a b b
a h d

a b

( ), 0, 0, , , 0,
1
6

( )
0 1 2 2 3 2 0 1

2

Set-2:

= − − = − +
+

= − − + −
+

= − − + −
+

c a b a b a b
h d

a ab ab bb bb
h d

a

ab ab bb bb
h d

, ( ) , 6 6 ,

6( )

0
0

1
0 1 0 1

2

0 1 0 1

= − +
+

= =a b a b
h d

b b b b6 ( ) , ,3
1

0 0 1 1

Set-3:

= + = = = − + −
+

= − +
+

= +
+

c a b a a a a ab ha bb da
h d

a

b a b
h d

b a h d
a b

, 0, , 6 6 ,

6 ( ) , 1
6

( )

0 1 1 2
1 1 1 1

3

1
0

1

For investigating the analytic solutions of the Eq. (46), we will use
the values of a0, a1, a2, a3, b0 and b1 into the solution (16). At first, we
use the values presented in set-1 and the value of Q ξ( ) into the solution
(16) and obtained the subsequent solutions:

= +
+ + − +

v ξ D a b
h d D ξ ξ

( ) 6 ( )
( )( exp( ) exp( ) 2D)2 (56)

Exchanging the solution (56) from exponential function into hy-
perbolic function, yields

= +
+ + + − +

v ξ D a b
h d D ξ D ξ D

( ) 12 ( )
( )(( 1)cosh( ) ( 1)sinh( ) 4 )2 2 (57)
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Since D is an integral constant, so we can pick the values of D ar-
bitrarily. Therefore, if we pick =D 1, the solution (57) is simplified as

= +
+ +

v ξ a b
h d ξ

( ) 6( )
( )(cosh( ) 2) (58)

Again, if we pick = −D 1, the solution (57) is simplified as

= − +
+ −

v ξ a b
h d ξ

( ) 6( )
( )(cosh( ) 2) (59)

From the above discussion, there are two cases arise:
Case-1:
For = +

+ +v ξ( ) a b
h d cosh ξ

6( )
( )( ( ) 2) , the solutions (43) and (44) reduces to

= +
+ +

+w ξ a b
h d ξ

k( ) 6( )
( )(cosh( ) 2) 1

(60)

and

= +
+ +

+z ξ a b
h d ξ

k( ) 6( )
( )(cosh( ) 2) 2

(61)

Case-2:
For = − +

+ −v ξ( ) a b
h d ξ

6( )
( )(cosh( ) 2) , the solutions (43) and (44) reduces to

= − +
+ −

+w ξ a b
h d ξ

k( ) 6( )
( )(cosh( ) 2) 1

(62)

and

= − +
+ −

+z ξ a b
h d ξ

k( ) 6( )
( )(cosh( ) 2) 2

(63)

Here, we observed that the set-1 contains the solutions (57)–(63).
These solutions consist of large number of parameters. Since, the so-
lution shape depends on the parameters, so when we choose the values
of the parameters randomly, the several types of graphs are acquired.
From the sketched graphs, we can discuss the nature of the solitary
waves.

Similarly, for the other selection of the values of D, we obtain the
other types of solutions. But for simplicity, the other solutions are not
written here.

On the other hand, the values of the constants assembled in set-2
and set-3, provide adequate new solutions but for minimalism, the so-
lutions are not documented here.

Graphical representations and discussions

In this section, we have presented the 3D and 2D graphs of the
determined solutions of the considered wave equations. The different
types of graphs have been drawn from the wave solution. The shape of
the travelling wave changes with the change of the unknown para-
meters associated with the solution. We have examined the nature of
the solution. Now, we depict the graphs of the solutions of the sub-
sequent nonlinear evolution equations the Riemann wave equation and
the Novikov-Veselov equation. The graphs of the solutions of the above
equations are illustrated as follows:

The Riemann wave equation

From the Riemann wave equation, we obtain different type of so-
lutions consists of some unknown parameters. These unknown para-
meters have effect in the nature of the solutions. That is, if the para-
meters receive different particular values, different types of solutions
are derived from a solution. In the subsequent, we have shown the ef-
fect of the parameters associated with the solutions (26).

The general solution (26) consists of the parameters D l m n α, , , ,
and μ. For the values of = −D 0.76, = −l 0.37, = −m 0.40, = −n 0.41,

=α 2.00 and = −μ 1.96, we achieve the bell shape soliton which is
characterized by infinite tails or infinite wings. The 3D figure is shown
within the limit − ≤ ≤x y5 , 5, =t 0. The 2D figure is shown for
− ≤ ≤x5 5, =y 0 and =t 0 (Fig. 1).

