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Abstract
This article presents a numerical algorithm for solving time fractional Burgers’ and
Fisher’s equations using cubic B-spline finite element method. The L1 formula with
Caputo derivative is used to discretized the time fractional derivative, whereas the
Crank–Nicolson scheme based on cubic B-spline functions is used to interpolate the
solution curve along the spatial grid. The numerical scheme has been implemented
on three test problems. The obtained results indicate that the proposed method is a
good option for solving nonlinear fractional Burgers’ and Fisher’s equations. The error
norms L2 and L∞ have been calculated to validate the efficiency and accuracy of the
presented algorithm.

Keywords: Cubic B-spline collocation method; Time fractional differential equation;
Caputo’s fractional derivative; Stability and convergence; Finite difference formulation

1 Introduction
In recent years, most of the practical problems arising in different fields of science like biol-
ogy, chemistry, physics, engineering, and mathematics lead to nonlinear fractional partial
differential equations [1–3]. To solve these nonlinear mathematical models, several tech-
niques have been developed. However, still it is noted that a large number of nonlinear
fractional differential equations that are encountered in these areas are very difficult to
solve numerically. The numerical solution of such kind of models has been the key inter-
est of researchers due to their wide range of applications in real life.

In open literature, a lot of work is available on solving linear/nonlinear partial/fractional
partial differential equations numerically by means of different techniques. The authors in
[4] used the Galerkin finite element method to solve fractional diffusion and fractional dif-
fusion wave equations. A B-spline collocation method was used by [5] for numerical treat-
ment of fractional diffusion and fractional diffusion wave equations. Mehbobi et al. [6]
employed radial basis functions to solve time fractional nonlinear Schrodinger equation.
The authors in [7, 8] investigated the approximate solutions of fractional telegraph equa-
tion by means of radial basis functions and a fully discrete local discontinuous Galerkin
method respectively. Nonlinear Fisher’s equation has been studied in [9, 10] by means of
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variational iteration method (VIM) and homotopy perturbation method (HPM) respec-
tively. Yokus and Kaya [11] employed the Cole–Hopf transformation and the expansion
methods to solve time fractional Burgers’ equation. Jin et al. [12] presented the numerical
analysis of nonlinear sub-diffusion equations. Li et al. [13] proposed Galerkin’s finite el-
ement approach for numerical solution of nonlinear time fractional parabolic equations.
A Galerkin scheme based on Crank–Nicolson method has been used in [14] for solving
nonlocal coupled parabolic problems. A cubic B-spline based Galerkin approach has been
applied by Iqbal et al. [15] to solve Schrodinger equation. In general, the finite element
method based on third degree basis spline functions has not been widely used for solving
time fractional problems and this will be the focus of our paper. In this work, we consider
the following generalized time fraction partial differential equation:

∂αy(z, t)
∂tα

+ η
(
y(z, t)

)q(y(z, t)
)

z – ν
(
y(z, t)

)
zz – βy(z, t)

[
1 – y(z, t)

]
= H(z, t),

0 ≤ z ≤ L, 0 ≤ t ≤ T , 0 < α ≤ 1, (1)

subject to the term of initial and boundary conditions

y(z, 0) = g(z), 0 ≤ z ≤ L, (2)

y(0, t) = g1(t), y(L, t) = g2(t), 0 ≤ t ≤ T , (3)

where η, ν , β are parameters, H(z, t) is the source term, q is a positive integer, and g(z),
gi(t) are known functions. There are several interpretations of fractional order derivatives;
however, we use Caputo’s definition as follows [16]:

∂αy(z, t)
∂tα

=

{∫ t
0

∂αy(z,s)
∂sα

(t–s)M–α–1

Γ (M–α) ds, M – 1 < α < M,
∂αy(z,t)

∂tα , M = α,
(4)

where M is the smallest integer exceeding α.
If we take η = 0 and q = 1, equation (1) takes the following form:

∂αy(z, t)
∂tα

– ν
(
y(z, t)

)
zz – βy(z, t)

[
1 – y(z, t)

]
= H(z, t). (5)

The above equation, known as time fractional Fisher’s equation [17], is a mathematical
model for the temporal spatial propagation of a virile gene in an infinite domain. This
model is also used in chemical kinetics [18], auto catalytic chemical reactions [19], neu-
rophysiology [20], nuclear reactor theory [21], branching Brownian motion process [22],
and flame propagation [23].

