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In this work, we derived a novel numerical scheme to find out the numerical solution of

fractional PDEs having Caputo-Fabrizio (C-F) fractional derivatives. We first find out the

formula of approximation for the C-F derivative of the function f (t) = tk. We approximate

the C-F derivative in time direction with the help of Legendre spectral method and

approximation formula of tk. The unknown function and their derivatives in spatial

direction are approximatedwith the help of themethodwhich is based on a quasi wavelet.

We implement this newly derived method to solve the non-linear Sharma-Tasso-Oliver

equation and non-linear Klein-Gordon equation in which time-fractional derivative is of

C-F type. The accuracy and validity of this new method are depicted by giving the

numerical solution of some numerical examples. The numerical results for the particular

cases of Klein-Gordon equation are compared with the existing exact solutions and

from the obtained error we can conclude that our proposed numerical method achieves

accurate results. The effect of time-fractional exponent α on the solution profile is

characterized by figures. The comparison of solution profile u(x, t) for different type

time-fractional derivative (C-F vs. Caputo) is depicted by figures.

Keywords: fractional PDE, Sharma-Tasso-Oliver equation, Klein-Gordon equation, Caputo-Fabrizio fractional

derivative, quasi wavelet, Legendre polynomial

1. INTRODUCTION

In the recent years fractional differential equations have received more attention of the researchers
due to its exact description of the physical phenomenon. Many physical phenomenons have been
described through fractional diffusion equation viz., transport in porous medium, ground water
contamination problem through porous medium etc. As we know as far as fractional calculus is a
classical branch of mathematics whose have history like as integer calculus [1]. Its progress is still
increasing with day to day. N. H. Abel and J. Liouville have developed the theory of this fractional
calculus. We can find wide details of fractional calculus in Kilbas et al. [2] and Podlubny [3]. We
are allowed to generalize integer integrals and derivatives to arbitrary and real order with the help
of fractional calculus. It is that branch of mathematical analysis that permit us to study operators
and equations having integral are singular and convolution type. Many application of this calculus
are found in special functions, control theory, computational complexity [4] and stochastic process.
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Fractional calculus was assumed to esoteric theory having no
applications but a lot of applications to finance, control system
and economics have been discovered in last few years.

In literature many types of differential operators have
discovered like as Grunwald-Letnikov, Hadamard, Caputo,
Riesz, Riemann-Liouville, Caputo-Fabrizio [5, 6] and Atangana-
Baleanu derivatives [7–9]. The variable form of above operators
have also been introduced. The application of fractional
differential equation is go on increasing so researchers started
to develop new methods to solve these differential equation
numerically as they have to face many problems solve these
equations analytically. The methods which are available in
literature are as predictor-corrector method [10], Adomain
decomposition method [11], homotopy perturbation method
[12], generalized block pulse operational matrix method
[13], eigen-vector expansion, Adams-Bashforth scheme [14],
and fractional differential transform method [15], etc. The
operational matrix method is easy and efficient method which
is so widely used now a days. This method based on some
polynomials and wavelets are available in literature. Haar
wavelets [16], Chebyshev wavelets [17], sine wavelets, Legendre
wavelets [18] is used to develop for the numerical solutions
of integral equations, integro-differential equations and FPDEs.
Some polynomials which can be utilized derive the operational
matrix are Laguerre polynomial [19], Chebyshev polynomial,
Legendre polynomial [20], and Genocchi polynomial [21] which
is semi-orthogonal.

The process of diffusion and reaction has been studied from
last some years. In the diffusion process the molecules or any
other quantity is transferred from the higher concentration
region to low concentration region. When the reaction process is
happened together with the process of diffusion then combined
process is called reaction-diffusion process. In the reaction
process more molecules is consumed or created and this term
mathematically denoted by adding a reaction term in classical
diffusion equation

∂̺

∂t
= D∇2̺ + R(̺, t), (1)

where first term on the right hand side presents diffusion process
with D diffusion coefficient while R(̺, t) characterize the reaction
term at space point ̺ and time t. We can extend this reaction
-diffusion equation to advection-reaction-diffusion equation
where advection term denotes the movement of particle or
molecules due to the bulk flow of fluid. Many beautiful an curious
phenomena in nature as chemistry, physics, biology, and medical
sciences could be depicted by reaction diffusion equation.

