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Abstract: In this paper, we analyze shape-preserving behavior of a relaxed four-point binary
interpolating subdivision scheme. These shape-preserving properties include positivity-preserving,
monotonicity-preserving and convexity-preserving. We establish the conditions on the initial control
points that allow the generation of shape-preserving limit curves by the four-point scheme. Some
numerical examples are given to illustrate the graphical representation of shape-preserving properties
of the relaxed scheme.
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1. Introduction

Subdivision scheme is the technique of generating curves and surfaces by iterative refinement of
initial control polygon/mesh accordingly some refinement rules. The implementation of subdivision
scheme can be visualized much better by analyzing its shape-preserving properties that can be
considered to be geometrical properties of a subdivision scheme. The attribute of shape preservation
is of great prominence in medical imaging, ship hulls and airplane designing. Shape preservation is
always worthwhile in surgery, meteorology, designing pipe system, designing car bodies, in chemical
engineering, sectional drawing, geometric modeling and visualization.

For basic conditions such as positivity, monotonicity, and convexity preservation used for shape
preservations, Kuijt and Damme [1] put forth a class shape to construct binary subdivision scheme
under the non-uniform initial control vertices. Cao and Tan [2] presented a novel 5-point subdivision
scheme with shape control variable which is C5 continuous. Tan et al. [3] proved convexity preservation
of 5-point subdivision scheme with a shape control parameter. Hassan et al. [4] introduced 4-point
ternary interpolatory subdivision scheme, which is capable of generating C2 continuous limit curves.
Dyn et al. [5] presented convexity preservation of four-point interpolatory subdivision scheme [6].
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Hao et al. [7] introduced a linear six-point binary approximating subdivision scheme and gave the
monotonicity preservation condition.

Kujit and Damme [8] elaborated local nonlinear stationary schemes that interpolates and preserve
monotonicity with the equidistant data. They also examined preservation of piecewise monotonicity.
Kujit and Damme [9] also presented shape-preserving four-point schemes which were stationary and
interpolate non-uniform univariate data. Tan et al. [10] presented a new relaxation of binary four-point
subdivision scheme and the resulting limit functions preserved both monotonicity and convexity.
Floater et al. [11] studied subdivision schemes that both interpolate and preserve the monotonicity of
the input data. Siddiqi and Noreen [12] analyzed convexity-preserving property of six-point ternary
interpolating subdivision scheme [13] with the tension parameter ω.

Albrecht and Romani [14] analyzed convexity-preserving interpolatory scheme with conic
precision. Amat et al. [15] presented an approach towards demonstrating convexity-preserving
properties for interpolating subdivision scheme through reconstruction operators. Akram et al. [16]
presented the shape-preserving properties of the interpolating binary four-point non-stationary scheme
which preserved positivity, monotonicity and convexity. Gabrielides [17] proposed an algorithm for
constructing interpolatory Hermite polynomial splines of variable degree, which preserve the sign,
the monotonicity and the convexity of the data. Mustafa and Bashir [18] introduced univariate
binary schemes and monotonicity preservation of initial data of proposed scheme. Ghaffar et al. [19]
presented a new class of 2m-point non-stationary subdivision schemes, included some of their
important properties, such as continuity, curvature, torsion monotonicity, and convexity preservation.
Asghar et al. [20] discussed subdivision schemes with high continuity using probability distribution
parameter and elaborated convexity preservation of scheme. Bibi et al. [21] explored sufficient
conditions to preserve positivity, monotonicity and convexity, which were imposed on the initial
data, to ensure the shape preservation of curves. For more recent work on SS one may refer to
References [22–43].

This study prompt us to analyze shape-preserving properties of a relaxed four-point interpolating
scheme. Hormann and Sabin [44] presented a relaxed four-point binary interpolating subdivision
scheme (FP-scheme) with cubic precision. FP-scheme is defined as follows.

