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Abstract: Subdivision schemes are extensively used in scientific and practical applications to produce
continuous shapes in an iterative way. This paper introduces a framework to compute subdivision depths
of ternary schemes. We first use subdivision algorithm in terms of convolution to compute the error
bounds between two successive polygons produced by refinement procedure of subdivision schemes.
Then, a formula for computing bound between the polygon at k-th stage and the limiting polygon is
derived. After that, we predict numerically the number of subdivision steps (depths) required for smooth
limiting shape based on the demand of user specified error (distance) tolerance. In addition, extensive
numerical experiments were carried out to check the numerical outcomes of this new framework.
The proposed methods are more efficient than the method proposed by Song et al.

Keywords: subdivision schemes; convolution; error bounds; subdivision depth; subdivision level
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1. Introduction

A broad and eminent area in Computer Aided Geometric Design (CAGD) deals with curves, surfaces,
and their computational aspects. Subdivision is the most remarkable field for the purpose of modeling of
curves and surfaces in CAGD. Subdivision methods have achieved much popularity in the past few years
because of their implementation along with their mathematical formulation. The convolution technique [1]
is one of the techniques used to merge different schemes. It has an important role in error analysis
of the schemes. Actually, subdivision schemes take the polygons as input and successively produced
smooth polygons or shapes as an output. Initially, the schemes with two rules were introduced. Later on,
the interest was developed to recommend the schemes with three rules. This means at each subdivision
level, every edge of the polygon is divided into three sub-edges. In the literature, these schemes are known
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as ternary schemes. Here, first we present brief review of these schemes then we will address the problem
of error analysis.

Here we present an overview of the ternary subdivision schemes. Mustafa et al. [2–5] presented a
(2n− 1)-point ternary approximating and interpolating scheme, a 6-point ternary interpolating scheme,
a family of even points ternary schemes, the odd point ternary approximating scheme respectively.
Hassan et al. [6] and Siddiqi and Rehan [7] threw the light on 4-point ternary interpolating subdivision
schemes. Kwan et al. [8] explored the phenomenon of 4-points ternary approximating scheme and
Mustafa et al. [9,10] examined 5-point and 6-point ternary interpolating schemes and their differentiability.
Siddiqi et al. [11,12] explained 4-point ternary interpolating scheme for curve sketching and constructed
different ternary approximating subdivision schemes. Peng et al. [13,14] discovered non-linear circle
preserving interpolating scheme and fractal behavior of ternary rational interpolating scheme. Further
discussing on ternary subdivision scheme, Aslam [15] and Beccari et al. [16] showed their talent to
highlight a family of 5-point non-linear ternary interpolating scheme and an interpolating 4-point ternary
non-stationary scheme with tension control respectively. Certainly, there are a few methods for estimating
the error bounds of these schemes.

Some of the authors [17–19] computed the error and order of the convergence of some binary schemes.
Mustafa et al. [20–23] computed error bounds for binary, ternary, tensor product binary volumetric model
and binary non-stationary schemes. Error bounds for a class of subdivision schemes based on the two-scale
refinement equation were computed by Moncayo and Amat [24]. A formula for estimating the deviation of
a binary interpolating subdivision curve from its data polygon was presented by Deng et al. [25]. However,
the generalization of this formula to deal with the cases of n-ary interpolating and approximating schemes
is still an open question. The following open question also arises in our mind: “How many subdivision
steps (depths) are required to satisfy a user specified error (distance) tolerance?” Some of the researchers
can be nominated as the embarking volunteers for the explanation of above questions such as: Mustafa
and Hashmi [26] estimated subdivision depth computation for n-ary schemes by using first forward
difference technique. Mustafa [27] presented subdivision depth computation technique for tensor product
ternary volumetric model. Mustafa et al. also computed subdivision depth for triangular surfaces [28].
The above methods do not work for all type of subdivision schemes. Counter examples are also presented
in this paper.

A novel numerical algorithm to estimate the subdivision depth was offered only for binary subdivision
schemes in [29]. Still there is a gap/space to work for the subdivision depth of higher arity (i.e., ternary,
quaternarys and so on) schemes. In this paper, an optimal approach is proposed to estimate subdivision
depths for ternary (i.e., for each subdivision level, every edge of polygon is divided into three sub-edges)
subdivision schemes.

The remaining part of the paper is arranged as follows. In Section 2, basic results, subdivision depths
and numerical experiments of the method for univariate cases of the schemes are presented while in
Section 3, these results for bivariate cases of the schemes are offered. Conclusions are drawn in Section 4.

2. Preliminary Results for Univariate Case

Let {pk
i ; i ∈ Z} be a sequence of 2D points in R2 which are obtained by the following refinement

procedure

pk+1
3i+s =

N−1

∑
m=0

as,m pk
i+m, s = 0, 1, 2, (1)

with
N−1

∑
m=0

as,m = 1, s = 0, 1, 2, (2)
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where k ≥ 0 indicates the refinement level. The points at 0th level p0
i are known as initial control points.

The refinement procedure described in (1) along with its necessary condition of converge (2) is known as
univariate ternary subdivision scheme. The following formulation of unknown coefficients as,m is given
by [21]. 

b0,m =
m
∑

l=0
(a0,l − a1,l),

b1,m =
m
∑

l=0
(a1,l − a2,l),

b2,m = a0,m − (b0,m + b1,m),

with
N−1

∑
m=0
|b0,m| < 1,

N−1

∑
m=0
|b1,m| < 1,

N−1

∑
m=0
|b2,m| < 1.

The following symbolization will also be used in coming section of this paper.
d3m = b0,m,

d3m+1 = b1,m,

d3m+2 = b2,m.

(3)

Now we follow the techniques and notations presented in [24]. To be precise, let the vector ui = uk
i

represent the approximation coefficients associated with a certain kth level of resolution. If u0
i = uk;0

i
represents the kth resolution level then the reconstruction algorithm used to define the approximation
coefficients at stage k + 1 in terms of the coefficient at stage k are obtained by the use of subdivision
algorithms in terms of convolutions i.e.,

uk+1
i = ∑

n∈N
di−3nuk

n = (uk;0 ? d)i, (4)

where ? denotes the convolution product of two vectors uk;0 and d = (dn)n∈N.