A heat transfer analysis in sodium alginate based nanofluid
using MoS2 nanoparticles is studied in article [22]. The behavior
of normal and tumor cells with the effect of radiotherapy in
fractional derivative environment is investigated in Farayola
et al. [23]. The De-Levie’s model is studied by researchers
in Abro et al. [24]. The investigation of heat dissipation in
transmission line of electrical circuit is given in Abro et al.
[25]. A analysis of generalized Jeffery nanofluid in a rotating
frame with non-singular fractional derivative is given in Ali

et al. [26]. The behavior of heat transfer in different model with
singular and non-singular is given in articles [27–31]. The study
of electro-osmotic flow of viscoelastic fluids with non-singular
Mittag-Leffler fractional derivative is given in Ali et al. [32].
The Drinfeld-Sokolov-Wilson model with exponential fractional
derivative is investigated in article [33]. An analysis of fractional
vibration equation with ABC fractional derivative is studied in
Kumar et al. [34]. The study of FDEs equations occurring in
ion acoustic waves in plasma is done in Goswami et al. [35].
The FDEs is very useful in biological model as SIRS-SI malaria
disease model with application of vaccines [36] and fractional
equal width equations describing hydro-magnetic waves in cold
plasma [37].

We organized our article as follows. The definition of R-
L, Caputo, and Caputo-Fabrizio is given in section 2. We also
discussed about quasi wavelet and quasi wavelet-based numerical
method. In section 3, we derived the general formula of C-
F derivative of the function xk. Some properties of Legendre
polynomial is also included in this section. In section 4, we
described the proposed method for solving FPDEs with C-F
derivative. In section 5, some numerical examples and results
are presents including the variation of different parameters. The
conclusion of all over the article is given in the last section.

2. PRELIMINARY DEFINITIONS

In the last few years, many definitions of fractional integration
and differentiation have come into the light. All of them have
own special properties and applications. Caputo’s definition is
more reliable as compare to Riemann-Liouville’s definition as
an application point of view. These definitions are with power
or singular kernel law. Nowadays many generalized definitions
of the fractional derivative with exponential and Mittag-Leffler
kernel law have been introduced. We discussed brief definitions
and properties of R-L, Caputo and recently developed Caputo-
Fabrizio derivative.

2.1. Riemann-Liouville Order Derivative
and Integration
The R-L integration of order ̺ > 0 of a function h(t) is given by

Iϑh(z) =
1

Ŵ(̺)

∫ z

0
(z−̟ )̺−1h(̟ )d̟ , z > 0, ϑ ∈ R+. (2)

Now Riemann-Liouville fractional order differentiation of a
function h(t) with order ϑ > 0 is defined as

Dϑl h(t) = (
d

dt
)m(Im−ϑh)(t), (m− 1 < ϑ < m, ϑ > 0). (3)

2.2. Definition of Caputo Derivative
The Caputo derivative of a function h(t) having order ϑ > 0 is
given as follows

Dϑc h(t) =

{

1
Ŵ(ϑ)

∫ t
0 (−η + t)−ϑ−1+lhl(η)dη l− 1 < ϑ < l,

dl

dtl
h(t) ϑ = l ∈ N.

(4)
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with l an integer and time interval t > 0.
Some important properties of Caputo differentiation are given

as follows

Dϑc C = 0, (5)

where C is a constant. The fractional differentiation operator Dϑc
follow the linear property so we have

Dϑc (c1h(t)+ c2g(t)) = c1D
ϑ
c h(t)+ c2D

ϑ
c g(t), (6)

where c1 and c2 denotes constants. We can relate the Caputo
differential operator and R-L operator as

(IϑDϑc g)(t) = g(t)−

l−1
∑

k=0

gk(0+)
tk

k!
, l− 1 < ϑ ≤ l. (7)

2.3. Definition of Caputo-Fabrizio
Derivative [38, 39]
Consider a function g(t) which is a element of Sobolev space
H1(a, b), b > a then C-F derivative of order n < ϑ < n + 1
is given as [40]

CF
0 Dϑt g(t) =

B(ϑ)

⌈ϑ⌉ − ϑ

∫ t

0
exp

[−ϑ(x, t)

⌈ϑ⌉ − ϑ
(t − s)

]

×
∂n+1g(s)

∂tn+1
ds, n < ϑ ≤ n+ 1. (8)

Here B(ϑ) denotes the normalization function. In all our
calculations we have taken B(ϑ) = 1.

2.4. Definition of Caputo-Fabrizio Integral
The C-F integral of order n < ϑ < n + 1 associated with the
function g(t) is defined as follows

CF
0 Iϑt g(t) =

n
∑

i=0

ti

i!
g(i)(0)+

(1− η)

B(η)(n− 1)!

∫ t

0
(t − s)n−1g(s)ds

+
η

M(η)n!

∫ t

0
(t − s)ng(u)du, (9)

where η denotes the fractional part of the order ϑ . If the fractional
part η = 0 then CF integral is given by

CF
0 Iϑx g(x) =

(1− η)

B(η)
g(x)+

η

M(η)

∫ t

0
g(u)du. (10)

2.5. Why We Are Using C-F Derivative?
The operators play an important role in science and the
interchange of these operators is an important property. Let us
consider two operators A and B we say these two commutes
if they follow the property AB = BA. Many operators
arising in physics, biology, statistics, and mathematics do not
follow the property of commutativity and are called non-
commutative operators. We give some examples of non-
commutative operators:

• Product of two matrices.