Given the set of initial control points {(x0
j , g0

j )}j∈Z and for the set of control points at the kth

refinement level {(xk
j , gk

j )}j∈Z, k ∈ N0 := N∪ {0}, the control points at the (k + 1)th refinement level
can be obtained by the{

gk+1
2j = 1

128 (−8gk
j−2 + 72gk

j−1 + 72gk
j − 8gk

j+1),
gk+1

2j+1 = 1
128 (−3gk

j−2 + 12gk
j−1 + 110gk

j + 12gk
j+1 − 3gk

j+2).
(1)

FP-scheme produces C2-continuous limit curves. It holds quintic degree of polynomial generation
and cubic degree of polynomial reproduction. Support of basic limit function of the scheme is eight.

The paper is organized as follows: In Section 2, we discuss positivity preservation property of
the FP-scheme. The conditions of preserving monotonicity and convexity of the FP-scheme are given
in Sections 3 and 4. In Section 5, we present some numerical examples to show shape-preserving
behavior of the scheme and conclude our work with a summary in this section.

2. Positivity Preservation

In this section, we show that the limit curve generated by the FP-scheme preserves positivity
of initial data. Subdivision scheme is said to preserve positivity, if starting from a positive control
polygon, the limit curves produced by the scheme preserve the positivity of the initial data.

Positivity preservation of FP-scheme (1) can be analyzed by choosing qk
j =

gk
j+1

gk
j

and Qk =

max{qk
j , 1

qk
j
}, j ∈ Z, k ∈ N0. In the following theorem, we give a result which plays a vital role to prove

positivity preservation of limit curve of the FP-scheme.
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Theorem 1. Assume the set of initial control points {(x0
j , g0

j ) : j ∈ Z}, is positive, i.e., g0
j > 0, ∀ j ∈ Z.

Furthermore, let ω be such that 1 < ω <
√

5 − 1, if 1
ω ≤ Q0 ≤ ω and {gk

j }j∈Z is defined by the
FP-scheme, then,

gk
j > 0,

1
ω
≤ Qk ≤ ω ∀ k ∈ N0, j ∈ Z, (2)

that is the limit function generated by the FP-scheme is positive.

Proof. We prove the theorem by induction. By given condition, it is easy to see that (2) is valid for
k = 0. Assume that (2) is satisfied for some k ≥ 1. Now we prove that (2) is also satisfied for k + 1.
We first prove that gk+1

j > 0, ∀ j ∈ Z, k ∈ N0.

gk+1
2j =

1
128

(−8gk
j−2 + 72gk

j−1 + 72gk
j − 8gk

j+1)

=
1

128
gk

j

(
1

qk
j−1

(
−8

1
qk

j−2
+ 72

)
+ 72− 8qk

j

)
(3)

≥ 1
128

gk
j

(
1
ω
(−8ω + 72) + 72− 8ω

)
=

1
16ω

gk
j (ω + 1)(9−ω) > 0.

Also

gk+1
2j+1 =

1
128

(
−3gk

j−2 + 12gk
j−1 + 110gk

j + 12gk
j+1 − 3gk

j+2

)
=

1
128

gk
j

(
1

qk
j−1

(
−3

1
qk

j−2
+ 12

)
+ 110 + qk

j (12− 3qk
j+1)

)
(4)

≥ 1
128

gk
j

(
−3 + 12

1
ω

+ 110 + 12
1
ω
− 3
)

=
1

16ω
gk

j (3 + 13ω) > 0.

Thus, by combining (3) and (4), we have gk+1
j > 0, ∀ j ∈ Z. Induction shows that gk

j > 0, ∀ j ∈ Z,
k ∈ N0.

Now, we prove that 1
ω ≤ Qk+1 ≤ ω ∀ k ∈ N0.

Since,

qk+1
2j =

gk+1
2j+1

gk+1
2j

=

−3 1
qk

j−2qk
j−1

+ 12 1
qk

j−1
+ 110 + 12qk

j − 3qk
j+1qk

j

−8 1
qk

j−2qk
j−1

+ 72 1
qk

j−1
+ 72− 8qk

j
.