If we set β = 0 and q = 1 in (1), it reduces to Burgers’ equation

∂αy(z, t)
∂tα

+ ηy(z, t)
(
y(z, t)

)
z – ν

(
y(z, t)

)
zz = H(z, t). (6)

This is the simplest nonlinear model in fluid dynamics for diffusive waves. It appears in
various physical issues such as viscous sound waves, waves in fluid-filled viscous elastic
pipes, magneto hydrodynamic waves in a medium with finite electrical conductivity [24]
and one-dimensional turbulence.
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2 Description of numerical method
Let us partition the temporal domain [0, T] into N subintervals [tn, tn+1] : tn = n�t, n =
0, 1, 2, . . . , N , where �t = T

N . The fractional time derivative defined in equation (4) for M =
1 can be approximated at t = tn+1 by using L1 formula as follows [25]:

∂αy(z, tn+1)
∂tα

=
(�t)–α

Γ (2 – α)

n∑

ξ=0

σξ

[
y(z, tn–ξ+1) – y(z, tn–ξ )

]
+ En+1

�t , (7)

where σξ = (ξ + 1)1–α – ξ 1–α and En+1
�t denotes the truncation error at (n + 1)th time stage.

This error is bounded s.t.

∣∣En+1
�t

∣∣ ≤ ς (�t)2–α , ς ∈ R
+.

Moreover, σξ s have the following attributes [25]:
• σ0 = 1 and 0 < σξ , ξ = 1, 2, . . . , n;
• σ0 > σ1 > σ2 > · · · > σξ , σξ → 0 as ξ → ∞;
•

∑n
ξ=0(σξ – σξ+1) + σn+1 = (1 – σ1) +

∑n–1
ξ=1(σξ – σξ+1) + σn = 1.

Using (7) together with theta weighted scheme, equation (1), with q = 1, takes the following
shape:

γ

n∑

ξ=0

σξ

[
yn–ξ+1 – yn–ξ

]
+ θ

[
η(yyz)n+1 – ν(yzz)n+1 – βyn+1]

+ (1 – θ )
[
η(yyz)n – ν(yzz)n – βyn] = Hn+1 + βFn, (8)

where γ = (�t)–α

Γ (2–α) , yn = y(z, tn), and Fn = (y(z, tn))2. Now, we use the following formula to
linearize the term (yyz)n+1 [26]:

(yyz)n+1 = yn+1yn
z + ynyn+1

z – ynyn
z . (9)

Using (9) in (8) for θ = 1/2, we get

φnyn+1 + ϕn(yz)n+1 – ν(yzz)n+1 = (2γ + β)yn + ν(yzz)n

– 2γ

n∑

ξ=1

σξ

[
yn–ξ+1 – yn–ξ

]
+ �

n+1, (10)

where φn = 2γ – β + η(yz)n, ϕn = ηyn, and �
n+1 = Hn+1 + βFn.

Now, we partition the spatial domain [0, L] into R subintervals [zr , zr+1] : zr = rh, r =
0, 1, 2, . . . , R, where h = L

R .
Let Y (z, t) be the cubic B-spline solution to the semi-discretized scheme (10) at (n + 1)th

time level s.t.

Y (z, tn+1) =
R+1∑

j=–1

Dj(tn+1)Bj(z), (11)
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where Dj(tn+1)s are unknowns to be identified and Bj(z) are third degree basis spline func-
tions defined as follows [27]:

Bj(z) =
1

6h3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z – zj)3, if z ∈ [zj, zj+1),

h3 + 3h2(z – zj+1) + 3h(z – zj+1)2 – 3(z – zj+1)3, if z ∈ [zj+1, zj+2),

h3 + 3h2(zj+3 – z) + 3h(zj+3 – z)2 – 3(zj+3 – z)3, if z ∈ [zj+2, zj+3),

(zj+4 – z)3, if z ∈ [zj+3, zj+4),

0, otherwise.