• Division operator on real numbers as 3
4 6= 4

3 .

• Linear operators like z and d
dz

do not follow the commutative
property on wave function9(y) in the case when we formulate
the Schrodinger equation in quantum mechanics.

• Lie bracket of Lie ring.
• Lie bracket of a Lie algebra.

The general form of fractional type derivatives in Caputo and
Riemann-Liouville form are defined as

RL
0 Dϑz g(z) =

d

dz

∫ z

0
κ(z − x)g(z)dz

d

dz
κ ∗ g,

C
0D

ϑ
z g(z) =

∫ z

0
κ(z − x)

d

dz
g(z)dz = κ ∗

d

dz
g.

In fractional calculus, many form of kernel is discovered as κ(z−

x) = 1
Ŵ(1−ϑ)

(z−x)−ϑ and κ(z−x) = M(ϑ)
(1−ϑ)

exp
(

−ϑ
1−ϑ (z−x)−ϑ

)

.

The kernel κ(z−x) = 1
Ŵ(1−ϑ)

(z−x)−ϑ is known as power kernel

law which has been used in classical fractional calculus and the
kernel κ(z − x) =

M(ϑ)
(1−ϑ)

exp
(

−ϑ
1−ϑ (z − x)−ϑ

)

is exponential

kernel law which is newly discovered. The general derivatives
having exponential kernel known as Caputo-Fabrizio derivative.
In statistics, Pareto distribution which describes the fitting of the
shape of a large portion of wealth for a small portion of the
population and the wealth in our society has corresponded to
the power-law kernel. The negative exponential distribution is
mainly used in statistics as a probability distribution. This type
of distribution is used to characterize the time between events
between Poisson point distribution. The important property of
this distribution is that it depicts infinite divisibility and infinite
divisible distribution shows an important role in the context
of limit theorem and Levy process. This type of derivatives is
beneficial when the distribution of waiting time is not dependent
upon elapsed time [41]. Here we give some properties of
C-F derivative:

1. The mean square displacement associated with Caputo-
Fabrizio fraction derivative is a usual to sub-diffusion
crossover.

2. The Caputo-Fabrizio distribution follow the rule from
Gaussian to non-Gaussian crossover.

3. The asymptotic behavior of Caputo-Fabrizio satisfies the
power law behavior and connect the theory of fading memory
concept with kernels which are non-singular [42].

Nowadays the derivative with exponential kernel law has become
so popular and capture the attention of researchers. This
derivative has many applications which can be found in elasticity,
Keller Segel equation, flow of complex rheological medium and
flow of ground water in mass-spring damped system [43].

2.6. Approximation of Function by
Quasi-Wavelets
In literature there are many polynomial and wavelets which are
used to approximate an arbitrary function. But the procedure
based upon the quasi-wavelets is growing rapidly as spectral
collocation method which is local. It is very useful to solve
different type of space-time fractional FPDEs and partial integro-
differential equation of different order. We define a mathematical
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transformation known as the singular discrete convolution in
distribution theory

8(v) = (F ∗ s)(z) =

∫ ∞

−∞

F(−t + z)s(t)dt, (11)

where s(t) is called a test function and F is recognized as singular
kernel. We can find a family of wavelet by a function which
is known as mother wavelet ς using operations of dilation
and translation.

ςβ ,δ(z) = β
−1
2 ς

( z − δ

β

)

. (12)

The parameter δ represents the translation process while β
represents the process of dilation. An orthonormal wavelet base
generates any arbitrary subspace by using orthogonal scaling
functions. A Shannon’s delta sequence kernel is used in our work
which is defined as

δα(z) =
1

π

∫ π

0
cos(zy)dy =

sin(αz)

πz
, (13)

where limα→α0 δα(z) = δ(z). δ is discussed by Dirac and
so known as Dirac delta function. For a α > 0, Shannon’s
delta sequence kernel generates a basis for the Paley-Wiener
reproducing kernel Hilbert space B2

α[44] which is a subspace of
L2(R). We can reproduce the function g(z) ∈ B2

α as follows

g(z)=

∫ ∞

−∞

g(z)δα(z−t)dt=

∫ ∞

−∞

g(z)
sin((z − t)α)

(z − t)π
dt, ∀g(z) ∈ B2

α .