So

qk+1
2j −ω =

−3 1
qk

j−2qk
j−1

+ 12 1
qk

j−1
+ 110 + 12qk

j − 3qk
j qk

j+1 + 8ω 1
qk

j−2qk
j−1
− 72ω 1

qk
j−1
− 72ω + 8ωqk

j

−8 1
qk

j−2qk
j−1

+ 72 1
qk

j−1
+ 72− 8qk

j
.
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The denominator of above expression is greater than zero by (3) and the numerator N1 satisfies

N1 = −3
1

qk
j−2qk

j−1
+ 12

1
qk

j−1
+ 110 + 12qk

j − 3qk
j qk

j+1 + 8ω
1

qk
j−2qk

j−1
− 72ω

1
qk

j−1
− 72ω + 8ωqk

j

≤ ω

(
−3

1
ω

+ 12
)
+ 110 + ω

(
12− 3

1
ω

)
+ 8ω3 − 72ω

1
ω
− 72ω + 8ω2

= 8ω3 + 8ω2 − 48ω + 32 ≤ 0.

Therefore, qk+1
2j ≤ ω.

Similarly

qk+1
2j+1 =

gk+1
2j+2

gk+1
2j+1

=

gk
j

(
−8

gk
j−1

gk
j
+ 72 + 72

gk
j+1

gk
j
− 8

gk
j+2

gk
j+1

gk
j+1

gk
j

)
gk

j

(
−3

gk
j−2

gk
j−1

gk
j−1

gk
j
+ 12

gk
j−1

gk
j
+ 110 + 12

gk
j+1

gk
j
− 3

gk
j+2

gk
j+1

gk
j+1

gk
j

)

=

−8 1
qk

j−1
+ 72 + qk

j (72− 8qk
j+1)

−3 1
qk

j−2qk
j−1

+ 12 1
qk

j−1
+ 110 + 12qk

j − 3qk
j+1qk

j
.

So

qk+1
2j+1 −ω =

8 1
qk

j−1
+ 72 + qk

j (72− 8qk
j+1)−ω

(
−3 1

qk
j−2qk

j−1
+ 12 1

qk
j−1

+ 110 + 12qk
j − 3qk

j+1qk
j

)
−3 1

qk
j−2qk

j−1
+ 12 1

qk
j−1

+ 110 + 12qk
j − 3qk

j+1qk
j

.

The denominator of above expression is greater than zero by (4) and the numerator N2 satisfies

N2 = −8
1

qk
j−1

+ 72 + qk
j (72− 8qk

j+1) + 3ω
1

qk
j−2qk

j−1
− 12ω

1
qk

j−1
− 110ω− 12ωqk

j + 3ωqk
j+1qk

j

≤ −8
1
ω

+ 72 + ω

(
72− 8

1
ω

)
+ 3ω3 − 12ω

1
ω
− 110ω− 12ω

1
ω

+ 3ω3

=
2
ω
(ω− 1)(3ω3 + 3ω2 − 16ω + 4) ≤ 0.

Therefore qk+1
2j+1 ≤ ω.

In the same way, we can get 1
qk+1

2j
≤ ω, 1

qk+1
2j+1
≤ ω. Therefore, 1

ω ≤ Qk+1 ≤ ω and induction leads

to 1
ω ≤ Qk ≤ ω, ∀ k ∈ N0, thus (2) is satisfied. Therefore, FP-scheme preserves positivity.

This completes the proof.