(12)

In this way, equation (10) can be written as follows:

φnY n+1 + ϕn(Yz)n+1 – ν(Yzz)n+1 = (2γ + β)Y n + ν(Yzz)n

– 2γ

n∑

ξ=1

σξ

[
Y n–ξ+1 – Y n–ξ

]
+ �

n+1. (13)

For the sake of simplicity, we denote Y (zr , tn+1) by Y n+1
r and discretize equation (13) along

the spatial grid as follows:

φn
r Y n+1

r + ϕn
r (Yz)n+1

r – ν(Yzz)n+1
r

= (2γ + β)Y n
r + ν(Yzz)n

r – 2γ

n∑

ξ=1

σξ

[
Y n–ξ+1

r – Y n–ξ
r

]
+ �

n+1
r , r = 0, 1, 2, . . . , R. (14)

From (11) and (12), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

Y n+1
r = Dn+1

r–1 ( 1
6 ) + Dn+1

r ( 4
6 ) + Dn+1

r+1 ( 1
6 ),

(Yz)n+1
r = Dn+1

r–1 ( –1
2h ) + Dn+1

r (0) + Dn+1
r+1 ( 1

2h ),

(Yzz)n+1
r = Dn+1

r–1 ( 1
h2 ) – Dn+1

r ( 2
h2 ) + Dn+1

r+1 ( 1
h2 ).

(15)

By plugging (15) into (14), we obtain the following set of equations:

an
r Dn+1

r–1 + bn
r Dn+1

r + cn
r Dn+1

r+1 = ωn
r , r = 0, 1, 2, . . . , R, n = 0, 1, 2, . . . , N , (16)

where an
r = φn

r
6 – ϕn

r
2h – ν

h2 , bn
r = 4φn

r
6 + 2ν

h2 , cn
r = φn

r
6 + ϕn

r
2h – ν

h2 , and ωn
r = (2γ + β)Y n

r + ν(Yzz)n
r –

2γ
∑n

ξ=1 σξ [Y n–ξ+1
r – Y n–ξ

r ] + �
n+1
r .

Two more relations are obtained from end conditions (3):

⎧
⎨

⎩
Dn+1

–1 ( 1
6 ) + Dn+1

0 ( 4
6 ) + Dn+1

1 ( 1
6 ) = (g1)n+1,

Dn+1
R–1( 1

6 ) + Dn+1
R ( 4

6 ) + Dn+1
R+1( 1

6 ) = (g2)n+1.
(17)
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Equations (16)–(17) can be expressed in a matrix form as follows:

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

1
6

4
6

1
6 0 · · · 0 0 0

an
0 bn

0 cn
0 0 · · · 0 0 0

0 an
1 bn

1 cn
1 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · an
R bn

R cn
R

0 0 0 0 · · · 1
6

4
6

1
6

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

Dn+1
–1

Dn+1
0

Dn+1
1
...

Dn+1
R

Dn+1
R+1

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

(g1)n+1

ωn+1
0

ωn+1
1
...

ωn+1
R

(g2)n+1

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

. (18)

The above system is solved for (Dn+1
–1 , Dn+1

0 , Dn+1
2 , . . . , Dn+1

R+1)T . Using this vector in (11),
we get the approximate solution at (n + 1)th time level for n = 0, 1, 2, . . . , N . How-
ever, to start the iterative process, we need to evaluate the initial vector. The initial
conditions of the problem under consideration will help to compute the initial vector
(D0

–1, D0
0, D0

2, . . . , D0
R+1)T as follows: Discretization of (2) results in the following set of equa-

tions [28]:

⎧
⎪⎪⎨

⎪⎪⎩

Yz(z0, t0) = gz(z0),

Y (zr , t0) = gz(zr) for r = 0, 1, 2, . . . , R,

Yz(zR, t0) = gz(zR).