(14)
This sampling scaling function can be put in another form in
reproducing kernel of Paley-Wiener

δα,k = δα(z − zk) =
sin((z − zk)α)

(z − zk)π
, (15)

the points {xk} is known as collection of sampling points which
is placed around x. We can put all functions ∀g ∈ B2

α in discrete
form using Equations (11) and (12)

g(z) =

∞
∑

k=−∞

g(zk)δα(z − zk). (16)

According to Shannnon sampling theorem the uniformly spatial
discrete samples for a given band-limited signal in B2γ can
depicted the sampling at the Nyquist frequency γ . We represent
1 by grid size in spatial direction and γ = π

1
. So

g(z) =

∞
∑

k=−∞

g(zk)δα(z − zk) =

∞
∑

k=−∞

g(zk)
sin(

π(z−zk)
1

)

π(z−zk)
1

(17)

A method for the improvement of Dirichlet’s delta kernel is given
byWan. If we introduce a regularizer Rσ (y) then we can increases
its regularity

δα(z) → δα,σ = δα(z)Rσ (z). (18)

here Rσ satisfies

lim
σ→∞

Rσ (z) = 1

and
∫ ∞

−∞

lim
σ→∞

Rσ (y)δα(y)dy = Rσ (0) = 1.

Many regularizers satisfies the two conditions which is given as
above. But Gaussian type regularizer is so commonly used

Rσ (z) = e
(−z2

2σ 2

)

, σ > 0, (19)

where σ represents the width parameter. The relation between1
and σ is σ = r ×1, where r is a computation parameter. We can
define regularized orthogonal sampling scaling function which
are Gaussian type as

δ1,σ (z) =
sin(πz

1
)

πz
1

exp
(−z2

2σ 2

)

. (20)

Here

lim
σ→∞

δ1,σ (x) =
sin(πx

1
)

πx
1

,

Gaussian regularized sampling scaling function has no property
of orthonormal wavelet scaling function so it is called a quasi
scaling function.

By using quasi scaling function, we can approximate a
function θ ∈ B2

α

θ(z) =

∞
∑

k=−∞

θ(zk)δα(z− zk) =

∞
∑

k=−∞

θ(zk)δα(z− zk)Rα(z− zk).

(21)
For computation purpose we have to take finite sampling
points as infinite sampling points is not possible in computer
computation.We choose 2W+1 sampling points in our work. All
sampling points are chosen close to x. We can rewrite Equation
(18) as

θ(z) =

W
∑

k=−W

θ(zk)δ1,σ (z − zk), (22)

The nth order derivatives of a function θ(z)

θn(z) =

W
∑

k=−W

θ(zk)δ
n
1,σ (z − zk), n = 1, 2, · · · . (23)

We have chosen the computational width equal to 2W + 1. We
present the description of formulas of δ1,σ , δ

1
1,σ and δ21,σ [45]

which are helpful in calculation as follows

δ1,σ (y) =







exp{−
y2

2σ2
} sin(

πy
1 )

πy
1

, y 6= 0

1 y = 0.

(24)
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δ11,σ (y) =















(

−
sin(

πy
1 )

πy2

1

−
1 sin(

πy
1 )

πσ2

1

+
cos(

πy
1 )

y

)

exp
(

−
y2

2σ 2

)

y 6= 0,

0 y = 0.
(25)

δ21,σ (y) =











































(21 sin
( yπ
1

)

πy3
−

2 cos
(πy
1

)

y2
+
1y sin

( yπ
1

)

πσ 4

+
1 sin

(πy
1

)

πσ 2y
−

2 cos
(πy
1

)

σ 2
−
π sin

( yπ
1

)

y1

)

exp
(

−
y2

2σ 2

)

y 6= 0,

0 y = 0.
(26)

3. APPROXIMATION OF
CAPUTO-FABRIZIO DERIVATIVE

In the following theorem, we will find out an approximate
expression of Caputo-Fabrizio derivative of the function f (t) = tk

Theorem 1: The C-F derivative of function f (t) = tk having
order n < α < n+ 1 with k ≥ ⌈α⌉ is given by

CF
0 Dαt t

k =
B(α)Ŵ(1+ k)

⌈α⌉ − α

(

k−n−1
∑

r=0

(−1)rtk−n−1−r

Ŵ(k− n− r)( −α
⌈α⌉−α

)r+1

+
(−1)k−n

( −α
⌈α⌉−α

)k−n
exp

( −α

⌈α⌉ − α
t
)

)

.

(27)

Proof: By the definition of CF derivative Dntk = 0, k =

0, 1, · · · , ⌈α⌉ − 1. Now for k ≥ ⌈α⌉ we have

CF
0 Dαt t

k =
B(α)

⌈α⌉ − α

∫ t

0
Dn+1sk exp

( −α

⌈α⌉ − α
(t − s)

)

ds

=
B(α)

⌈α⌉ − α

∫ t

0

Ŵ(k+ 1)

Ŵ(k− n)
sk−n−1 exp

( −α

⌈α⌉ − α
(t − s)

)

ds

=
B(α)

⌈α⌉ − α

Ŵ(k+ 1)

Ŵ(k− n)
exp

( −α

⌈α⌉ − α
t
)

∫ t

0
sk−n−1 exp

( α

⌈α⌉ − α
s
)

ds

=
B(α)

⌈α⌉ − α
×
Ŵ(k+ 1)

Ŵ(k− n)
exp

( −α

⌈α⌉ − α
t
)

×

[

exp
( α

⌈α⌉ − α
t
)

k−n−1
∑

r=0

(−1)r
Ŵ(k− n)tk−n−1−r

Ŵ(k− n− r)( α
1−α )

r+1

−
(−1)k−n−1Ŵ(k− n)

( α
1−α )

k−n

]

=
B(α)Ŵ(k+ 1)

⌈α⌉ − α

[

k−n−1
∑

r=0

(−1)rtk−n−1−r

Ŵ(k− n− r)( α
1−α )

r+1

−
(−1)k−n−1

( α
1−α )

k−n
exp

( −α

⌈α⌉ − α
t
)]

.