3. Monotonicity Preservation

This section examines monotonicity preservation of FP-scheme. Monotonicity preservation is
achieved by generating first-order divided differences (DD). Subdivision scheme holds property of
monotonicity preservation if starting from a monotone control points, the limit curves produced by
the scheme preserves the monotonicity of the initial data. First-order DD can be examined by applying
dk+1

j = gk+1
j+1 − gk+1

j . So FP-scheme in the form of first-order DD is given by

dk+1
2j = gk+1

2j+1 − gk+1
2j

= − 5
128

(gk
j−1 − gk

j−2) +
55

128
(gk

j − gk
j−1) +

17
128

(gk
j+1 − gk

j )−
3

128
(gk

j+2 − gk
j+1)

= − 5
128

dk
j−2 +

55
128

dk
j−1 +

17
128

dk
j −

3
128

dk
j+1,
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and

dk+1
2j+1 = gk+1

2j+2 − gk+1
2j+1

= − 3
128

(gk
j−1 − gk

j−2) +
17

128
(gk

j − gk
j−1) +

55
128

(gk
j+1 − gk

j )−
5

128
(gk

j+2 − gk
j+1)

= − 3
128

dk
j−2 +

17
128

dk
j−1 +

55
128

dk
j −

5
128

dk
j+1.

In the following theorem, we derive some conditions on initial control points which guarantee
monotonicity preservation of limit curve of the FP-scheme.

Theorem 2. Assume the set of strictly monotone increasing initial control points {(x0
j , g0

j ) : j ∈ Z}, i.e.,

d0
j > 0, ∀ j ∈ Z. Denote rk

j =
dk

j+1

dk
j

, Rk = maxj

{
rk

j , 1
rk

j

}
, ∀ k ∈ N0, j ∈ Z. Furthermore, let µ be such that

1
19 ≤ µ ≤ 1. If 1

µ ≤ R0 ≤ µ and {gk
j }j∈Z is defined by the FP-scheme, then:

dk
j > 0,

1
µ
≤ Rk ≤ µ, ∀ k ∈ N0, j ∈ Z. (5)

Therefore, the limit curves generated by the FP-scheme are strictly monotonically increasing.

Proof. We use induction to prove the theorem. From assumption it is clear that d0
j = g0

j+1 − g0
j > 0,

1
µ ≤ R0 ≤ µ; therefore (5) is satisfied for k = 0. Suppose (5) holds for some k ≥ 1 and we show that it

also holds for k + 1. We first prove that dk+1
j > 0, ∀ k ∈ N0, j ∈ Z. Now consider

dk+1
2j = − 5

128
dk

j−2 +
55

128
dk

j−1 +
17

128
dk

j −
3

128
dk

j+1

= − 5
128

dk
j−2 +

55
128

rk
j−2dk

j−2 +
17

128
rk

j−2rk
j−1dk

j−2 −
3

128
rk

j−2rk
j−1rk

j dk
j−2 (6)

≥ 1
128

dk
j−2

(
−5 + 55

1
µ
+

1
µ2 (17− 3µ)

)
=

1
128µ2 dk

j−2(−5µ2 + 52µ + 17) > 0.

Now, we consider

dk+1
2j+1 = − 3

128
dk

j−2 +
17

128
dk

j−1 +
55

128
dk

j −
5

128
dk

j+1

= − 3
128

dk
j−2 +

17
128

rk
j−2dk

j−2 +
55

128
rk

j−2rk
j−1dk

j−2 −
5

128
rk

j−2rk
j−1rk

j dk
j−2 (7)

≥ 1
128

dk
j−2

(
−3 + 17

1
µ
+

1
µ2 (55− 5µ)

)
=

1
128µ2 dk

j (−3µ2 + 12µ + 55) > 0.

Therefore, we have dk+1
j > 0, ∀ j ∈ Z. Applying induction gives dk

j > 0, ∀ k ∈ N0, j ∈ Z.

Now, we prove that 1
µ ≤ Rk+1 ≤ µ ∀ k ∈ N0, j ∈ Z.

Since

rk+1
2j =

dk+1
2j+1

dk+1
2j

=

1
128 dk

j−2

(
−3 + 17rk

j−2 + rk
j−2rk

j−1(55− 5rk
j )
)

1
128 dk

j−2

(
−5 + 55rk

j−2 + rk
j−2rk

j−1(17− 3rk
j )
) .
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Thus, we have

rk+1
2j − µ =

−3 + 17rk
j−2 + rk

j−2rk
j−1(55− 5rk

j ) + 5µ− 55µrk
j−2 − µrk

j−2rk
j−1(17− 3rk

j )

−5 + 55rk
j−2 + rk

j−2rk
j−1(17− 3rk

j )
.