(19)

Using (15) in the above system, we get the following matrix form:

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎣

–1
2h 0 1

2h 0 · · · 0 0 0
1
6

4
6

1
6 0 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 1
6

4
6

1
6

0 0 0 0 · · · –1
2h 0 1

2h

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎣

D0
–1

D0
0

...
D0

R

D0
R+1

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎣

(gz)0
0

g0
0
...

g0
R

(gz)0
R

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎦

. (20)

This above equation, (N + 3) × (N + 3) matrix system, is solved using Thomas algorithm.
For numerical computations, MATLAB software has been used.

3 Stability analysis
For the sake of simplicity, we discuss the stability of the presented scheme for the following
linear force free case of problem (1):

∂αy(z, t)
∂tα

+ η
(
y(z, t)

)
z – ν

(
y(z, t)

)
zz – βy(z, t) = 0. (21)

Employing the method described in Sect. 3 for θ = 1, the fully discretized scheme for equa-
tion (21) is given by

κ1Dn+1
r–1 + κ2Dn+1

r + κ3Dn+1
r+1

=
γ

6
Dn

r–1 +
4γ

6
Dn

r +
γ

6
Dn

r+1

– γ

n∑

ξ=1

σξ

[
1
6
(
Dn–ξ+1

r–1 – Dn–ξ
r–1

)
+

4
6
(
Dn–ξ+1

r – Dn–ξ
r

)
+

1
6
(
Dn–ξ+1

r+1 – Dn–ξ
r+1

)]
, (22)
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where

κ1 =
γ

6
–

β

6
–

η

2h
–

ν

h2 , κ2 =
4γ

6
–

4β

6
+

2ν

h2 , κ3 =
γ

6
–

β

6
+

η

2h
–

ν

h2 .

Now, we bring the Fourier method into play for stability analysis. Let Ωn denote the
growth factor and Ω̃n be its estimated value. The error Υ n at nth time stage is given by

Υ n = Ωn – Ω̃n, (23)

where Υ n = [Υ n
1 ,Υ n

2 , ·,Υ n
N–1]T .

From (22), we have

κ1Υ
n+1

r–1 + κ2Υ
n+1

r + κ3Υ
n+1

r+1

=
γ

6
Υ n

r–1 +
4γ

6
Υ n

r +
γ

6
Υ n

r+1

– γ

n∑

ξ=1

σξ

[
1
6
(
Υ

n–ξ+1
r–1 – Υ

n–ξ
r–1

)
+

4
6
(
Υ n–ξ+1

r – Υ n–ξ
r

)
+

1
6
(
Υ

n–ξ+1
r+1 – Υ

n–ξ
r+1

)
]

. (24)

The end conditions (2)–(3) are also satisfied by error term as follows:

Υ 0
r = g(zr), Υ n

0 = g1(tn), Υ n
R = g2(tn), n = 0, 1, . . . , N , r = 1, 2, . . . , R. (25)

Now, we introduce a mesh function

Υ n =

⎧
⎨

⎩
Υ n

r , zr – h
2 < z ≤ zr + h

2 , r = 1 : 1 : R – 1,

0, a ≤ z ≤ a + h
2 or b – h

2 ≤ z ≤ b.
(26)

Also, Υ n(z) can be written in terms of Fourier series as follows:

Υ n(z) =
∞∑

–∞
ρn(m)e

2mπιz
b–a , n = 0, 1, . . . , N , (27)

where

ρn(m) =
1

b – a

∫ b

a
Υ n(z)e

–2mπιz
b–a dz. (28)

⇒

∥
∥Υ n∥∥

2 =

√√
√√

R–1∑

r=1

h
∣
∣Υ n

r
∣
∣2

=

√√
√√

∫ a+ h
2

a

∣
∣Υ n

∣
∣2 dz +

R–1∑

r=1

∫ zr+ h
2

zr– h
2

∣
∣Υ n

∣
∣2 dz +

∫ b

b– h
2

∣
∣Υ n

∣
∣2 dz

=
∫ b

a

∣
∣Υ n∣∣2 dz =

∞∑

–∞

∣
∣ρn(m)

∣
∣2 (using Parseval’s equality). (29)
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Now, we plug Υ n
r = ρne�rhι into (24) and simplify to get the following expression:

κ1ρn+1e–ι�h + κ2ρn+1 + κ3ρn+1eι�h

=
γ

6
ρne–ι�h +

4γ

6
ρn +

γ

6
ρneι�h

– γ

n∑

ξ=1

σξ

[
1
6

(ρn–ξ+1 – ρn–ξ )e–ι�h +
4
6

(ρn–ξ+1 – ρn–ξ ) +
1
6

(ρn–ξ+1 – ρn–ξ )eι�h
]

,

(30)

where ι =
√

–1 and � = 2mπ
b–a . After some simplification, (30) takes the form

ρn+1 =
1
χ

ρn –
1
χ

n∑

ξ=1

σξ (ρn–ξ+1 – ρn–ξ ), (31)

where χ = 1 + 12ν sin2(�h/2)–βh2(2+cos(�h))
γ h2(2+cos(�h)) . It can be noted that |χ | ≥ 1. Now, we make use of

mathematical induction to show that |ρn| ≤ |ρ0| for all n.
For n = 0, (31) gives

|ρ1| =
1

|χ | |ρ0| ≤ |ρ0| ∵ |χ | ≥ 1. (32)

Now, let |ρn| ≤ |ρ0| for n > 0.
Using (31), we have

|ρn+1| ≤ 1
|χ | |ρn| +

1
|χ |

n∑

ξ=1

σξ

(|ρn–k+1| – |ρn–k|
)

≤ 1
|χ | |ρ0| +

1
|χ |

n∑

ξ=1

σξ

(|ρ0| – |ρ0|
)

≤ |ρ0| ∵ |χ | ≥ 1.

Hence

|ρn| ≤ |ρ0| for all n. (33)

Using (29) and (33), we have

∥
∥Υ n∥∥ ≤ ∣

∣Υ 0∣∣
2,

which concludes that the proposed scheme is unconditionally stable.

4 Convergence analysis
In this section, we derive the uniform convergence of the proposed scheme.
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Lemma 4.1 Consider y(z, t) to be the exact solution of problem (1) in [0, L]. Let Ỹ (z, t) be
the unique spline approximation to (1), then ∀t ≥ 0, ∃μj, not depending on h, s.t.

∥∥Dl(y – Ỹ )
∥∥∞ ≤ ,lh4–lג l = 0, 1, 2. (34)

Lemma 4.2 The spline basis Bi, i = –1, 0, . . . , R + 1, satisfies the inequality [29]

R+1∑

s=–1

∣∣Bs(z)
∣∣ ≤ 5

3
, 0 ≤ z ≤ 1. (35)

Let y, Y be the exact and approximate solutions for the given problem and Ỹ =
∑R+1

l=–1 εlBl

be the spline approximation for Y with the interpolation conditions Ly(zr , t) = LY (zr , t) =
g(zr , t), r = 0 : 1 : R, then

LỸ (z, t) = g̃((zr , t).

At t = tn, the problem can be expressed in terms of difference equation L(Ỹ (zr , t) – Y (zr , t))
as follows:

κ1℘
n+1
r–1 + κ2℘

n+1
r + κ3℘

n+1
r+1

=
γ

6
℘n

r–1 +
4γ

6
℘n

r +
γ

6
℘n

r+1

– γ

n∑

ξ=1

σξ

[
1
6
(
℘

n–ξ+1
r–1 – ℘

n–ξ
r–1

)
+

4
6
(
℘n–ξ+1

r – ℘n–ξ
r

)
+

1
6
(
℘

n–ξ+1
r+1 – ℘

n–ξ
r+1

)
]

+ �
n+1
r ,

(36)

where ℘n
r = Dn

r – εn
r , r = 0, 1, . . . , R.

From the end conditions, we can write

1
6
℘n+1

r–1 +
4
6
℘n+1

r +
1
6
℘n+1

r+1 = 0, r = 0, R.