3.1. Legendre Polynomials
Now we discussed here about Legendre polynomials and their
some properties. We shifted Legendre polynomials on the [0, 1]
from the interval [−1, 1] by the transformation z = 2x − 1.
The analytical form of these polynomials of degree i are given
as follows

ψi(x) =

i
∑

k=0

(−1)i+k(i+ k)!

(k!)2(l− k)!
xk (28)

where i = 0, 1, · · · .
The Legendre polynomials follows the orthogonality property
with weight function 1 and orthogonality condition can be
described as

∫ 1

0
ψj(x)ψi(x) =

{

1
2i+1 , j = i,

0 j 6= i.
(29)

A function u(x) which belongs to the L2[0, 1] can be
approximated by a linear sum of shifted Legendre polynomials
as

u(x) = um(x) =

m
∑

j=0

ajψi(x), (30)

where the linear coefficients are given by

aj = (2j+ 1)

∫ 1

0
u(x)ψj(x). (31)

Similarly, a function u(x, t) of two variable can be approximated
as

u(x, t) =

m−1
∑

i=0

m−1
∑

l=0

ailψi(x)ψl(t), (32)

where ail are unknown coefficient.

4. PROPOSED NEW METHOD

In this section, we develop a new algorithm with the
combination of Legendre spectral method and quasi wavelet
method and then apply it to derive the numerical solution of
C-F time fractional non-linear Sharma-Tasso-Oliver equation
and C-F time-fractional non-linear Klein-Gordon equation. We
approximate the C-F time fractional derivative by using Legendre
spectral method. On the other hand spatial derivatives and
unknown functions are approximated with the help of quasi
wavelet based numerical method. We have used fractional
derivative in our model as they are better than the integer ones.
The fractional differential equations are more comprehensive
and depict the memory effect of physical process as compare
to ordinary differential equation. Recent study shows that the
fractional model perfectly describe the test data of various
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memory phenomena at different fields. Sharma-Tasso-Oliver C-F
fractional model is as follows

CF
0 Dαt u(t, x)+ 3µ

(∂u(x, t)

∂x

)2
+ 3µ(u(x, t))2

∂u(x, t)

∂x

+ 3µ(u(x, t))
∂2u(x, t)

∂x2
+ µ

∂2u(x, t)

∂x2
= f (x, t).

(33)

The prescribed initial and boundary conditions for this model are
taken as follows

u(0, x) = f1(x),

u(t, 0) = f2(t),

u(t, 1) = f3(t).

(34)

where 0 < α ≤ 1, 0 ≤ x ≤ 1, and 0 ≤ t ≤ 1.
The model of Klein-Gordon equation is

CF
0 Dαt u(t, x)+ a

∂u(x, t)

∂t
+ bu(x, t) =

∂2u(x, t)

∂x2

+ c(u)2 + d(u)3 + f (x, t),

(35)

where 1 < α ≤ 2, 0 ≤ x ≤ 1, and 0 ≤ t ≤ 1.
The initial and boundary conditions for above model are

u(0, x) = g1(x),

u(t, 0) = g2(t),

u(1, t) = g3(t),

∂u(x, 0)

∂t
= g4(x).

(36)

Now we develop the method with the help of Legendre spectral
and a method which is based on quasi wavelet to investigate the
models (34) and (36).
Approximating the unknown function in terms of shifted
Legendre polynomial

u(x, t) =

m−1
∑

i=0

m−1
∑

l=0

cilψi(x)ψl(t), (37)

where cil are unknown coefficients for i = 0, 2, · · · ; and l =

0, 1, 2, · · · .
Now operating the C-F time fractional operator and using
Equation (38) we get

CF
0 Dαt u(t, x) =

m−1
∑

i=0

m−1
∑

l=0

cilψi(x)
(

CF
0 Dαt ψl(t)

)

,

=

m−1
∑

i=0

m−1
∑

l=0

l
∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x)

(

CF
0 Dαt t

k
)

,

=

m−1
∑

i=0

m−1
∑

l=0

l
∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x),Πk,t,α ,

(38)

where

Πk,t,α =
B(α)Ŵ(1+ k)

⌈α⌉ − α

(

k−n−1
∑

r=0

(−1)rtk−n−1−r

Ŵ(k− n− r)(γ )r+1

+
(−1)k−n

(γ )k−n
e−γ t

)

(39)

with γ = α
⌈α⌉−α

. Similarly, we can find the value of time

fractional derivative C
0D

α
t u(t, x) when its type is Caputo.