The denominator of above expression is greater than zero by (6) and the numerator N3 satisfies

N3 = −3 + 17rk
j−2 + rk

j−2rk
j−1(55− 5rk

j ) + 5µ− 55µrk
j−2 − µrk

j−2rk
j−1(17− 3rk

j )

≤ −3 + 17µ + µ2
(

55− 5
1
µ

)
+ 5µ− 55− 17µ + 3µ4

= −58 + 17µ + 55µ2 − 17µ + 3µ4

= (µ + 1)(µ− 1)(3µ2 + 58) ≤ 0.

Therefore, rk+1
2j ≤ µ.

Similarly

rk+1
2j+1 =

dk+1
2j+2

dk+1
2j+1

=

1
128 dk

j−1(−5 + 55rk
j−1 + rk

j−1rk
j (17− 3rk

j+1))

1
128 dk

j−1

(
−3 1

rk
j−2

+ 17 + 55rk
j−1 − 5rk

j−1rk
j

) .

Thus, we have

rk+1
2j+1 − µ =

−5 + 55rk
j−1 + rk

j−1rk
j (17− 3rk

j+1)− µ

(
−3 1

rk
j−2

+ 17 + 55rk
j−1 − 5rk

j−1rk
j

)
−3 1

rk
j−2

+ 17 + 55rk
j−1 − 5rk

j−1rk
j

.

The denominator of above expression is greater than zero by (7) and the numerator N4 satisfies

N4 = −5 + 55rk
j−1 + rk

j−1rk
j (17− 3rk

j+1) + 3µ
1

rk
j−2
− 17µ− 55µrk

j−1 − 5µrk
j−1rk

j

≤ −5 + 55µ + µ2
(

17− 3
1
µ

)
+ 3µ2 − 17µ− 55− 5

1
µ

= −5
1
µ
− 60 + 35µ + 20µ2

=
5
µ
(4µ3 + 7µ2 − 12µ− 1) ≤ 0.

Therefore rk+1
2j+1 ≤ µ.

In the same way, we can get 1
rk+1

2j
≤ µ and 1

rk+1
2j+1
≤ µ. Therefore, 1

µ ≤ Rk+1 ≤ µ and induction leads

to 1
µ ≤ Rk ≤ µ, ∀ k ∈ N0, thus (5) is satisfied. Therefore, the FP-scheme preserves monotonicity.

This completes the proof.

4. Convexity Preservation

In this section, we show that the limit curve generated by the FP-scheme preserves convexity of
initial data. A subdivision scheme enjoys convexity-preserving property, if starting from a convex
control polygon, the limit curves produced by the scheme preserves the convexity of the initial data.
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Convexity preservation can be examined by applying second-order DD, i.e., Dk
j = 22k−1(gk

j−1 − 2gk
j +

gk
j+1). So the FP-scheme in the form of second-order DD is given by

Dk+1
2j = 22k+1(gk+1

2j−1 − 2gk+1
2j + gk+1

2j+1)

= 22k+1
(
− 3

128
gk

j−3 +
25

128
gk

j−2 −
22

128
gk

j−1 −
22

128
gk

j +
25

128
gk

j+1 −
3

128
gk

j+2

)
= − 3

32
(22k−1(gk

j−3 − 2gk
j−2 + gk

j−1)) +
19
32

(22k−1(gk
j−2 − 2gk

j−1 + gk
j ))

+
19
32

(22k−1(gk
j−1 − 2gk

j + gk
j+1))−

3
32

(22k−1(gk
j − 2gk

j+1 + gk
j+2))

= − 3
32

Dk
j−2 +

19
32

Dk
j−1 +

19
32

Dk
j −

3
32

Dk
j+1,

and

Dk+1
2j+1 = 22k+1(gk+1

2j − 2gk+1
2j+1 + gk+1

2j+2)

= 22k+1
(
− 2

128
gk

j−2 +
40
128

gk
j−1 −

76
128

gk
j +

40
128

gk
j+1 −

2
128

gk
j+2

)
= − 1

16
(22k−1(gk

j−2 − 2gk
j−1 + gk

j )) +
9
8
(22k−1(gk

j−1 − 2gk
j + gk

j+1))

− 1
16

(22k−1(gk
j − 2gk

j+1 + gk
j+2))

= − 1
16

Dk
j−1 +

9
8

Dk
j −

1
16

Dk
j+1.