Generally, the convolution product of two vectors u = (un)n≥0 and v = (vn)n≥0 of finite lengths lu
and lv respectively for ternary subdivision scheme is defined as

(u ? v)j =
min{j,lu−1}

∑
n=max{j−(lv−1),0}

unvj−3n, j = 0, 1, . . . , lu + lv − 2. (5)

In the following subsection, we present the generalized version of the results presented in the
Appendices A1 and A2 of [24].

2.1. Reformulation of Successive Convolutions

In this subsection, we obtain some generalized inequalities used in order to find the subdivision
depth of ternary subdivision schemes for the generation of curves. Their further generalizations are
presented in Section 3 for the computation of depth of ternary subdivision schemes for tensor product
surfaces. This section contains typical rigorous and tedious mathematical expressions. Readers are refers
to Example 1 of this section for better understanding.
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Lemma 1. Let u = un be the vector of finite length and d = {dn}3N−1
n=0 with dn = 0 for n ≥ 3N, then the following

one dimensional k0 convolutions is bounded by

‖((. . . (((u(0) ? d)(0)) ? d)(0) ? . . . ? d)(0) ? d)‖∞ ≤ ‖u‖∞ sup
j

{ bj/3k0 c

∑
m=0

|Bk0
m,j|
}

,

where Bk0
m,j is defined recursively by


B1

m,j = dj−3m,

Bk0
m,j =

bj/3k0−1c
∑

p=3m
B1

m,pBk0−1
p,j , k0 ≥ 2,

and
j ∈ Σ(k0, N) = {Ω(k0, N)− 3k0 + 1, Ω(k0, N)− 3k0 + 2, . . . , Ω(k0, N)},

Ω(k0, N) = (3k0 − 2)(3N − 1).

Proof. To prove this result, we start with the case of k0 = 1 and k0 = 2 convolutions and then a general
case will be derived.
Case k0 = 1: From (5), we obtain a relation given in the following

|(u(0) ? d)j| =
∣∣∣∣∣ bj/3c

∑
n=0

undj−3n

∣∣∣∣∣, (6)

where b.c denotes the integer part. Using infinity norm
(
‖u‖∞ = max{|uo|, . . . , |ubj/3c|}

)
, we get

|(u(0) ? d)j| ≤ ‖u‖∞

bj/3c

∑
n=0
|dj−3n|.

Now

sup |(u(0) ? d)j| ≤ sup

(
‖u‖∞

bj/3c

∑
n=0
|dj−3n|

)
.

This infers

sup |(u(0) ? d)j| ≤ ‖u‖∞ sup

( bj/3c

∑
n=0
|B1

n,j|
)

,

where
dj−3n = B1

n,j. (7)

Thus,

‖(u(0) ? d)j‖∞ ≤ ‖u‖∞ sup

( bj/3c

∑
n=0
|B1

n,j|
)

.
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Case k0 = 2: From (6), we acquire

((u(0) ? d)(0) ? d)j =
bj/3c

∑
m=0

(u(0) ? d)mdj−3m =
bj/3c

∑
m=0

( bm/3c

∑
n=0

undm−3n

)
dj−3m.

This infers

((u(0) ? d)(0) ? d)j = u0d0dj + u0d1dj−3 + u0d2dj−6 + u0d3dj−9 + u1d0dj−9 + u0d4dj−12

+ u1d1dj−12 + . . . + u0db j
3 c

d0 + u1db j
3 c−3

d0 + . . . + ub j
32 c

db j
3 c−3b j

32 c
d0.

This implies that

((u(0) ? d)(0) ? d)j =
bj/32c

∑
m=0

um

( bj/3c

∑
n=3m

dn−3mdj−3n

)
.

This infers

((u(0) ? d)(0) ? d)j =
bj/32c

∑
m=0

um

( bj/3c

∑
n=3m

B1
m,nB1

n,j

)
=
bj/32c

∑
m=0

umB2
m,j,

where

B2
m,j =

bj/3c

∑
n=3m

B1
m,nB1

n,j. (8)

So

|((u(0) ? d)(0) ? d)j| =
∣∣∣∣∣ bj/32c

∑
m=0

umB2
m,j

∣∣∣∣∣ ≤ ‖u‖∞

bj/32c

∑
m=0

|B2
m,j|.

This implies

‖((u(0) ? d)(0) ? d)j‖∞ ≤ ‖u‖∞ sup
j

( bj/32c

∑
m=0

|B2
m,j|
)

.

General case: By using the same technique, we acquire the reformulations for k0-th convolutions, which is
in the following

((. . . (((u(0) ? d)(0)) ? d)(0) ? . . . ? d)(0) ? d)j =
bj/3k0 c

∑
m=0

umBk0
m,j.

Which implies

‖((. . . (((u(0) ? d)(0)) ? d)(0) ? . . . ? d)(0) ? d)‖∞ ≤ ‖u‖∞ sup
j

{ bj/3k0 c

∑
m=0

|Bk0
m,j|
}

. (9)

Lemma 2. The term Bk0
m,j in the inequality (9) has the following expression

Bk0
m−1,j−3k0

= Bk0
m,j = Bk0

m+1,j+3k0
. (10)
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Proof. Now we start for an induction process, which is over k0. Then
Case k0 = 1:

B1
m,j = dj−3m = dj+3−3(m+1) = B1

m+1,j+3. (11)

Similarly
B1

m+1,j = dj−3(m+1) = B1
m,j−3. (12)

From (8), we have

B2
m,j =

bj/3c

∑
n=3m

B1
m,nB1

n,j.

Using (11), we have

B2
m,j =

bj/3c

∑
n=3m

B1
m,nB1

n+1,j+3. (13)

Now replace n by n− 3 in (13), we obtain

B2
m,j =

bj/3+3c

∑
n=3(m−1)

B1
m,n−3B1

n−2,j+3.

Now using (12), we acquire

B2
m,j =

bj/3+3c

∑
n=3(m−1)

B1
m+1,nB1

n,j+32 .

so
B2

m,j = B2
m+1,j+32.