Again, for the values = −D 0.37, = −l 0.44, =m 0.54, = −n 0.10,
= −α 0.88 and =μ 0.01 of the parameters, we obtain the consolidated

bell shape soliton from solution (26). The shape of this figure is wide
expanding on both sides. The 3D figure is depicted within the limit
− ≤ ≤x y8 , 8 and =t 0. The 2D figure is depicted for − ≤ ≤x8 8,

=y 0 and =t 0 (Fig. 2).
On the other hand, the particular solution (27) involves the para-

meters l m n α, , , and μ. For the values = −l 0.63, = −m 1.35, = −n 1.26,
=α 1.85, = −μ 2.00 of the parameters, we acquire the smooth bell

shape soliton. In this figure, the shape is characterized by the infinite
tails. The 3D figure is illustrated within the limit ≤ ≤x y0 , 8 and =t 0.
The 2D figure is illustrated for ≤ ≤x0 8, =y 0 and =t 0 (Fig. 3).

Alternatively, for the values =l 0.96, = −m 0.50, = −n 0.10,
= −α 0.33 and = −μ 0.35 of the parameters, we obtain the compacton

soliton. A compacton is a solitary wave with compact support in which
the nonlinear dispersion confines it to a finite core, therefore the ex-
ponential wings vanish. The 3D figure is shown within the limit

Fig. 1. 3D and 2D plot of the solution (26) for the values = −D 0.76, = −l 0.37, = −m 0.40, = −n 0.41, =α 2.00, = −μ 1.96 of the parameters.

Fig. 2. 3D and 2D plot of the solution (26) for the values = −D 0.37, = −l 0.44, =m 0.54, = −n 0.10, = −α 0.88, =μ 0.01 of the parameters.
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Fig. 3. 3D and 2D plot of the solution (27) for the values = −l 0.63, = −m 1.35, = −n 1.26, =α 1.85, = −μ 2.00 of the parameters.

Fig. 4. 3D and 2D plot of the solution (27) for the values =l 0.96, = −m 0.50, = −n 0.10, = −α 0.33, = −μ 0.35 of the parameters.

Fig. 5. 3D and 2D plot of the solution (28) for the values =l 0.09, = −m 1.10, = −n 0.40, = −α 0.01 and =μ 1.23 of the parameters.

Fig. 6. 3D and 2D plot of the solution (29) for the values =l 0.35, = −m 0.69, = −n 0.52, = −α 0.42 and = −μ 0.43 of the parameters.

Fig. 7. 3D and 2D plot of the solution (30) for the values =l 0.45, = −m 0.09, = −n 0.62, =α 0.02 and =μ 0.37 of the parameters.

Fig. 8. 3D and 2D plot of the solution (33) for the values = −l 1.96, =m 0.39, = −n 1.86, = −α 2.00 and = −μ 1.90 of the parameters.
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Fig. 9. 3D and 2D plot of the solution (34) for the values = −l 1.10, = −m 0.56, = −n 0.57, = −α 1.79 and = −μ 1.96 of the parameters.

Fig. 10. 3D and 2D plot of the solution (57) for the values =D 0.51, =a 0.49, = −b 0.33, =h 0.39 and = −d 0.29 of the parameters.

Fig. 11. 3D and 2D plot of the solution (58) for the values = −a 1.79, = −b 1.96, = −h 1.81 and = −d 1.88 of the parameters.

Fig. 12. 3D and 2D plot of the solution (58) for the values = −a 0.37, = −b 0.40, = −h 0.41 and = −d 1.96 of the parameters.

Fig. 13. 3D and 2D plot of the solution (58) for the values = −a 0.90, = −b 0.73, = −h 0.61 and = −d 0.86 of the parameters.

Fig. 14. 3D and 2D plot of the solution (59) for the values = −a 0.16, =b 0.01, = −h 0.16, =d 1.48 of the parameters.
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− ≤ ≤x y6 , 6 and =t 0. The 2D figure is shown for − ≤ ≤x6 6, =y 0
and =t 0 (Fig. 4).