In the following theorem, we derive some conditions on initial control points which guarantee
convexity preservation of limit curve of the FP-scheme.

Theorem 3. Suppose that the initial control points (x0
j , g0

j ) are strictly convex, i.e., D0
j > 0, ∀ j ∈ Z.

Denote sk
j =

Dk
j+1

Dk
j

, and Sk = max
{

sk
j , 1

sk
j

}
, ∀ k ∈ N0. Furthermore, let ν be such that 1

9 ≤ ν ≤ 15−
√

201
4 .

If 1
ν ≤ S0 ≤ ν and {gk

j }j∈Z is defined by the FP-scheme, then:

Dk
j > 0,

1
ν
≤ Sk ≤ ν, ∀ k ∈ N0, j ∈ Z. (8)

Specifically, the limit curves generated by the FP-scheme preserve convexity.

Proof. To prove the result, we use induction. Since it is given that D0
j > 0, 1

ν ≤ S0 ≤ ν, so (8) is true
for k = 0. Suppose (8) holds for some k ≥ 1. We will verify it also holds for k + 1. We first prove that
Dk+1

j > 0, ∀ k ∈ N0, j ∈ Z.
Consider

Dk+1
2j = − 3

32
Dk

j−2 +
19
32

Dk
j−1 +

19
32

Dk
j −

3
32

Dk
j+1

= − 3
32

1
sk

j−2
Dk

j−1 +
19
32

Dk
j−1 +

19
32

sk
j−1Dk

j−1 −
3

32
sk

j−1sk
j Dk

j−1

=
1

32
Dk

j−1

(
−3

1
sk

j−2
+ 19 + 19sk

j−1 − 3sk
j−1sk

j

)
(9)

≥ 1
32

Dk
j−1

(
−3ν + 19 +

19
ν
− 3ν2

)
=

1
32ν

Dk
j−1(ν + 1)(19− 3ν2) > 0.
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Also

Dk+1
2j+1 = − 1

16
Dk

j−1 +
9
8

Dk
j −

1
16

Dk
j+1

= − 1
16

Dk
j−1 +

9
8

sk
j−1Dk

j−1 −
1

16
sk

j−1sk
j Dk

j−1

=
1

32
Dk

j−1

(
−2 + 36sk

j−1 − 2sk
j−1sk

j

)
(10)

≥ 1
32

Dk
j−1

(
−2 +

1
ν
(36− 2ν)

)
=

1
8ν

Dk
j−1(9− ν) > 0.

Therefore, we have Dk+1
j > 0, ∀ j ∈ Z. So induction leads to Dk

j > 0, ∀ k ∈ N0, j ∈ Z.

Now, we prove that 1
ν ≤ Sk+1 ≤ ν, ∀ k ∈ N0, j ∈ Z.

Since,

sk+1
2j =

Dk+1
2j+1

Dk+1
2j

=

1
32 Dk

j−1

(
−2 + 36sk

j−1 − 2sk
j−1sk

j

)
1

32 Dk
j−1

(
−3 1

sk
j−2

+ 19 + 19sk
j−1 − 3sk

j−1sk
j

) .

So

sk+1
2j − ν =

−2 + 36sk
j−1 − 2sk

j−1sk
j + 3ν 1

sk
j−2
− 19ν− 19νsk

j−1 + 3νsk
j−1sk

j

−3 1
sk

j−2
+ 19 + 19sk

j−1 − 3sk
j−1sk

j
.