We suppose that it is true for an integer k0 = M, that is

BM
m,j = BM

m+1,j+3M . (14)

Case k0 = M + 1: Consider

BM+1
m,j =

bj/3Mc

∑
n=3m

B1
m,nBM

n,j.

Using (14), we have

BM+1
m,j =

bj/3Mc

∑
n=3m

B1
m,nBM

n+1,j+3M . (15)

Now, replace n by n− 3 in (15), we have

BM+1
m,j =

bj/3M+3c

∑
n=3(m+1)

B1
m,n−3BM

n−2,j+3M .

Using (12) and (14), we acquire

BM+1
m,j = BM+1

m+1,j+3M+1.
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Similarly we can prove

BM+1
m,j = BM+1

m−1,j−3M+1.

Hence
Bk0

m−1,j−3k0
= Bk0

m,j = Bk0
m+1,j+3k0

.

Now, applying Lemmas 1 and 2, we arrive at the following useful result:

Corollary 1. The associated constant of a k0-th convolution with vector d = {d0, d1, . . . , d3N−1} is

Dk0 = sup
j

{ bj/3k0 c

∑
m=0

|Bk0
m,j|
}

= sup
j∈Σ(k0,N)

{ bj/3k0 c

∑
m=0

|Bk0
m,j|
}

. (16)

Proof. Assume that d = {d0, d1, . . . , d3N−1}, with N ∈ N and Ω(k0, N) = (3k0 − 2)(3N − 1). Then for
j > Ω(k0, N) and by using Lemma 1, we acquire

Bk0
0,j = 0. (17)

Similarly for j > Ω(k0, N) + m3k0 and using Lemma 2, we have

Bk0
m,j = 0. (18)

Finally, using (17) and (18), we get (16).

2.2. Subdivision Depth for Ternary Subdivision Curves

In this section, we first generalize the inequalities (2.18) and then (2.5) which were presented in [21].
After that, we present a numerical inequality to compute the subdivision depth of ternary subdivision
schemes for curve modeling.

Theorem 1. Consider the initial polygon p0
i , i ∈ Z and pk

i , k ≥ 0, recursively interpreted by (1) together with (2).
Suppose Pk represents the polygon at the points {pk

i }. Then after two successive refinements/iterations k and k + 1,
the error bounds between these two iterations is

‖Pk+1 − Pk‖∞ ≤ ξη(Dk0)
k,

where Dk0 , k0 ≥ 1 defined in (16), η = max
i

∥∥p0
i+1 − p0

i

∥∥ and

ξ = max
( N−2

∑
m=0
|ã0,m| ,

N−2

∑
m=0
|ã1,m| ,

N−2

∑
m=0
|ã2,m|

)
, ãs,m =

N−1

∑
i=m+1

as,i, 0 ≤ s ≤ 2,

ã1,0 =
N−1

∑
i=1

a1,i −
1
3

, ã2,0 =
N−1

∑
i=1

a2,i −
2
3

.

Proof. See in [21].
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Theorem 2. Let a limit curve P∞ be linked with the subdivision iterative process, then under the same conditions
used in Theorem 1 the following inequality hold

∥∥∥P∞ − Pk
∥∥∥

∞
≤ ξη

(
(Dk0)

k

1− Dk0

)
,

where k0 ≥ 1 is a natural number, such that Dk0 < 1.

Proof. See in [21].

Theorem 3. Let k be subdivision depth and let∇k be the error bound between ternary subdivision curve P∞ and its
k-level control polygon Pk. For arbitrary ε > 0, if

k ≥ logDk0

(
ε(1− Dk0)

ξη

)
, (19)

then ∇k ≤ ε.

Proof. Let ∇k be the distance between limit curve P∞ and control polygon Pk at k-th level defined in
Theorem 2, such that

∇k =
∥∥∥P∞ − Pk

∥∥∥
∞
≤ ξη

(
(Dk0)

k

1− Dk0

)
.

To obtain given error tolerance ε > 0, consider

ξη

(
(Dk0)

k

1− Dk0

)
≤ ε,

which implies
ξη

ε(1− Dk0)
≤ (D−1

k0
)k.

Now taking logarithm, we have

k ≥
log
(

ξη
ε(1−Dk0

)

)
log D−1

k0

=

log
(

ξη
ε(1−Dk0

)

)
− log Dk0

= − logDk0

(
ξη

ε(1− Dk0)

)
= logDk0

(
ξη

ε(1− Dk0)

)−1
,

which implies

k ≥ logDk0

(
ε(1− Dk0)

ξη

)
,

then ∇k ≤ ε. This completes the proof.

2.3. Application for Univariate Case

Here, we present a few numerical experiments to compute subdivision depths of ternary subdivision
schemes for curves. The associated constants Dk0 , k0 ≥ 1 defined in (16) of some ternary subdivision
curves are shown in Table 1.
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Table 1. Associated constants of ternary subdivision curves.

Scheme/ Dk0 D1 = δ D2 D3 D4 D5

2-point scheme [12] 0.333333 0.111111 0.037037 0.012346 0.004115
3-point scheme [30] 0.555467 0.253017 0.11107 0.047856 0.020353
4-point scheme [8] 0.441358 0.176393 0.067478 0.027136 0.010728
4-point scheme [6] 0.444444 0.171682 0.070918 0.029278 0.012089

Remark 1. In this technique Dk0 for k0 = 1 is equal to δ defined in [21]. Please note that in [21], if δ > 1 then
error bounds cannot be computed. However, in the proposed technique, if we increase the value of k0 until Dk0

becomes less than one, so using this argument we can compute error bounds in each situation even though the value
of δ becomes greater or equal to one.

Example 1. Given initial polygon p0
i = pi, i ∈ Z with values pk

i , k ≥ 1 be interpreted recursively by the 2-point
ternary approximating subdivision scheme [12] (i.e., a0,0 = 5

6 , a0,1 = 1
6 , a1,0 = 1

2 , a1,1 = 1
2 , a2,0 = 1

6 , a2,1 = 5
6 ).