Moreover, for the values =l 0.09, = −m 1.10, = −n 0.40, = −α 0.01
and =μ 1.23 of the parameters, from the solution (28), we secure the
smooth soliton solution. The 3D figure is shown within the limit
− ≤ ≤x y8 , 8 and =t 0. The 2D figure is depicted for − ≤ ≤x8 8,

=y 0 and =t 0 (Fig. 5).
On the contrary, for the values =l 0.35, = −m 0.69, = −n 0.52,

= −α 0.42 and = −μ 0.43 of the parameters, from solution (29), we
attain the singular kink soliton. In this wave structure, there are infinite
wings on both sides and there is a small gap which makes the wave

singular. The 3D figure is shown within the limit − ≤ ≤x y5 , 5 and
=t 0. The 2D figure is plotted for − ≤ ≤x5 5, =y 0 and =t 0 (Fig. 6).
Moreover, for the values =l 0.45, = −m 0.09, = −n 0.62, =α 0.02

and =μ 0.37 of the parameters, from solution (30), we receive the
smooth kink soliton. The shape of this figure is upward from right to
left. The 3D figure is shown within the limit ≤ ≤x0 8, − ≤ ≤y8 8 and

=t 0. The 2D figure is sketched for =y 0 and =t 0 (Fig. 7).
Similarly, for the values = −l 1.96, =m 0.39, = −n 1.86, = −α 2.00

and = −μ 1.90 of the parameters, from solution (33), we find out the
flat kink soliton. In this figure, the shape rise from left to right. The 3D
figure is portrayed within the limit − ≤ ≤x y5 , 5 and =t 0. The 2D

Fig. 15. 3D and 2D plot of the solution (59) for the values = −a 0.69, = −b 1.164, = −h 0.51, =d 1.18 of the parameters.

Fig. 16. 3D and 2D plot of the solution (60) for the values = −a 0.73, =b 1.43, = −h 1.31, =d 0.28, =k 0.521 of the parameters.

Fig. 17. 3D and 2D plot of the solution (61) for the values = −a 1.39, =b 0.96, = −h 1.45, = −d 1.78, = −k 0.432 of the parameters.

Fig. 18. 3D and 2D plot of the solution (62) for the values = −a 0.53, = −b 1.73, = −h 0.31, =d 0.28, = −k 0.431 of the parameters.

Fig. 19. 3D and 2D plot of the solution (63) for the values = −a 0.04, = −b 0.33, = −h 0.48, = −d 0.63, = −k 0.412 of the parameters.
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figure is sketched for − ≤ ≤x5 5, =y 0 and =t 0 (Fig. 8).
Additionally, for the values = −l 1.10, = −m 0.56, = −n 0.57,

= −α 1.79 and = −μ 1.96 of the parameters, from solution (34), we
reach the singular kink soliton. The 3D figure is outlined within the
limit − ≤ ≤x y5 , 5 and =t 0. The 2D figure is delineated for
− ≤ ≤x5 5, =y 0 and =t 0 (Fig. 9).

Since the shape of the figure of the solutions (35) and (36) are si-
milar to the shape of the solutions (33) and (34), therefore, we have not
depicted the figure of these solutions.

The Novikov-Veselov (NV) equation

For the Novikov-Veselov (NV) equation, we have ascertained dif-
ferent type of solutions comprised with some unknown parameters.
These unknown parameters have effect in the nature of the solutions.
That is, if the parameters receive different particular values, different
type of solutions are derived from the broad-ranging solution. In the
subsequent, we have illustrated the effect of the parameters associated
with the solution (57).

The general solution (57) involves the parameters D a b h, , , and d.
For the values =D 0.51, =a 0.49, = −b 0.33, =h 0.39 and = −d 0.29,
from solution (57), we achieve the smooth soliton solution which is
characterized by infinite tails or infinite wings. The 3D figure is plotted
within the limit − ≤ ≤x0.003 0.003, − ≤ ≤y2 2 and =t 0. The 2D
figure is plotted for − ≤ ≤x0.3 0.3, =y 0 and =t 0 (Fig. 10).

Again, the particular solution (58) consist of the parameters a b h, ,
and d. For the values = −a 1.79, = −b 1.96, = −h 1.81 and = −d 1.88 of
the parameters, we achieve the bell shape soliton which is character-
ized by infinite tails or infinite wings. The 3D figure is sketched within
the limit − ≤ ≤x3 3, − ≤ ≤y0.1 0.1 and =t 0. The 2D figure is sket-
ched for − ≤ ≤x3 3, =y 0 and =t 0 (Fig. 11).