Differentiating Equation (38) with respect to t we get the
following

∂u(x, t)

∂t
=

m−1
∑

i=0

m−1
∑

l=0

cilψi(x)
(∂ψl(t)

∂t

)

,

=

m−1
∑

i=0

m−1
∑

l=0

l
∑

k=0

cilkt
k−1(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x).

(40)

We have approximated derivative in the time direction with
the help of Legendre spectral method. To approximate
the unknown function u(x, t) and derivative in time
direction we take the help of quasi wavelet based numerical
method. We know a function and its all derivatives can be
approximated by

u(n)(x) =

W
∑

k=−W

δn1,σ (x− xk)u(xk), n = 0, 1, · · · (41)

where the superscript (n) denotes the nth order derivative with
respect to x. At spatial point x = xj we can rewrite above equation
as

u(n)(xj, t) =

W
∑

s=−W

δn1,σ (−s1x)u(xj+s), n = 0, 1, · · · (42)

where1x is the spatial step. Putting the value of u(x, t) and their
space and time derivatives in model (34) we get the following
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residual

ξ1(x, t) =

m−1
∑

i=0

m−1
∑

l=0

l
∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x),Πk,t,α

+ 3µ
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

k=−W

δ11,σ (x− xk)ψi(xk)ailψl(t)
)2

+ 3µ
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

k=−W

δ01,σ (x− xk)ψi(xk)ailψl(t)
)2

×
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

k=−W

δ11,σ (x− xk)ψi(xk)ailψl(t)
)

+ 3µ
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

k=−W

δ01,σ (x− xk)ψi(xk)ailψl(t)
)

×
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

k=−W

δ21,σ (x− xk)ψi(xk)ailψl(t)
)

+ µ
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

k=−W

δ21,σ (x− xk)ψi(xk)ailψl(t)
)

− f (x, t)

(43)

The initial and boundary conditions takes the following form in
view of Equation (33)

m−1
∑

i=0

m−1
∑

l=0

ailψi(x)ψl(0) = f1(x),

m−1
∑

i=0

m−1
∑

l=0

ailψi(0)ψl(t) = f2(t),

m−1
∑

i=0

m−1
∑

l=0

ailψi(1)ψl(t) = f3(t).

(44)

Similarly the residual of model (36) with initial and boundary
conditions (37) is given by

ξ2(x, t) =

m−1
∑

i=0

m−1
∑

l=0

l
∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x),Πk,t,α

+ a

m−1
∑

i=0

m−1
∑

l=0

l
∑

k=0

cilkt
k−1(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x)

+ b

m−1
∑

i=0

m−1
∑

l=0

W
∑

k=−W

δ01,σ (x− xk)ψi(xk)ailψl(t)

−

m−1
∑

i=0

m−1
∑

l=0

W
∑

k=−W

δ21,σ (x− xk)ψi(xk)ailψl(t)

− c
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

k=−W

δ01,σ (x− xk)ψi(xk)ailψl(t)
)2

− d
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

k=−W

δ01,σ (x− xk)ψi(xk)ailψl(t)
)3

− f (x, t).

(45)

m−1
∑

i=0

m−1
∑

l=0

ailψi(x)ψl(0) = g1(x)

m−1
∑

i=0

m−1
∑

l=0

ailψi(0)ψl(t) = g2(t),

m−1
∑

i=0

m−1
∑

l=0

ailψi(1)ψl(t) = g3(t),

m−1
∑

i=0

m−1
∑

l=0

ailψi(x)
∂ψl(0)

∂t
= g4(x).

(46)

Now collocating Equations (44) and (45) at suitable collocation
points (xj, tj) and in Equation (44) considering the discrete
sampling points xk = xj equal to the collocation points and
using Equation (43) an non-linear system of algebraic equations
is obtained.

ξ1(xj, tj) =

m−1
∑

i=0

m−1
∑

l=0

l
∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(xj),Πk,tj ,α

+ 3µ
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

s=−W

δ11,σ (−s1x)ψi(xj+s)ailψl(tj)
)2

+ 3µ
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

s=−W

δ01,σ (−s1x)ψi(xj+s)ailψl(tj)
)2

×
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

s=−W

δ11,σ (−s1x)ψi(xj+s)ailψl(tj)
)

+ 3µ
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

s=−W

δ01,σ (−s1x)ψi(xj+s)ailψl(tj)
)

×
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

s=−W

δ21,σ (−s1x)ψi(xj+s)ailψl(tj)
)

+ µ
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

s=−W

δ21,σ (−s1x)ψi(xj+s)ailψl(tj)
)

− f (x, t).