For this ternary two point scheme (N = 2), we have from (16)

Dk0 = sup
j∈Σ(k0,2)

{ bj/3k0 c

∑
m=0

|Bk0
m,j|
}

.

For k0 = 1, we get

D1 = sup
j∈Σ(1,2)

{ bj/3c

∑
m=0
|B1

m,j|
}

= sup
j∈{3,4,5}

{ bj/3c

∑
m=0
|dj−3m|

}
.

Using (3) and Lemma 1, we have d = {dn}5
n=0 with dn = 0 for n ≥ 6. Hence

{d0, d1, d2, d3, d4, d5} =
{

1
3

,
1
3

,
1
6

, 0, 0,
1
6

}
.

Now consider

D1 = sup
{ b3/3c

∑
m=0
|d3−3m|,

b4/3c

∑
m=0
|d4−3m|,

b5/3c

∑
m=0
|d5−3m|

}
.

This implies

D1 = sup
{
|d3|+ |d0|, |d4|+ |d1|, |d5|+ |d2|

}
= sup

{
|0|+

∣∣∣∣13
∣∣∣∣, |0|+ ∣∣∣∣13

∣∣∣∣, ∣∣∣∣16
∣∣∣∣+ ∣∣∣∣16

∣∣∣∣} =
1
3

.

For k0 = 2, we get

D2 = sup
j∈Σ(2,2)

{ bj/32c

∑
m=0

|B2
m,j|
}

= sup
j∈{27,28,...,35}

{ bj/9c

∑
m=0
|B2

m,j|
}

= sup
j∈{27,28,...,35}

{ bj/9c

∑
m=0

∣∣∣∣ bj/3c

∑
n=3m

B1
m,nB1

n,j

∣∣∣∣}.



Mathematics 2020, 8, 817 10 of 22

This implies

D2 = sup
{ b27/9c

∑
m=0

∣∣∣∣ b27/3c

∑
n=3m

B1
m,nB1

n,27

∣∣∣∣, b28/9c

∑
m=0

∣∣∣∣ b28/3c

∑
n=3m

B1
m,nB1

n,28

∣∣∣∣, b29/9c

∑
m=0

∣∣∣∣ b29/3c

∑
n=3m

B1
m,nB1

n,29

∣∣∣∣,
b30/9c

∑
m=0

∣∣∣∣ b30/3c

∑
n=3m

B1
m,nB1

n,30

∣∣∣∣, b31/9c

∑
m=0

∣∣∣∣ b31/3c

∑
n=3m

B1
m,nB1

n,31

∣∣∣∣, b32/9c

∑
m=0

∣∣∣∣ b32/3c

∑
n=3m

B1
m,nB1

n,32

∣∣∣∣,
b33/9c

∑
m=0

∣∣∣∣ b33/3c

∑
n=3m

B1
m,nB1

n,33

∣∣∣∣, b34/9c

∑
m=0

∣∣∣∣ b34/3c

∑
n=3m

B1
m,nB1

n,34

∣∣∣∣, b35/9c

∑
m=0

∣∣∣∣ b35/3c

∑
n=3m

B1
m,nB1

n,35

∣∣∣∣}.

This further implies

D2 = sup
{

χ1, χ2, χ3, χ4, χ5, χ6, χ7, χ8, χ9

}
,

where

χ1 =

∣∣∣∣d0d27 + d1d24 + d2d21 + d3d18 + d4d15 + d5d12 + d6d9 + d7d6 + d8d3 + d9d0

∣∣∣∣+ ∣∣∣∣d0d18

+d1d15 + d2d12 + d3d9 + d4d6 + d5d3 + d6d0

∣∣∣∣+ ∣∣∣∣d0d9 + d1d6 + d2d3 + d3d0

∣∣∣∣+ ∣∣∣∣d0d0

∣∣∣∣,

χ2 =

∣∣∣∣d0d28 + d1d25 + d2d22 + d3d19 + d4d16 + d5d13 + d6d10 + d7d7 + d8d4 + d9d1

∣∣∣∣+ ∣∣∣∣d0d19

+d1d16 + d2d13 + d3d10 + d4d7 + d5d4 + d6d1

∣∣∣∣+ ∣∣∣∣d0d10 + d1d7 + d2d4 + d3d1

∣∣∣∣+ ∣∣∣∣d0d1

∣∣∣∣,

χ3 =

∣∣∣∣d0d29 + d1d26 + d2d23 + d3d20 + d4d17 + d5d14 + d6d11 + d7d8 + d8d5 + d9d2

∣∣∣∣+ ∣∣∣∣d0d20

+d1d17 + d2d14 + d3d11 + d4d8 + d5d5 + d6d2

∣∣∣∣+ ∣∣∣∣d0d11 + d1d8 + d2d5 + d3d2

∣∣∣∣+ ∣∣∣∣d0d2

∣∣∣∣,

χ4 =

∣∣∣∣d0d30 + d1d27 + d2d24 + d3d21 + d4d18 + d5d15 + d6d12 + d7d9 + d8d6 + d9d3 + d10d0

∣∣∣∣
+

∣∣∣∣d0d21 + d1d18 + d2d15 + d3d12 + d4d9 + d5d6 + d6d3 + d7d0

∣∣∣∣+ ∣∣∣∣d0d12 + d1d9 + d2d6

+d3d3 + d4d0

∣∣∣∣+ ∣∣∣∣d0d3 + d1d0

∣∣∣∣,
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χ5 =

∣∣∣∣d0d31 + d1d28 + d2d25 + d3d22 + d4d19 + d5d16 + d6d13 + d7d10 + d8d7 + d9d4 + d10d1

∣∣∣∣
+

∣∣∣∣d0d22 + d1d19 + d2d16 + d3d13 + d4d10 + d5d7 + d6d4 + d7d1

∣∣∣∣+ ∣∣∣∣d0d13 + d1d10 + d2d7

+d3d4 + d4d1

∣∣∣∣+ ∣∣∣∣d0d4 + d1d1

∣∣∣∣,

χ6 =

∣∣∣∣d0d32 + d1d29 + d2d26 + d3d23 + d4d20 + d5d17 + d6d14 + d7d11 + d8d8 + d9d5 + d10d2