If �n
r = h2[�n

r – �̃r
n] for r = 0, 1, . . . , R, then using Lemma (4.1), we can write

∣∣�n
r
∣∣ = h2∣∣�n

r – �̃r
n∣∣ ≤ .h4ג

Let �n = max{|�n
r |; 0 ≤ r ≤ R}, Ẽn

r = |℘n
j |, and Ẽn = max{|En

r |; 0 ≤ r ≤ R}.
At n = 0, equation (36) takes the shape

κ1℘
1
r–1 + κ2℘

1
r + κ3℘

1
r+1 =

γ

6
℘0

r–1 +
4γ

6
℘0

r +
γ

6
℘0

r+1 +
1
h2 �

1
r . (37)

Making use of the initial condition, we have E0 = 0 ⇒

κ1℘
1
r–1 =

1
h2 �

1
r – κ2℘

1
r – κ3℘

1
r+1.
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Using small grid spacing with end conditions, we can write

Ẽ1 ≤ ,1h2ג (38)

where 1ג does not contain h. Using mathematical induction, we can easily prove that

Ẽn+1
j ≤ .h2ג (39)

Hence

Ỹ (z, t) – Y (z, t) =
R+1∑

r=–1

(
εr(t) – Dr(t)

)
Br(z).

Using Lemma (4.2) , we get

‖Ỹ – Y‖∞ ≤ 5
3
.h2ג (40)

Now

‖y – Y‖∞ ≤ ∥
∥y – Ỹ (z, t)

∥
∥∞ +

∥
∥Ỹ (z, t) – Y (z, t)

∥
∥∞,

‖u – U‖∞ ≤ 0h4ג +
5
3
h2ג = �h2,

where � = 0h2ג + 5
.ג3

Hence ‖y – Y‖∞ ≤ �h2 + ς (�t)2–α , where ג and ς are constants.

5 Applications and discussion
In this section, we present some numerical experiments. L2 and L∞ norms are used to
analyze the precision of the suggested technique.

L2 = ‖yexact – Y‖2 �
√√√
√h

R∑

r=0

∣
∣(yexact)r – Yr

∣
∣2,

and

L∞ = ‖yexact – Y‖∞ � R
max

r=0

∣∣(yexact)r – Yr
∣∣.

Example 1 Consider the following time fractional Burgers’ equation:

∂αy(z, t)
∂tα

+ yyz(z, t) – νyzz(z, t) = H(z, t), (41)

IC: y(z, 0) = 0, 0 ≤ z ≤ 1,

BCs: y(0, t) = 0, y(1, t) = –t
3
2 , t ≥ 0,

where the source term on the right-hand side is given by H(z, t) = t
3
2 –α

Γ ( 5
2 –α)

Γ ( 5
2 ) sin 3π

2 (z) +
3π
2 t3 sin 3π

2 (z) cos 3π
2 (z) + 9π2

4 t 3
2 sin 3π

2 (z).
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Figure 1 Numerical solution of Example 1 for α = 0.5, h = 0.01, �t = 0.00035, and ν = 1

Figure 2 Three-dimensional view of numerical results
of Example 1 for t ∈ [0, 1], α = 0.5, step size h = 0.01,
�t = 0.00035, and ν = 1

y(z, t) = t 3
2 sin 3π

2 (z) is the exact solution for the above initial and boundary conditions.
Figure 1(a) shows the physical behavior of time fractional Burgers’ equation (41) when
t = 0.25, spatial step length h = 0.01, viscosity parameter ν = 1, �t = 0.00035, and α = 0.5.
Figure 1(b) displays the two-dimensional plots of numerical outcomes and exact values in
a single frame for distinct time stages t = 0.5, 0.75, and 1, which clearly demonstrates that
the numerical findings extracted from this system are consistent with the exact solutions.
The three-dimensional plot of solution surface is shown in Fig. 2. Table 1 presents the
comparison of approximate and exact solutions. We can see that the numerical results are
reasonably precise. The error standards for L2 and L∞ were measured and displayed in
Table 2. The numerical order of convergence has been reported in Table 3.