(47)

Similarly collocating Equations (46) and (47) we get the following
system of non-linear algebraic equation

ξ2(xj, tj) =

m−1
∑

i=0

m−1
∑

l=0

l
∑

k=0

cil(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(xj),Πk,tj ,α

+ a

m−1
∑

i=0

m−1
∑

l=0

l
∑

k=0

cilkt
k−1(−1)l+k(l+ k)!

(k!)2(l− k)!
ψi(x)

+ b

m−1
∑

i=0

m−1
∑

l=0

W
∑

s=−W

δ01,σ (−s1x)ψi(xj+s)ailψl(tj)

−

m−1
∑

i=0

m−1
∑

l=0

W
∑

s=−W

δ21,σ (−s1x)ψi(xj+s)ailψl(tj)

− c
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

s=−W

δ01,σ (−s1x)ψi(xj+s)ailψl(tj)
)2

− d
(

m−1
∑

i=0

m−1
∑

l=0

W
∑

s=−W

δ01,σ (−s1x)ψi(xj+s)ailψl(tj)
)3

− f (x, t).

(48)
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FIGURE 1 | 3D-plot of absolute error for m = 10.

By Solving that system of non-linear algebraic Equations
(48) and (49) in the addition of Equations (35) and (37),
respectively and finding aij we obtained numerical solution of our
proposed models.

5. NUMERICAL RESULTS

Our motive in this section is to depict accuracy and the validity
of our new derived method by solving some examples which have
C − F time fractional derivative. We perform all our numerical
simulations with the help of WolframMathematica version-11.3.
Example 1: If we consider the following Sharma-Tasso-Oliver
equation with µ = 1 and α = 0.9

CF
0 Dαt u(t, x)+ 3

(∂u(x, t)

∂x

)2
+ 3(u(x, t))2

∂u(x, t)

∂x

+ 3(u(x, t))
∂2u(x, t)

∂x2
+
∂2u(x, t)

∂x2
= f (x, t).

(49)

The initial and boundary conditions are considered as

u(t, 0) = 0, u(t, 1) = t, u(0, x) = 0. (50)

We take exact solution as u(x, t) = x2t with suitable force
function f (x, t). the exact analytical solution of above problem is
u(x, t) = x2t.
To show the accuracy and validity of our proposed method we
draw the 3D graph of absolute error between exact and numerical
solution form = 10 represented by Figure 1. The representation
of absolute error for various m at time t = 0.1 is shown by
Table 1.

Figures 2, 3 shows the variation of u(x, t) at different value of
α in t and x direction, respectively. We can conclude that at a
fixed space point value of u(x, t) increases with in increment in
α. Same nature can be found at a fixed time but this time rate of
growth of u(x, t) is very slow. We compare the values of u(x, t) in
Figures 4, 5 when time fractional derivative is Caputo-Fabrizio
and Caputo type in space and time direction, respectively.

TABLE 1 | Deviation of absolute error at time t = 0.1.

x ↓ m = 4 m = 10

1
9 8.1× 10−4 2.7× 10−13

2
9 1.4× 10−3 4.8× 10−13

3
9 1.9× 10−3 6.4× 10−13

4
9 2.2× 10−3 7.1× 10−13

5
9 2.3× 10−3 7.3× 10−13

6
9 2.1× 10−3 7.2× 10−13

7
9 1.7× 10−3 6.4× 10−13

8
9 1× 10−3 5.6× 10−13

FIGURE 2 | Plots of u at space position x = 0.1 for m = 4 at different value

of α.

FIGURE 3 | Plots of u at time t = 0.1 for m = 4 at different value of α.

Example 2: Considering C-F time fractional reaction-
diffusion equation

CF
0 D0.9

t u(x, t) =
∂2u(x, t)

∂x2
+ cu2(x, t)+ f (x, t). (51)

We take the following equations as initial-boundary conditions

u(0, x) = x2, u(t, 0) = 0, u(t, 1) = et . (52)
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FIGURE 4 | Variation of u for α = 0.9, m = 4, and t = 0.1 in case when

time-fractional derivative is of Caputo Fabrizio and Caputo type.

FIGURE 5 | Variation of u for α = 0.9, m = 4, and t = 0.1 in case when

time-fractional derivative is of Caputo Fabrizio and Caputo type.

FIGURE 6 | 3D-plot of absolute error for m = 10.

We take u(x, t) = x2et as the exact solution where f (x, t) is
suitable force function.
To show the accuracy and validity of our proposed method we
draw the 3D graph of absolute error between exact and numerical

TABLE 2 | Deviation of absolute error at time t = 0.1.

x ↓ m = 4 m = 10

1
9 6.9× 10−4 1.5× 10−12

2
9 1.1× 10−3 2.5× 10−12

3
9 1.4× 10−3 2.9× 10−12

4
9 1.5× 10−3 2.0× 10−12

5
9 1.5× 10−3 2.5× 10−12

6
9 1.4× 10−3 1.7× 10−13

7
9 1.1× 10−3 7.2× 10−13

8
9 4.8× 10−3 7.0× 10−13

FIGURE 7 | 3D-plot of absolute error for m = 10.

solution for m = 10 which is depict by Figure 6. Table 2 present
the variations of absolute error for different value ofm.