∣∣∣∣
+

∣∣∣∣d0d23 + d1d20 + d2d17 + d3d14 + d4d11 + d5d8 + d6d5 + d7d2

∣∣∣∣+ ∣∣∣∣d0d14 + d1d11 + d2d8

+d3d5 + d4d2

∣∣∣∣+ ∣∣∣∣d0d5 + d1d2

∣∣∣∣,

χ7 =

∣∣∣∣d0d33 + d1d30 + d2d27 + d3d24 + d4d21 + d5d18 + d6d15 + d7d12 + d8d9 + d9d6 + d10d3

+d11d0

∣∣∣∣+ ∣∣∣∣d0d24 + d1d21 + d2d18 + d3d15 + d4d12 + d5d9 + d6d6 + d7d3 + d8d0

∣∣∣∣+ ∣∣∣∣d0d15

+d1d12 + d2d9 + d3d6 + d4d3 + d5d0

∣∣∣∣+ ∣∣∣∣d0d6 + d1d3 + d2d0

∣∣∣∣,

χ8 =

∣∣∣∣d0d34 + d1d31 + d2d28 + d3d25 + d4d22 + d5d19 + d6d16 + d7d13 + d8d10 + d9d7 + d10d4

+d11d1

∣∣∣∣+ ∣∣∣∣d0d25 + d1d22 + d2d19 + d3d16 + d4d13 + d5d10 + d6d7 + d7d4 + d8d1

∣∣∣∣+ ∣∣∣∣d0d16

+d1d13 + d2d10 + d3d7 + d4d4 + d5d1

∣∣∣∣+ ∣∣∣∣d0d7 + d1d4 + d2d1

∣∣∣∣,

χ9 =

∣∣∣∣d0d35 + d1d32 + d2d29 + d3d26 + d4d23 + d5d20 + d6d17 + d7d14 + d8d11 + d9d8 + d10d5

+d11d2

∣∣∣∣+ ∣∣∣∣d0d26 + d1d23 + d2d20 + d3d17 + d4d14 + d5d11 + d6d8 + d7d5 + d8d2

∣∣∣∣+ ∣∣∣∣d0d17

+d1d14 + d2d11 + d3d8 + d4d5 + d5d2

∣∣∣∣+ ∣∣∣∣d0d8 + d1d5 + d2d2

∣∣∣∣}.

Since di = 0, for all i > 5, so

D2 = sup
{

0 + |d5d3|+ |d2d3 + d3d0|+ |d0d0|, 0 + |d5d4|+ |d2d4 + d3d1|+ |d0d1|, 0 + |d5d5|

+|d2d5 + d3d2|+ |d0d2|, 0 + 0 + |d3d3 + d4d0|+ |d0d3 + d1d0|, 0 + 0 + |d3d4 + d4d1|
+|d0d4 + d1d1|, 0 + 0 + |d3d5 + d4d2|+ |d0d5 + d1d2|, 0 + 0 + |d4d3 + d5d0|+ |d1d3 + d2d0|,

0 + 0 + |d4d4 + d5d1|+ |d1d4 + d2d1|, 0 + 0 + |d4d5 + d5d2|+ |d1d5 + d2d2|
}

.
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This further implies

D2 = sup
{

1
9

,
1
9

,
1
9

,
1
9

,
1
9

,
1
9

,
1
9

,
1
9

,
1
9

}
=

1
9

.

Similarly, we can compute the values of Dk0 , k0 ≥ 3. For convenience, we have computed the values up to
k0 = 5, which are shown in Table 1. Its subdivision depth k (level of iterations) is computed by using Theorem 3 at
different values of Dk0 , k0 ≥ 1 which are given in Table 2.

Table 2. Subdivision depth of 2-point approximating ternary subdivision curves.

Dk0 /ε 6.88 × 10−5 2.83 × 10−7 1.16 × 10−9 4.79 × 10−12 1.97 × 10−14 8.12 × 10−17 3.34 × 10−19

D1 = δ 5 10 15 20 25 30 35
D2 3 5 8 10 13 15 18
D3 2 3 5 7 8 10 12
D4 1 2 4 5 6 7 9
D5 1 2 3 4 5 6 7

From this table, we observed that as k0 increases subdivision depth decreases. This shows that the less
subdivision depth can be obtained by using proposed technique. In other words, we need fewer iteration
to get optimal subdivision depth as compared to the technique given in [21] (which is denoted by δ).
For example, by [21], it needs thirty five iterations to obtain error tolerance ε = 3.34× 10−19 but using our
technique, it needs only seven iterations corresponding to D5. The comparison of first and fifth convolution
results is shown in Figure 1a.

Example 2. Consider the 3-point interpolating subdivision scheme [30] with b = 0.2778, a = b− 1
3 . Its subdivision

depths k for Dk0 , k0 ≥ 1 (see, Table 1) are computed by using Theorem 3, which are shown in Table 3 and in graphical
sense shown in Figure 1b.

Table 3. Subdivision depth of 3-point interpolating ternary subdivision curves.

Dk0 /ε 1.38 × 10−3 2.81 × 10−5 5.73 × 10−7 1.16 × 10−8 2.37 × 10−10 4.83 × 10−12 9.84 × 10−14

D1 = δ 8 15 21 28 34 41 48
D2 3 6 9 12 14 17 20
D3 2 4 5 7 9 11 12
D4 1 3 4 5 6 8 9
D5 1 2 3 4 5 6 7

Example 3. Given initial control polygon p0
i = pi, i ∈ Z with values pk

i , k ≥ 1 be illustrated recursively by the
ternary 4-point approximating scheme [8].

Its subdivision depth k for Dk0 , k0 ≥ 1 are given in Table 4. It is also demonstrated with the help of Figure 1c.

Table 4. Subdivision depth of 4-point approximating ternary subdivision curves.