On the contrary, for the values = −a 0.37, = −b 0.40, = −h 0.41 and
= −d 1.96, from the solution (58), we achieve the smooth soliton so-

lutions. The 3D figure is portrayed within the limit − ≤ ≤x y4 , 4 and
=t 0. The 2D figure is portrayed for − ≤ ≤x4 4, =y 0 and =t 0

(Fig. 12).
Alternatively, for the values = −a 0.90, = −b 0.73, = −h 0.61 and

= −d 0.86 of the parameters, from the solution (58), we accomplish the
singular kink soliton. The 3D figure is traced within the limit
− ≤ ≤x y8 , 8 and =t 0. The 2D figure is traced for − ≤ ≤x8 8, =y 0
and =t 0 (Fig. 13).

Likewise, for the values = −a 0.16, =b 0.01, = −h 0.16, =d 1.48 of
the parameters, from solution (59), we attain the compacton soliton
with finite wavelengths. When the two compactons are colliding with
each other, the original shapes of the waves remain constant [37]. The
3D figure is illustrated within the limit − ≤ ≤x1 1, − ≤ ≤y0.002 0.002
and =t 0. The 2D figure is illustrated for − ≤ ≤x1 1, =y 0 and =t 0
(Fig. 14).

Once again, for the values = −a 0.69, = −b 1.164, = −h 0.51,
=d 1.18 of the parameters, from solution (59), we find out the soliton

solution. The 3D figure is interpreted within the limit − ≤ ≤x3 3,
− ≤ ≤y2 2 and =t 0. The 2D figure is interpreted for − ≤ ≤x3 3,

=y 0 and =t 0 (Fig. 15).
Furthermore, for the values = −a 0.73, =b 1.43, = −h 1.31,

=d 0.28, =k 0.521 of the parameters, from solution (60), we gain the
anti-bell shape soliton. The 3D figure is outlined within the limit
− ≤ ≤x y0.001 , 0.001 and =t 0. The 2D figure is outlined for
− ≤ ≤x0.001 0.001, =y 0 and =t 0 (Fig. 16).

Similarly, for the values = −a 1.39, =b 0.96, = −h 1.45, = −d 1.78,
= −k 0.432 of the unknown parameters, from solution (61), we achieve

the soliton solution. The 3D figure is delineated within the limit
− ≤ ≤x4 4, − ≤ ≤y1 1 and =t 0. The 2D figure is delineated for
− ≤ ≤x4 4, =y 0 and =t 0 (Fig. 17).

In a similar manner, for the values = −a 0.53, = −b 1.73, = −h 0.31,
=d 0.28, = −k 0.431 of the parameters, from solution (62), we carry out

the smooth soliton solution. The 3D figure is drawn within the limit

− ≤ ≤x0.1 0.1, − ≤ ≤y2 2 and =t 0. The 2D figure is drawn for
− ≤ ≤x0.1 0.1, =y 0 and =t 0 (Fig. 18).

Furthermore, for the values = −a 0.04, = −b 0.33, = −h 0.48,
= −d 0.63, = −k 0.412 of the parameters, from solution (63), we found

the smooth anti-bell shape soliton. In this figure, the shape rise from
both sides. The 3D figure is depicted within the limit − ≤ ≤x2 2,
− ≤ ≤y2 2 and =t 0. The 2D figure is depicted for − ≤ ≤x2 2, =y 0
and =t 0 (Fig. 19).

Conclusion

In this article, the generalized Kudryashov method has been effec-
tively put in use to establish the analytic solutions to the Riemann wave
equation and the Novikov-Veselov equation with the assist of the
aforesaid method. We have established general solitary wave solutions
for each of the studied equation associated with some unknown para-
meters and for the definite values of the parameters some accessible
solutions in the literature are originated and some fresh solutions are
designated. The established solutions include diverse kinds of solitary
waves, videlicet bell shape soliton, shrunk bell shape soliton, com-
pacton soliton, singular kink soliton, flat kink shape soliton, smooth
singular soliton and other types of soliton solutions. The behavior of the
solitary waves have displayed graphically with respect to space and
time. The graphs of the obtained solutions explicitly reveal the higher
efficiency and authenticity of the generalized Kudryashov method. This
advantageous and effective method might be used to examine other
kinds of NLEEs which frequently arise in various scientific and real
world applications. The attained solutions will be helpful to further
study the problems arise in mathematical physics and engineering.
Through this study, the physical interpretation of the desired solutions
and the actual application in reality will be investigated.
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