The denominator of above expression is greater than zero by (9) and the numerator N5 satisfies

N5 = −2 + 36sk
j−1 − 2sk

j−1sk
j + 3ν

1
sk

j−2
− 19ν− 19νsk

j−1 + 3νsk
j−1sk

j

= −2 + sk
j−1(36− 2sk

j + 3νsk
j ) + 3ν

1
sk

j−2
− 19ν− 19νsk

j−1

≤ −2 + ν

(
36− 2

ν
+ 3
)
+ 3ν2 − 19ν− 19

= (ν− 1)(3ν + 23) ≤ 0.

Therefore, sk+1
2j ≤ ν.

Similarly

sk+1
2j+1 =

Dk+1
2j+2

Dk+1
2j+1

=

1
32 Dk

j−1(−3 + 19sk
j−1 + 19sk

j−1sk
j − 3sk

j−1sk
j sk

j+1)

1
32 Dk

j−1(−2 + 36sk
j−1 − 2sk

j−1sk
j )

.

So

sk+1
2j+1 − ν =

−3 + 19sk
j−1 + 19sk

j−1sk
j − 3sk

j−1sk
j sk

j+1 + 2ν− 36νsk
j−1 + 2νsk

j−1sk
j

−2 + 36sk
j−1 − 2sk

j−1sk
j

.



Mathematics 2020, 8, 806 9 of 14

The denominator of above expression is greater than zero by (10) and the numerator N6 satisfies

N6 = −3 + 19sk
j−1 + 19sk

j−1sk
j − 3sk

j−1sk
j sk

j+1 + 2ν− 36νsk
j−1 + 2νsk

j−1sk
j

= −3 + 2ν + (19− 36ν)sk
j−1 + (19 + 2ν)sk

j−1sk
j − 3sk

j−1sk
j sk

j+1

≤ −3 + 2ν + (19− 36ν)sk
j−1 +

(
19 + 2ν− 3

ν

)
sk

j−1sk
j

≤ −3 + 2ν + (19− 36ν)sk
j−1 + ν

(
19 + 2ν− 3

ν

)
sk

j−1

≤ −3 + 2ν + (19− 36ν + 19ν + 2ν2 − 3)sk
j−1

≤ −3 + 2ν + ν(19− 36ν + 19ν + 2ν2 − 3)

= 2ν3 − 17ν2 + 18ν− 3)

= (ν− 1)(2ν2 − 15ν + 3) ≤ 0.

Therefore sk+1
2j+1 ≤ ν.

In the same way, we can get 1
sk+1

2j
≤ ν and 1

sk+1
2j+1
≤ ν. Therefore, 1

ν ≤ Sk+1 ≤ ν and induction leads

to 1
ν ≤ Sk ≤ ν, ∀ j ≥ Z, k ∈ N0, thus (8) is satisfied. Therefore, FP-scheme preserves convexity.

This completes the proof.

5. Numerical Examples and Conclusions

In this section, we present some numerical examples to show shape-preserving behavior of the
FP-scheme. At the end of the section, we conclude the work done so far.

5.1. Numerical Examples

Example 1. In this example we choose a positive data which is given in Table 1, that fulfill the derived condition
of positivity, i.e., it is easy to get that Q0 = 1.14. We apply FP-scheme on this positive data five times. Graphical
representation of this application is given in the Figure 1a. In this figure dotted line shows the initial positive
data and the solid line represents the limit curve generated by FP-scheme. From the Figure 1a, it is clear that
FP-scheme preserves positivity of initial data.

Example 2. In this example we consider another positive data which is given in Table 2, that fulfill the derived
condition of positivity, i.e., it is easy to get that Q0 = 1.019. We apply FP-scheme on this positive data five
times. Graphical representation of this application is given in the Figure 1b. In this figure dotted line shows the
initial positive data and the solid line represents the limit curve generated by FP-scheme. From the Figure 1b,
it is clear that FP-scheme preserves positivity of initial data.