Dk0 /ε 1.26 × 10−3 1.35 × 10−5 1.45 × 10−7 1.56 × 10−9 1.67 × 10−11 1.79 × 10−13 1.92 × 10−15

D1 = δ 6 12 17 23 28 34 40
D2 3 5 8 11 13 16 18
D3 2 3 5 7 8 10 12
D4 1 3 4 5 6 8 9
D5 1 2 3 4 5 6 7
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Example 4. Given p0
i = pi, i ∈ Z be the initial polygon and for all positive integers we have the values pk

i be
specified recursively by ternary 4-point interpolating subdivision scheme [6] with parameter w = 1

12 .
Its subdivision depths for Dk0 , k0 ≥ 1 (see, Table 1) are given in Table 5 and its performance is shown in

Figure 1d.

Table 5. Subdivision depth of 4-point interpolating ternary subdivision curves.

Dk0 /ε 1.22 × 10−3 1.47 × 10−5 1.78 × 10−7 2.16 × 10−9 2.61 × 10−11 3.15 × 10−13 3.81 × 10−15

D1 = δ 6 12 17 22 28 33 39
D2 3 5 8 10 13 15 18
D3 2 3 5 7 8 10 12
D4 1 2 4 5 6 7 9
D5 1 2 3 4 5 6 7

(a) 2-point scheme [12]

(b) 3-point scheme [30]

(c) 4-point scheme [8]

(d) 4-point scheme [6]

Figure 1. Comparison between first and fifth convolutions. This shows that the error decreases with the
increase of convolution. Of course, it decreases with the increase of subdivision depth.
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3. Preliminary Results for Bivariate Case

In this section, we generalize our representation of the 2-dimensional case to the 3-dimensional case.
That is, we first focus our attention on generalizing the inequalities presented in Section 2.1 then we
generalize the inequalities of Section 2.2 to compute subdivision depth of tensor product surfaces. For this,
let {pk

i,j; i, j ∈ Z} be the sequence of 3D points RN, N ≥ 3 which are produced by the following tensor
product of ternary scheme (1)

pk+1
3i+α,3j+β =

N−1

∑
r=0

N−1

∑
s=0

aα,raβ,s pk
i+r,m+s, α, β = 0, 1, 2, (20)

where aα,r satisfies (2).

Now we assign the coefficients f = { fn}n∈N and g = {gn}n∈N, by using the same procedure of
symbolization given in [21] i.e.,

f3r = a0,N−r−1,

f3r+1 = a1,N−r−1,

f3r+2 = a2,N−r−1 r = 0, ..., N − 1.

g3s = b0,N−s−1

g3s+1 = b1,N−s−1

g3s+2 = b2,N−s−1 s = 0, ..., N − 1.

To achieve the goal, all that is needed is to make the set up given before Section 2.1 for the 3D case.
Here we skip the unnecessary detail and directly go to the following results.

Lemma 3. Let u = um,n be the vector of finite length for bivariate case and f = { fn}3N−1
n=0 , g = {gn}3N−1

n=0 with
fn = gn = 0 for n ≥ 3N, then the following two dimensional k0 convolutions are bounded by

max
i,j
|uk0

i,j | ≤ Fk0 Gk0 max
m,n
|u0

m,n|,

where

Fk0 = max
i

{ bi/3k0 c

∑
m=0

|Bk0, f
m,i |

}
and

Gk0 = max
j

{ bj/3k0 c

∑
n=0

|Bk0,g
n,j |

}
.

Proof. To prove the result, we start with the case of k0 = 1 and k0 = 2 convolutions and later on we
analyze the general case.
Case k0 = 1: Consider an arbitrary sequence of vectors ui,j. Then we have

uk0
i,j = (uk0−1;0 ? f g)i,j =

bi/3c

∑
m=0

bj/3c

∑
n=0

uk0−1
m,n fi−3mgj−3n,
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where we are taking B1, f
m,i = fi−3m and gj−3n = B1,g

n,j for arbitrary sequence f and g. Thus,

uk0
i,j = (uk0−1;0 ? f g)i,j =

bi/3c

∑
m=0

bj/3c

∑
n=0

uk0−1
m,n B1, f

m,iB
1,g
n,j .

This implies

max
i,j
|uk0

i,j | = max
i,j

∣∣∣∣ bi/3c

∑
m=0

bj/3c

∑
n=0

uk0−1
m,n B1, f

m,iB
1,g
n,j

∣∣∣∣,
≤ max

i,j

bi/3c

∑
m=0

bj/3c

∑
n=0
|B1, f

m,i||B
1,g
n,j |max

m,n
|uk0−1

m,n |. (21)

Consider

F1 = max
i

{ bi/3c

∑
m=0
|B1, f

m,i|
}

and

G1 = max
j

{ bj/3c

∑
n=0
|B1,g

n,j |
}

,

then from (21), we obtain
max

i,j
|uk0

i,j | ≤ F1G1 max
m,n
|uk0−1

m,n |.

Case k0 = 2: Now, after applying two time convolution, we obtain

uk0−1
m,n = (uk0−2;0 ? f g)m,n = ((uk0−1;0 ? f g) ? f g)i,j.

This implies

uk0−1
i,j =

bi/3c

∑
m=0

bj/3c

∑
n=0

(uk0−1;0 ? f g)i,j fi−3mgj−3n.

This leads to

uk0−1
i,j =

bi/3c

∑
m=0

bj/3c

∑
n=0

( bm/3c

∑
p=0

bn/3c

∑
s=0

uk0−2
p,s fm−3pgn−3s

)
fi−3mgj−3n.

This again implies that

uk0−1
i,j =

bi/32c

∑
m=0

bj/32c

∑
n=0

uk0−2
m,n

bi/3c

∑
r=3m

fr−3m fi−3r

bj/3c

∑
q=3n

gq−3ngj−3q.

Further implies

uk0−1
i,j =

bi/32c

∑
m=0

bj/32c

∑
n=0

uk0−2
m,n

bi/3c

∑
r=3m

B1, f
m,rB1, f

r,i

bj/3c

∑
q=3n

B1,g
n,qB1,g

q,j .
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Furthermore

uk0
i,j =

bi/32c

∑
m=0

bj/32c

∑
n=0

uk0−2
m,n B2, f

m,iB
2,g
n,j .