Example 2 Consider the following time fractional Burgers’ equation:

∂αy(z, t)
∂tα

+ yyz(z, t) – νyzz(z, t) = H(z, t), (42)

IC: y(z, 0) = 2z2, 0 < z < 1,

BCs: y(0, t) = 0, y(1, t) = 2(t + 1), t ≥ 0.
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Table 1 Comparison of accurate and numerical solutions of Example 1 at various time levels

t = 0.5 t = 0.75 t = 1
Exact Numerical Exact Numerical Exact Numerical

0 0 0 0 0 0
0.14551 0.14552 0.26734 0.26732 0.41152 0.41153
0.27592 0.27593 0.50695 0.50683 0.78043 0.78042
0.34624 0.34632 0.63604 0.63602 0.97923 0.97924
0.34102 0.34117 0.62653 0.62655 0.96464 0.96468
0.26152 0.26153 0.48041 0.48032 0.73964 0.73969
0.12503 0.12504 0.22963 0.22964 0.34358 0.34358
–0.03885 –0.03864 –0.07135 –0.07124 –0.10978 –0.10974
–0.19412 –0.19423 –0.35664 –0.35666 –0.54904 –0.54903
–0.30711 –0.30732 –0.56423 –0.56431 –0.86862 –0.86873
–0.35364 –0.35364 –0.64953 –0.64953 –1 –1

Table 2 Error norms for Example 1

t L2 norm L∞ norm

0.5 3.6× 10–5 2.1× 10–4

0.75 2.0663× 10–5 1.2× 10–4

1 1.3491× 10–5 1.1× 10–4

Table 3 Absolute errors (L∞) and order of convergence (O.C.) at t = 0.5 for Example 1

R = 20 R = 40 R = 80 R = 160 R = 320

L∞ 0.00892 0.00214 0.000563 0.000120 0.0000258
O.C. – 2.05943 1.9264 2.2301 2.21759

The source term is given by

H(z, t) =
2z2t1–α

Γ (2 – α)
+ 8z3(1 + t)2 – 4ν(z + 1).

The closed form solution to this problem is y(z, t) = 2z2(i+ t). The exact and approximate
solutions of equation (42) are shown graphically in Figs. 3. For t = 0.25, α = 0.5, step size
h = 0.01, viscosity parameter ν = 1, and �t = 0.00035, the numerical solution and exact
solutions are shown in Fig. 3(a); from there, we can see that both solutions agree with each
other well. Figure 3(b) depicts the symmetry in both solutions for different time levels t =
0.5, 0.75, and 1. Figure 4 displays three-dimensional representation of physical behavior of
the solution curve. The exact and numerical outcomes are compared in Table 4. One can
see a very close agreement of the exact and approximate solutions in Table 5. From the
tabular information, it can be concluded that error reduces as the value of t varies. Table 6
shows the calculations of numerical order of convergence.

Example 3 Consider the following Fisher’s equation:

∂αy(z, t)
∂tα

– νyzz(z, t) – y(z, t)
(
1 – y(z, t)

)
= H(z, t), (43)

IC: y(z, 0) = 0, 0 < z < 1,

BCs: y(0, t) = t1+α , y(1, t) = 0, t ≥ 0.
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Figure 3 Numerical solution of Example 2 for t = 0.25, α = 0.5, step size h = 0.01, �t = 0.00035, and ν = 1

Figure 4 3D image of numerical results of Example 2
for t ∈ [0, 1], α = 0.5, step size h = 0.01, �t = 0.00035,
and ν = 1

Table 4 Comparison of exact and numerical solutions of Example 2 at various times

t = 0.5 t = 0.75 t = 1
Exact Numerical Exact Numerical Exact Numerical

0 0 0 0 0 0
0.02438 0.02435 0.02845 0.02846 0.03245 0.03247
0.1083 0.1084 0.12642 0.12645 0.14447 0.14443
0.25239 0.25236 0.29445 0.29443 0.33644 0.33641
0.45638 0.45636 0.53247 0.53249 0.60839 0.60835
0.72037 1.72035 0.84032 0.84054 0.96045 0.96039
1.04435 0.04439 1.21834 0.21863 1.39243 1.39241
1.4283 0.42841 1.66324 1.66322 1.90443 1.90442
1.87238 0.87242 2.18445 2.18436 2.49642 2.49635
2.37634 2.37643 2.77241 2.77243 3.16845 3.16873
3 3 3.5 3.5 4 4