Example 3: Considering d = 0, a = 1, b = 1, c = 1, and
α = 1.5 we get the following C-F time fractional Klein-Gordon
equation

CF
0 Dαt u(t, x)+

∂u(x, t)

∂t
+ u(t, x) =

∂2u(t, x)

∂x2
+ (u)2 + f (t, x).

(53)

The initial and boundary conditions are taken as follows

u(x, 0) = 0,

u(0, t) = 0,

u(1, t) = t2,

∂u(x, 0)

∂t
= 0.

(54)

The exact solution is taken as u(x, t) = t2x2 with force function
f (x, t).
To show the accuracy and validity of our proposed method
we draw the 3D graph of absolute error between exact and
numerical solution for m = 10 which is depict by Figure 7.
The representation of absolute error at t = 0.1 is shown by
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TABLE 3 | Deviation of absolute error for different m at time t = 0.1.

x ↓ m = 4 m = 10

1
9 1.0× 10−4 3.6× 10−14

2
9 1.7× 10−4 4.4× 10−14

3
9 2.2× 10−4 4.9× 10−14

4
9 2.5× 10−4 6.0× 10−14

5
9 2.5× 10−4 7.1× 10−14

6
9 2.2× 10−4 8.1× 10−14

7
9 1.7× 10−4 9.6× 10−13

8
9 1.0× 10−4 1.0× 10−13

FIGURE 8 | 3D-plot of absolute error for m = 10.

Table 3. Our results clearly shown the complete agreement of
obtained results.

Example 4: Considering a = 1, b = 1 and c = 1, d = 1
α = 1.5 we get the following non-linear C-F time fractional
Klein-Gordon equation

CF
0 Dαt u(t, x)+

∂u(x, t)

∂t
+ u(x, t)=

∂2u(x, t)

∂x2
+ (u)2 + u3 + f (x, t),

(55)

The Equation (55) with the initial-boundary conditions

u(0, t) = 0,

u(1, t) = et + t,

∂u(x, 0)

∂t
= x2 + x,

u(x, 0) = x2.

(56)

We chose forced function f (x, t) such that the exact solution of
above problem is u(x, t) = etx2 + xt.
Figure 8 represents the absolute error for this problem between
exact and numerical solution. We have takenm = 10 at the time
of plotting the absolute error graph. The variation of absolute
error for various m at time t = 0.1 is depicted by Table 4. We

TABLE 4 | Deviation of absolute error at time t = 0.1.

x ↓ m = 4 m = 10

1
9 1.5× 10−3 1.2× 10−12

2
9 2.7× 10−3 2.5× 10−12

3
9 3.6× 10−3 3.4× 10−12

4
9 4.0× 10−3 3.5× 10−12

5
9 4.1× 10−3 3.1× 10−12

6
9 3.8× 10−3 2.4× 10−12

7
9 3.1× 10−3 1.1× 10−12

8
9 2.0× 10−3 1.0× 10−13

FIGURE 9 | Variation of u with m = 10 and t = 0.1 at different value of α.

FIGURE 10 | Variation of u withm = 10 and x = 0.1 at different value of α.

have plotted the Figures 9, 10 of u(x, t) for α = 1.7, α = 1.8 and
α = 1.9 at fixed t and x, respectively. We can conclude that at a
fixed space point value of u(x, t) increases with in increment in
α. Same nature can be found at a fixed time but this time, rate of
growth of u(x, t) is slow and increases as time increases to t = 1.

6. CONCLUSION

In this work, first, we find out the approximate expression of
C-F fractional derivative of the function tk. We developed a
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new numerical algorithm with the combination of the Legendre
spectral method and quasi wavelet-based numerical method to
solve fractional PDEs having a C-F fractional derivative. We
implement this new algorithm to solve the C-F time-fractional
Sharma-Tasso-Oliver equation and Klein-Gordon equation. We
have shown the successful implementation of this method to
solve the C-F time-fractional FPDEs. This implies that our
proposed method has reasonable accuracy and valid different
type of FPDEs. The 3D graphs of absolute error depicted the
validity and effectiveness of our proposed method. The behavior
of u(x, t) in the diffusion equation with the variation in α at
space and time direction is also shown by figures. We see the

comparative behavior of the solution profile for C-F and Caputo
derivatives. In future work, our new algorithm can be applied

to another type of non-singular fractional models as Mittag-
Leffler kernel derivative. It can also be applied to the system of
a fractional differential equations and to investigate a different
types of models.
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