Now

max
i,j
|uk0

i,j | = max
i,j

∣∣∣∣ bi/32c

∑
m=0

bj/32c

∑
n=0

uk0−2
m,n B2, f

m,iB
2,g
n,j

∣∣∣∣,
≤ max

i,j

bi/32c

∑
m=0

bj/32c

∑
n=0

∣∣∣∣B2, f
m,i

∣∣∣∣∣∣∣∣B2,g
n,j

∣∣∣∣max
m,n

∣∣∣∣uk0−2
m,n

∣∣∣∣. (22)

Consider

F2 = max
i

{ bi/32c

∑
m=0

∣∣∣∣B2, f
m,i

∣∣∣∣}
and

G2 = max
j

{ bj/32c

∑
n=0

∣∣∣∣B2,g
n,j

∣∣∣∣},

then we obtain from (22)
max

i,j
|uk0

i,j | ≤ F2G2 max
m,n
|uk0−2

m,n |.

By the same strategy, we get the following reformulations for k0-th convolution

uk0
i,j = (uk0−k0;0 ? f g)m,n = (. . . (((uk0−1;0 ? f g) ? f g) ? . . . ? f g) ? f g)i,j.

This implies

uk0
i,j =

bi/3k0 c

∑
m=0

bj/3k0 c

∑
n=0

u0;0
m,nBk0, f

m,i Bk0,g
n,j =

bi/3k0 c

∑
m=0

bj/3k0 c

∑
n=0

u0
m,nBk0, f

m,i Bk0,g
n,j ,

where

Bk0, f
m,i =

bi/3k0−1c

∑
p=3m

Bk0−1, f
m,p Bk0−1, f

p,i

and

Bk0,g
n,j =

bj/3k0−1c

∑
r=3n

Bk0−1,g
n,s Bk0−1,g

n,j .

Thus,

max
i,j
|uk0

i,j | = max
i,j

∣∣∣∣ bi/3k0 c

∑
m=0

bj/3k0 c

∑
n=0

u0
m,nBk0, f

m,i Bk0,g
n,j

∣∣∣∣,
≤ max

i,j

bi/3k0 c

∑
m=0

bj/3k0 c

∑
n=0

∣∣∣∣Bk0, f
m,i

∣∣∣∣∣∣∣∣Bk0,g
n,j

∣∣∣∣max
m,n

∣∣∣∣u0
m,n

∣∣∣∣. (23)
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Now consider

Fk0 = max
i

{ bi/3k0 c

∑
m=0

|Bk0, f
m,i |

}
= max

i∈Σ(k0,N)

{ bi/3k0 c

∑
m=0

|Bk0, f
m,i |

}
(24)

and

Gk0 = max
j

{ bj/3k0 c

∑
n=0

|Bk0,g
n,j |

}
= max

j∈Σ(k0,N)

{ bj/3k0 c

∑
n=0

|Bk0,g
n,j |

}
, (25)

then, from (23), we obtain
max

i,j
|uk0

i,j | ≤ Fk0 Gk0 max
m,n
|u0

m,n|,

where

max
i,j

{ bi/3k0 c

∑
m=0

bj/3k0 c

∑
n=0

|Bk0, f
m,i ||B

k0,g
n,j |

}
= max

i,j∈Σ(k0,N)

{ bi/3k0 c

∑
m=0

bj/3k0 c

∑
n=0

|Bk0, f
m,i ||B

k0,g
n,j |

}
.

3.1. Subdivision Depth for Ternary Subdivision Surfaces

In this section, we first compute error bounds for subdivision surfaces. Secondly, we use these error
bounds to compute subdivision depths by using the methodology given in [21].

Theorem 4. Consider the initial control polygon p0
i,j, i, j ∈ Z and the values pk

i,j, k ≥ 0, recursively defined by (20)

together with (2). Also Pk be the representation of polygon at the points {pk
i,j}. Then after two consecutive iterations

k and k + 1 the error bounds is given as follows

‖Pk+1 − Pk‖∞ ≤ (λβ1 + τβ2 + µβ3) (Fk0 Gk0)
k,

where Fk0 , Gk0 , k0 ≥ 1 defined in (24) and (25), βt = maxi,j ‖40
i,j,t‖, t = 1, 2, 3,

4k
i,j,1 = pk

i+1,j − pk
i,j, 4k

i,j,2 = pk
i,j+1 − pk

i,j, 4k
i,j,3 = pk

i+1,j+1 − pk
i,j+1,

where λ, τ and µ are defined in [21].

Proof. See in [21].

Theorem 5. Let a limit surface P∞ be linked with the subdivision iterative process, then under the same conditions
used in Theorem 4 the following inequality hold

‖P∞ − Pk‖∞ ≤ (λβ1 + τβ2 + µβ3)

(
(Fk0 Gk0)

k

1− Fk0 Gk0

)
,

where k0 ≥ 1 is a natural number, such that Fk0 Gk0 < 1.

Proof. See in [21].

Remark 2. Here F1G1 is also equal to δ which is defined in [21].
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Theorem 6. Let k be subdivision depth and let ∇k be the error bound between ternary subdivision surface P∞ and
its k-level control polygon Pk. For arbitrary ε > 0, if

k ≥ log(Fk0
Gk0

)

(
ε(1− Fk0 Gk0)

λβ1 + τβ2 + µβ3

)
, (26)

then ∇k ≤ ε.

Proof. Let ∇k be the distance between limit surface P∞ and control polygon Pk at k-th level defined in
Theorem 5, such that

∇k = ‖P∞ − Pk‖∞ ≤ (λβ1 + τβ2 + µβ3)

(
(Fk0 Gk0)

k

1− Fk0 Gk0

)
.

To obtain given tolerance ε > 0, consider

(λβ1 + τβ2 + µβ3)

(
(Fk0 Gk0)

k

1− Fk0 Gk0

)
≤ ε,

which implies (
λβ1 + τβ2 + µβ3

ε(1− Fk0 Gk0)

)
≤ ((Fk0 Gk0)

−1)k.