The source term is given by

H(z, t) = t cos(3πz)
(
1 – z2)Γ (2 + α)

– t1+α
[
12πz sin(3πz) – 2 cos(3πz) – 9π2(1 – z2) cos(3πz)

]

+ 6
[
t1+α cos(3πz)

(
1 – z2)][1 –

{
t1+α cos(3πz)

(
1 – z2)}].
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Table 5 Error norms for Example 2

t L2 norm L∞ norm

0.5 0.1999895 1× 10–4

0.75 0.099970998 2.2× 10–4

1 0.0000030315 2.8× 10–4

Table 6 Absolute errors (L∞) and order of convergence (O.C.) at t = 0.5 for Example 2

R = 20 R = 40 R = 80 R = 160 R = 320

L∞ 0.00984 0.00245 0.000452 0.000120 0.0000237
O.C. – 2.00588 2.43839 1.91329 2.34008

Figure 5 Numerical solution of Example 3 for variation in time at α = 0.6, h = 0.01, �t = 0.00032, and ν = 1

Figure 6 3D view of numerical solution of Example 3
for t ∈ [0, 1], α = 0.6, step size h = 0.01, �t = 0.00032,
and ν = 1

Exact solution to this problem is y(z, t) = t1+α cos(3πz)(1 – z2). Figure 5(a) shows the
two-dimensional plots between numerical and approximate solutions for α = 0.6, t = 0.25,
ν = 1, �t = 0.00031, and spatial step size h = 0.01. It is clearly seen that exact and numerical
results are compatible with each other. Figure 5(b) demonstrates the symmetrical behavior
of exact and approximate solutions at different time stages t = 0.5, 0.75, and 1 for fixed
values of other parameters. The three-dimensional plot of solution surface is shown in
Fig. 6. The comparison of exact and approximate results is given in Table 7, which shows
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Table 7 Comparison of exact and numerical solutions of Example 3 at different time level with
α = 0.5

t = 0.5 t = 0.75 t = 1
Exact Numerical Exact Numerical Exact Numerical

0.3298769 0.3298321 0.6310997 0.6310887 1 1
0.2163845 0.2163832 0.4139732 0.4139654 0.6559552 0.6559562
–0.0693626 –0.0693543 –0.1327002 –0.1327121 –0.2102682 –0.2102563
–0.2772851 –0.2772762 –0.5304844 –0.5304832 –0.8405714 –0.8405675
–0.240751 –0.2406433 –0.4605912 –0.4605943 –0.7298231 –0.7298234
–0.0235904 –0.0235912 –0.0451317 –0.0451321 –0.0715129 –0.0715123
0.1613089 0.1613124 0.3086061 0.3086051 0.4889974 0.4889876
0.1686604 0.1686542 0.3226704 0.3226654 0.5112827 0.5112832
0.0492466 0.0492342 0.0942155 0.0942211 0.1492878 0.1492768
–0.0349107 –0.0349112 –0.0667891 –0.0667355 –0.1058297 –0.1058324
0 0 0 0 0 0

Table 8 Absolute errors (L∞) and order of convergence (O.C.) at t = 0.5 for Example 3

R = 20 R = 40 R = 80 R = 160 R = 320

L∞ 0.0872 0.02137 0.005479 0.000781 0.000143
O.C. – 2.02874 1.9636 2.81052 2.44931

that both solutions are indiscriminately similar to each other. The experimental order of
convergence in spatial direction has been given in Table 8.

6 Concluding remarks
In this work, the authors have presented a B-spline collocation method based on third
degree basis spline functions and finite difference formulation for numerical investigation
of time fractional Burgers’ and Fisher’s equations. Caputo’s interpretation for time frac-
tional derivative has been considered. The fractional time derivative has been discretized
by L1 formula, and B-spline functions are used to interpolate the solution along the spatial
grid. The stability and convergence analysis of the proposed method is carried out. The
numerical results of three different test problems reflect the applicability of the proposed
scheme. The numerical outcomes validate the accuracy and efficiency of the presented
method.
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