Example 3. In this example we consider a monotonically increasing data which is given in Table 3, that fulfill
the derived condition of monotonicity, i.e., it is easy to get that R0 = 1. We apply FP-scheme on this monotone
data five times. Graphical representation of this application is given in the Figure 2a. In this figure dotted line
shows the initial positive data and the solid line represents the limit curve generated by FP-scheme. From the
Figure 2a, it is clear that the limit curve generated by the FP-scheme is also monotonically increasing.

Example 4. In this example we consider another monotonically increasing data which is given in Table 4,
that fulfill the derived condition of monotonicity, i.e., it is easy to get that R0 = 1. We apply FP-scheme on this
monotone data five times . Graphical representation of this application is given in the Figure 2b. In this figure
dotted line shows the initial positive data and the solid line represents the limit curve generated by FP-scheme.
From the Figure 2b, it is clear that the FP-scheme is capable of producing monotonically increasing limit curves.
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Example 5. In this example we consider convex data from a convex function which is given in Table 5, that fulfill
the derived condition of convexity, i.e., it is easy to get that S0 = 1. We apply FP-scheme on this convex data
five times . Graphical representation of this application is given in the Figure 3a. In this figure dotted line shows
the initial positive data and the solid line represents the limit curve generated by FP-scheme. From the Figure 3a,
it is clear that the FP-scheme is capable of producing convex limit curves.

Example 6. In this example we consider convex data from another convex function which is given in Table 6,
that fulfill the derived condition of convexity, i.e., it is easy to get that S0 = 1. We apply FP-scheme on this
convex data five times . Graphical representation of this application is given in the Figure 3b. In this figure
dotted line shows the initial positive data and the solid line represents the limit curve generated by FP-scheme.
From the Figure 3b, it is clear that the FP-scheme is capable of producing convex limit curves.

Table 1. Positive data set of values.

x0
j 1.6 2.1 2.6 3.1 3.6 4.1 4.6

g0
j 1.27 1.45 1.62 1.77 1.89 2.03 2.15

Table 2. Positive data set of values.

x0
j 0.02 0.04 0.06 0.08 0.10 0.12 0.14

g0
j 1.02 1.04 1.06 1.08 1.105 1.12 1.15

Table 3. Monotone data set of values.

x0
j −0.006 −0.004 −0.002 0 0.002 0.004 0.006

g0
j 0.994 0.996 0.998 1 1.002 1.004 1.006

Table 4. Monotone data set of values.

x0
j −0.006 −0.004 −0.002 0 0.002 0.004 0.006

g0
j 0.1991 0.1994 0.1997 0.2000 0.2003 0.2006 0.2009

Table 5. Convex data set of values.

x0
j −4 −3 −2 −1 0 1 2 3 4

g0
j 8.5 5 2.5 1 0.5 1 2.5 5 8.5

Table 6. Convex data set of values.

x0
j −4 −3 −2 −1 0 1 2 3 4 5 6

g0
j 10.75 7 4.25 2.5 1.75 2 3.25 5.5 8.75 13 18.25
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(a) (b)

Figure 1. (a,b) show positive curves generated by FP-scheme (1) using positive initial data.

(a) (b)

Figure 2. (a,b) show monotone curves generated by FP-scheme (1) using monotone initial data.

(a) (b)

Figure 3. (a,b) show convex curve generated by FP-scheme (1) using convex initial data.
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5.2. Conclusions

An approximating subdivision scheme with cubic precision and satisfying shape-preserving
properties is a charming scheme for designers. We have presented analysis of some important
shape-preserving properties of the FP-scheme, which make the scheme more efficient for application
in geometric modeling. These properties assure that the shape preservation of the limit curve is an
effective tool for modifying the FP-scheme for different requirements. We have shown that by taking
initial control data positive, monotone and convex, the limit curves generated by the FP-scheme
are also positive, monotone and convex. Also, we support our findings through several numerical
examples. In future work, we are interested to analyze these shape-preserving properties in geometric
notion. Extension of this work to case of surface is another future direction.
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