Now taking logarithm , we have

k ≥
log
(

λβ1+τβ2+µβ3
ε(1−Fk0

Gk0
)

)
log(Fk0 Gk0)

−1 =

log
(

λβ1+τβ2+µβ3
ε(1−Fk0

Gk0
)

)
− log(Fk0 Gk0)

= − log(Fk0
Gk0

)

(
λβ1 + τβ2 + µβ3

ε(1− Fk0 Gk0)

)
,

which implies

k ≥ log(Fk0
Gk0

)

(
λβ1 + τβ2 + µβ3

ε(1− Fk0 Gk0)

)−1
,

which further implies

k ≥ log(Fk0
Gk0

)

(
ε(1− Fk0 Gk0)

λβ1 + τβ2 + µβ3

)
,

then ∇k ≤ ε. This completes the proof.

3.2. Application for Bivariate Case

Here, we present some numerical examples to compute subdivision depth for subdivision surfaces.
The associated constants Fk0 Gk0 , k0 ≥ 1 for some ternary subdivision surfaces by using (24) and (25) are
shown in Table 6. We see that the values of Fk0 Gk0 decrease with the increase of k0. This is the main
advantage of our proposed approach.
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Table 6. Associated constants of ternary subdivision surfaces.

Scheme/Fk0 Gk0 F1G1 F2G2 F3G3 F4G4 F5G5

2-point scheme [12] 0.333333 0.111111 0.037037 0.012346 0.004115
3-point scheme [30] 0.61716 0.304535 0.145678 0.068303 0.031622
4-point scheme [8] 0.505401 0.233098 0.096089 0.040774 0.016958
4-point scheme [6] 0.54321 0.228729 0.10226 0.047435 0.021475

Example 5. Given the initial polygon p0
i,j = pi,j, i, j ∈ Z with values pk

i,j, k ≥ 1 be frequent explanation in [12],
then the subdivision depths for Fk0 Gk0 , k0 ≥ 1 by using Theorem 6 are shown in Table 7. The first and fifth
convolution comparison results are shown in Figure 2a.

Table 7. Subdivision depth of 2-point ternary subdivision surfaces.

Fk0 Gk0 /ε 2.06 × 10−3 8.5 × 10−7 3.49 × 10−9 1.43 × 10−11 5.92 × 10−14 2.43 × 10−16 1.003 × 10−18

F1G1 5 10 15 20 25 30 35
F2G2 3 5 8 10 13 15 18
F3G3 1 3 5 6 8 10 11
F4G4 1 2 4 5 6 7 9
F5G5 1 2 3 4 5 6 7

Example 6. Given control polygon p0
i,j = pi,j, i, j ∈ Z with the values pk

i,j for all positive integers be illustrated
by the tensor product of the scheme demonstrated in [30], then the subdivision depths for Fk0 Gk0 , k0 ≥ 1 by using
Theorem 6 are shown in Table 8 and in the sense of graphical structure these results are shown in Figure 2b.

Table 8. Subdivision depth of 3-point ternary subdivision surfaces.

Fk0 Gk0 /ε 7.25 × 10−3 2.29 × 10−4 7.25 × 10−6 2.29 × 10−7 7.25 × 10−9 2.29 × 10−10 7.25 × 10−12

F1G1 9 16 23 31 38 45 52
F2G2 3 6 9 12 15 18 21
F3G3 2 4 5 7 9 11 13
F4G4 1 3 4 5 6 8 9
F5G5 1 2 3 4 5 6 7

Example 7. Given an initial control polygon p0
i,j = pi,j, i, j ∈ Z with the values pk

i,j, k ≥ 1 be frequent explanation
by the tensor product of the scheme presented in [8], then the subdivision depths for Fk0 Gk0 , k0 ≥ 1 by using Theorem
6 are shown in Table 9 and graphical results are presented in Figure 2c.

Table 9. Subdivision depth of 4-point ternary subdivision surfaces.

Fk0 Gk0 /ε 6.59 × 10−3 1.11 × 10−4 1.18 × 10−6 3.21 × 10−8 5.45 × 10−10 9.24 × 10−12 1.56 × 10−13

F1G1 7 13 19 25 31 37 43
F2G2 3 6 9 11 14 17 20
F3G3 2 4 5 7 9 10 12
F4G4 1 3 4 5 6 8 9
F5G5 1 2 3 4 5 6 7

Example 8. Given p0
i,j = pi,j, i, j ∈ Z be the initial polygon with values pk

i,j, k ≥ 1 be illustrated by the tensor
product of the scheme presented in [6] with w = 1/12, then the subdivision depths for Fk0 Gk0 , k0 ≥ 1 are shown in
Table 10. Also demonstration of graphical view are given in Figure 2d.
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Table 10. Subdivision depth of 4-point ternary subdivision surfaces.

Fk0 Gk0 /ε 7.31 × 10−3 1.57 × 10−4 3.37 × 10−6 7.24 × 10−8 1.55 × 10−9 3.34 × 10−11 7.17 × 10−13

F1G1 8 14 20 26 33 39 45
F2G2 3 5 8 11 13 16 18
F3G3 2 3 5 7 8 10 12
F4G4 1 3 4 5 6 8 9
F5G5 1 2 3 4 5 6 7

(a) 2-point tensor product scheme [12]

(b) 3-point tensor product scheme [30]

(c) 4-point tensor product scheme [8]

(d) 4-point tensor product scheme [6]

Figure 2. Comparison between first and fifth convolutions. This shows error decreases with the increase of
convolution. Of course, it decreases with the increase of subdivision depth.
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4. Conclusions

We described a formula to find the sharp error bounds between the polygon at any stage and the
limiting polygon of the subdivision scheme. In addition, we have achieved a computational formula of
subdivision depth for ternary subdivision schemes by using the error bounds. Existing methods only work
under the strong condition given in ([21], Equation (2.3)). In this paper, we relaxed the strict condition by
convolving the mask of the schemes. Using our framework, we can get sharp bounds and subdivision
depths by increasing the convolution steps. Ultimately, the suggested numerical method work when the
other methods fail. In addition, extensive numerical experiments predict that if we have a prescribed error
tolerance then a finer shape can be obtained by using fewer subdivision steps (i.e., depths). In the future,
we will generalize our framework for higher arity (i.e., quaternary, quinary, and so on) schemes.
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